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What is a Pattern? - 1
• Work on software development patterns stemmed 

from work on patterns from building architecture 
carried out by Christopher Alexander.

• Patterns are intended to capture the best available 
software development experiences in the form of 
problem-solution pairs.

• A pattern outlines solutions to a family of software 
development problems in a particular context.

• A pattern outlines a process for transforming 
problems targeted by the problem to solutions 
characterized by the pattern.
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What is a Pattern? - 2
• Formally, a pattern consists of

– A characterization of a family of problems
• Determines the design problems that the pattern 

targets
– A characterization of a family of solutions

• Defines solutions for the design problems targeted 
by the pattern

– A set of transformation guidelines
• Guidelines for transforming a problem design to a 

solution characterized by the pattern
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Example of a Software Development 
Pattern - The Model-View-Controller 

(MVC) Pattern
• Context: Developing user-interfaces (UIs )
• Problem: How to create a UI that’s resilient to 

changes such as changes in look-and-feel 
windowing system, changes in functionality.

• Factors: changes to UI should be easy and 
possible at run-time; adapting or porting the UI 
should not impact the implementation of the core 
functionality.
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Solution outline: Split application into 3 
areas:

• The Model component:  encapsulates core 
functionality; independent of input/output 
representations and behavior.

• The View components:  displays data from the 
model component; there can be multiple views for 
a single model component.

• The Controller components: each view is 
associated with a controller that handles inputs; 
the user interacts with the system via the controller 
components.
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Patterns Summary
• A pattern addresses a recurring software 

development problem that arises in a particular 
context, and outlines a solution for it.

• A pattern captures ‘best practices’ in software 
development (the intention! ).
– A pattern should be based on actual experiences in 

industry
• Patterns provide a common vocabulary for, and 

understanding of ‘best practices’.
– Developers can refer to a pattern by name (e.g., the 

Adapter pattern) and others familiar with the pattern 
will not need further description
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Pattern Types
• Requirements Patterns: Characterize families of 

requirements for a family of applications
– The checkin-checkout pattern can be used to obtain requirements 

for library systems, car rental systems, video systems, etc.
• Architectural Patterns: Characterize families of 

architectures
– The Broker pattern can be used to create distributed systems in 

which location of resources and services is transparent (e.g., the 
WWW)

– Other examples: MVC, Pipe-and-Filter, Multi-Tiered
• Design Patterns: Characterize families of low-level design 

solutions
– Examples are the popular Gang of Four (GoF) patterns

• Programming idioms: Characterize programming 
language specific solutions
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Gang of 4 (GoF) Design Pattern 
Classification

Purpose categories described in “Design Patterns:…” by 
Gamma, Helm, Johnson and Vlissides; Addison-Wesley
– Creational 

• Patterns that can be used to make object creation more flexible (e.g., 
Abstract Factory) or restrict creation activities (e.g., Singleton).

• Help make a system independent of how objects are created, 
composed, and represented (i.e., allows one to vary how objects are 
created, composed, and represented)

– Structural
• Concerned with creating flexible mechanisms for composing objects 

to form larger of structures
– Behavioral

• Concerned with creating flexible algorithms and with assigning 
responsibilities to classes
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Scope Criterion
Scope determines whether a pattern applies to 

classes or objects
• Classes

– static relations
– inheritance structures
– Examples: Factory Method (creation); Adapter 

(structural); Interpreter (behavioral)
• Objects

– object relations
– Dynamic
– Examples: Abstract Factory (creation); Bridge 

(structural); Iterator (behavioral)
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Creational Design Patterns
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Overview of Creational Patterns
• Separate object creation from representation.
• Flexibility in what gets created, who creates 

objects, how objects are created, and when objects 
are created.

• Class Patterns: use inheritance to vary class of 
instantiated object

• Object Patterns: delegate instantiation to another 
object.



Robert B. France 12

Overview of creational class and object 
patterns

• Creational class patterns
– defer creation to subclasses.

• Creational object patterns
– defer creation to objects
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The Factory Method Pattern

• Defers object instantiation to subclasses: A factory 
method defines the interface of  an operation that 
creates objects. The implementation of the 
operation is provided by subclasses.

• Abstract operation may implement a default 
implementation.

