An Introduction to Patterns

Robert B. France
Colorado State University

Robert B. France

What Is a Pattern? - 1

Work on software development patterns stemmed
from work on patterns from building architecture
carried out by Christopher Alexander.

Patterns are intended to capture the best available
software development experiences in the form of
problem-solution pairs.

A pattern outlines solutions to a family of software
development problems in a particular context.

A pattern outlines a process for transforming
problems targeted by the problem to solutions
characterized by the pattern.

Robert B. France 2

What Is a Pattern? - 2

* Formally, a pattern consists of

— A characterization of a family of problems

» Determines the design problems that the pattern
targets

— A characterization of a family of solutions

 Defines solutions for the design problems targeted
by the pattern

— A set of transformation guidelines

 Guidelines for transforming a problem design to a
solution characterized by the pattern

Robert B. France

Example of a Software Development
Pattern - The Model-View-Controller
(MVC) Pattern

Context: Developing user-interfaces (Uls)

Problem: How to create a Ul that’s resilient to
changes such as changes in look-and-feel
windowing system, changes in functionality.

Factors: changes to Ul should be easy and
possible at run-time; adapting or porting the Ul
should not impact the implementation of the core

functionality.

Robert B. France

Solution outline: Split application into 3
areas:

* The Model component: encapsulates core
functionality; independent of input/output
representations and behavior.

* The View components: displays data from the
model component; there can be multiple views for
a single model component.

« The Controller components: each view IS
assoclated with a controller that handles inputs;
the user interacts with the system via the controller
components.

Robert B. France 5

Patterns Summary

A pattern addresses a recurring software
development problem that arises in a particular
context, and outlines a solution for it.

A pattern captures ‘best practices’ in software
development (the intention!).

— A pattern should be based on actual experiences in
Industry

 Patterns provide a common vocabulary for, and
understanding of ‘best practices’.

— Developers can refer to a pattern by name (e.g., the
Adapter pattern) and others familiar with the pattern
will not need further description

Robert B. France

Pattern Types

Requirements Patterns: Characterize families of
requirements for a family of applications

— The checkin-checkout pattern can be used to obtain requirements
for library systems, car rental systems, video systems, etc.

Architectural Patterns: Characterize families of
architectures

— The Broker pattern can be used to create distributed systems in
which location of resources and services is transparent (e.g., the
WWW)

— Other examples: MVC, Pipe-and-Filter, Multi-Tiered

Design Patterns: Characterize families of low-level design
solutions
— Examples are the popular Gang of Four (GoF) patterns

Programming idioms: Characterize programming
language specific solutions

Robert B. France 7

Gang of 4 (GoF) Design Pattern
Classification

Purpose categories described in “Design Patterns:...” by
Gamma, Helm, Johnson and Vlissides; Addison-Wesley

— Creational

 Patterns that can be used to make object creation more flexible (e.g.,
Abstract Factory) or restrict creation activities (e.g., Singleton).

» Help make a system independent of how objects are created,
composed, and represented (i.e., allows one to vary how objects are
created, composed, and represented)

— Structural

» Concerned with creating flexible mechanisms for composing objects
to form larger of structures

— Behavioral

» Concerned with creating flexible algorithms and with assigning
responsibilities to classes

Robert B. France

Scope Criterion

Scope determines whether a pattern applies to
classes or objects

e Classes
— static relations
— Inheritance structures

— Examples: Factory Method (creation); Adapter
(structural); Interpreter (behavioral)

e Objects
— object relations
— Dynamic

— Examples: Abstract Factory (creation); Bridge
(structural); Iterator (behavioral)

Robert B. France

Creational Design Patterns

Robert B. France

10

Overview of Creational Patterns

Separate object creation from representation.

Flexibility in what gets created, who creates
objects, how objects are created, and when objects
are created.

Class Patterns: use inheritance to vary class of
Instantiated object

Object Patterns: delegate instantiation to another
object.

Robert B. France 11

Overview of creational class and object
patterns

 Creational class patterns
— defer creation to subclasses.