• Knowledge of what objects to create are 
encapsulated in subclasses.
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Application/Document Example

• Application class manages multiple documents of 
different types.

• Contains operations for manipulating documents.
• PROBLEM: Application knows when to create 

documents but does not know what types of 
documents to create.

• SOLUTION: Encapsulate knowledge of creation 
of concrete documents in subclasses and defer 
implementation to these subclasses.
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Factory Method Solution
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Solution Structure
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Applicability

• Class cannot anticipate type of objects to 
create.

• Class wants its subclasses to determine type 
of objects to create.

• Class delegates object creation 
responsibility to a select set of subclasses.
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Consequences

• Creation of a new product class may require 
creating a new Creator subclass.

• Gives subclasses a ‘hook’ for creating an 
extended version of an object.

• Factory methods can be called by clients.
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Implementation
2 varieties
• Creator does not provide a default 

implementation: requires creation of 
concrete subclasses.

• Creator provides default implementation: 
subclasses can either inherit method as is or 
redefine it.
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What design changes are 
accomodated?

• Changes to the type of products that can be 
created by a creator class
– A new subclass can be added for each type of 

product that is needed.
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What changes are difficult to 
handle?

• One cannot add a new product to be created 
during run-time

• If the product consists of subparts one cannot vary 
the the types of subparts used.
– Abstract factory or builder is needed for this purpose
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Abstract Factory Pattern

• Used for building composite objects.

• Isolates clients from implementation of 
components by providing an abstract 
interface.

• Enforces creation using only compatible 
components.
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Maze Game Class Model (not all operations shown)
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Maze Game with Abstract Factory



Robert B. France 26



Robert B. France 27

Solution Structure
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Benefits

• Separates clients from implementation of 
created objects.

• Product family can be changed easily.

• Promotes consistency among products: 
enforces use of compatible parts.
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Drawback

Difficult to introduce a new kind of product 
family.

• Interface fixes components that are to be 
created.
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What design changes are 
accomodated?

• Can create a new product family during run-
time by passing in a specialized factory.

• A new class of members of the family can 
be introduced during design by creating a 
factory subclass.
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What changes are difficult to 
handle?

• Cannot introduce a new product family with 
different parts easily
– Interface fixes components that are to be 

created.



Builder Pattern

• Abstract construction steps of object 
structures so that different implementations 
of these steps can create different forms of 
objects.
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Builder: Abstract interface for creating objects
Concrete Builder: Provides implementations of creation 
operations in Builder
Director: Builds an object structure using a Builder object



Example
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public class PromoKitDirector {
public PromoKit createPromoKit(

PromoKitBuilder builder) {
builder.buildVideoPart();
builder.buildGarmentPart();
builder.buildBookPart();
return builder.getPromoKit();
}

}
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// Integration with overal application
public class Application {

public static void main(String[] args) {
String gendre = "M";
PromoKitDirector director = new PromoKitDirector();
PromoKitBuilder promoKitBuilder = null;
if (gendre.equals("M")) {

promoKitBuilder = new MenPromoKitBuilder();
} 
else if (gendre.equals("F")) {

promoKitBuilder = new WomenPromoKitBuilder();
} 
else { // .... }

PromoKit result = director.createPromoKit(promoKitBuilder);
}

}
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Benefits
• Can vary internal representation of object structure 

(product)
– Builder provides abstract interface to objects that build 

complex structures (Director objects)
– Same builder object can be used with different directors

• Allows control over construction
– Director can control when operations in builder are 

called
– The director retrieves the product from the builder only 

after it is finished
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Drawback

What are the drawbacks?
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What design changes are 
accomodated?

What changes can be made with little effort?
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What changes are difficult to 
handle?
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Singleton Pattern

Used to ensure that only one instance of a class 
exists.

• The class keeps track of the sole instance and does 
not permit instantiation if an instance already 
exists.

• This is done by hiding the constructor from clients 
(but not the subclasses), and defining a static 
operation that creates an instance if and only if 
there are no instances.
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Solution Structure
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MyShapeController Factory
// MyShapeControllerFactory.java
// MyShapeControllerFactory uses the Factory Method design
// pattern to create an appropriate instance of MyShapeController
// for the given MyShape subclass. 
package com.deitel.advjhtp1.drawing.controller;

import com.deitel.advjhtp1.drawing.model.*;
import com.deitel.advjhtp1.drawing.model.shapes.*;

public class MyShapeControllerFactory {

// reference to Singleton MyShapeControllerFactory
private static MyShapeControllerFactory factory;

// MyShapeControllerFactory constructor
protected MyShapeControllerFactory() {}
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// return Singleton instance of MyShapeControllerFactory
public static final MyShapeControllerFactory getInstance()
{

// if factory is null, create new MyShapeControllerFactory
if ( factory == null ) {

factory = new MyShapeControllerFactory();
} // end if

return factory;      

} // end method getInstance
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Structural Patterns
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Adapter Pattern

• An adapter pattern converts the interface 
of a class into an interface that a client 
expects

• Adapters allow incompatible classes to 
work together

• Adapters can extend the functionality of 
the adapted class
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When to Use

• Need to adapt the interface of an existing 
class to satisfy client interface requirements
– Adapting Legacy Software
– Adapting 3rd Party Software



Robert B. France 51

Class Adapter Pattern
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Object Adapter Pattern
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What changes are easily 
accomodated?

• One can use components with incompatible 
interfaces
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What changes are difficult to 
handle?

• When the adaptee provides only SOME of 
the functionality needed to handle a 
customer request, the additional 
functionality must be provided somewhere 
else (e.g., in the adapter)
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Bridge Pattern
• Used to decouple implementations from 

abstraction when abstraction can have more 
than one implementation.
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Bridge Pattern Example



Robert B. France 57

What changes are accomodated?

• One can vary the implementation associated 
with an abstraction during run-time.

• One can add new implementations during 
design by subclassing the implementation 
superclass
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Façade Pattern
• Provides a unified interface to a set of 

interfaces in a subsystem
• Helps to minimize communication and 

dependencies across subsystems
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Façade Pattern Example
Use a session bean as a facade to encapsulate the complexity of interactions 
between the business objects participating in a workflow. The Session Facade 
manages the business objects, and provides a uniform service access layer to 
clients.
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Façade Example – Sequence 
Diagram



Robert B. France 61

Composite Pattern

• Use when one wants to treat elements in a 
composite structure uniformly
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Composite Structure Example
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Behavioral Patterns
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Command Pattern
• Encapsulates a request as an object so that 

clients can be parameterized with different 
requests
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Using Polymorphism but not the 
Command Pattern
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Thoughts on Non-Command

• What level of de-coupling is reached?
– The switch doesn’t have to call the individual 

classes turn on and off method, just a general 
appliance.

– The switch still knows that it is attached to an 
appliance, this we should get rid of.

– What happens if we want to change the 
command that is preformed on a light?
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Command Pattern
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A Website’s model of the same 
concept.
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Thoughts on Command

• 4 More classes added, though all small.
• Level of Decoupling much greater.

– The switch no longer knows anything about an 
appliance on the end, just that it can be turned 
on and off.

• Future flexibility much greater.
– If we change a fan or a light, it does not have 

any side effects.
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Higher Level Concepts

• Basically, command separates (or 
decouples) the invoker from the receiver by 
creating an interface in-between them.

• Allows the passing of methods as 
arguments.  (Note that this is much easier to 
accomplish in C++ with function pointers)
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Iterator Pattern
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Participants
The classes and/or objects participating in this pattern 

are: 
• Iterator (AbstractIterator)

– defines an interface for accessing and traversing elements. 
• ConcreteIterator (Iterator)

– implements the Iterator interface. 
– keeps track of the current position in the traversal of the 

aggregate. 
• Aggregate (AbstractCollection)

– defines an interface for creating an Iterator object 
• ConcreteAggregate (Collection)

– implements the Iterator creation interface to return an 
instance of the proper ConcreteIterator 
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Strategy Pattern
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Participants
• Strategy (SortStrategy)

– declares an interface common to all supported 
algorithms. Context uses this interface to call the 
algorithm defined by a ConcreteStrategy 

• ConcreteStrategy (QuickSort, ShellSort, 
MergeSort)
– implements the algorithm using the Strategy 

interface 
• Context (SortedList)

– is configured with a ConcreteStrategy object 
– maintains a reference to a Strategy object 
– may define an interface that lets Strategy access 

its data. 
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Template Method
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