 Creational object patterns
— defer creation to objects

Robert B. France

12

The Factory Method Pattern

« Defers object instantiation to subclasses: A factory
method defines the interface of an operation that
creates objects. The implementation of the
operation Is provided by subclasses.

« Abstract operation may implement a default
Implementation.

« Knowledge of what objects to create are
encapsulated in subclasses.

Robert B. France 13

Application/Document Example

Application class manages multiple documents of
different types.

Contains operations for manipulating documents.

PROBLEM: Application knows when to create
documents but does not know what types of
documents to create.

SOLUTION: Encapsulate knowledge of creation
of concrete documents in subclasses and defer
Implementation to these subclasses.

Robert B. France 14

Factory Method Solution

createDocument is the factory method AN

-/ Document

& close()
£ open()

£F savel)

Ilul

||I II

docs

A
‘ -| MyDocument |:.:— —————————— .

| Application

& newDocumenti)
£ openDocument])

£ createDocument()

newlocument]}...

Document doc = createDocument])
docs. add{doc)

doc.opent() ...

h

= MyApplication

Robert B. France

[,

createDocument])

retum new MyDocument

h

15

Product

T

Solution Structure

Creafor

+FactoryMethod() -

+AnCiperation() -

ConcreteProduct

AN

ConcreteCreator

product = FactaryMethad()

[

+FactoryMethod() ——

Robert B. France

refurn new ConcreteProduct

16

Applicability

 Class cannot anticipate type of objects to
Create.

« Class wants Its subclasses to determine type
of objects to create.

» Class delegates object creation
responsibility to a select set of subclasses.

Robert B. France 17

Conseguences

« Creation of a new product class may require
creating a new Creator subclass.

* Glves subclasses a ‘hook’ for creating an
extended version of an object.

 Factory methods can be called by clients.

Robert B. France 18

Implementation

2 varieties

 Creator does not provide a default
Implementation: requires creation of
concrete subclasses.

 Creator provides default implementation:
subclasses can either inherit method as IS or
redefine It.

Robert B. France 19

What design changes are
accomodated?

» Changes to the type of products that can be
created by a creator class

— A new subclass can be added for each type of
product that is needed.

Robert B. France

20

What changes are difficult to
handle?

e One cannot add a new product to be created
during run-time

* |f the product consists of subparts one cannot vary
the the types of subparts used.

— Abstract factory or builder is needed for this purpose

Robert B. France 21

Abstract Factory Pattern

» Used for building composite objects.

* |solates clients from implementation of
components by providing an abstract
Interface.

* Enforces creation using only compatible
components.

Robert B. France

22

Maze Game Class Model (not all operations shown)

MazeGame

CreateBombedhaze)
CreateEnchantediaze)
CreateRoomyWithBomb()
CreateEnchantedRoomi)
CreateDoorNeedingSpell()
CreateOrdinaryWall()
CreateBormbadWall()

-zldes MapSite

1 -client

4 |Entar])

1 -maze
-maze

FaoomMol)

LA ddRaom
(l?.\. 0 -mazeRoms -to

Room

roomMumber -doors

1.t - [Door winterfaces
5 o o s
EnchantedMaze BombedMaze nter()
{ N,
+ Lo |

-toors 0.4 f'r x\'r-

! hY

g

)

!
i -bmaze / i

1 -8Mmaze i 5

1.7 -brooms { kA
DoorNeedingSpell OrdinaryWall BombedWall

RoomWithBomb EnchantedRoom

-oors o4 -wall 0.4 -bwalls 0.4

~from
-aRooms 1.t -broom 1

RoomWithBomb

game:MazaGams

G'IiLnt

I CreateBombedMaze()

createMazai)

——

amaze:Mare

cr&aieﬁuanithEunllb[]

== R1:RoomWithBomb

creaiehuumWithEumbi:l

creataDoor(R1,R2)

R2:RoomWithBomb

d1:Doar

sl Side| South, w)

salSide{Wast wd1)

Y

Y

addRooam{R1)
addRoomi{R2)
FI—;I createOrdinary\Wall() I
t = w W sl
setSide{Morthwl)
selSide(East,d1)
I creatalrdinanyWall() [|
T w2 Wiall
satSide(South,w2) 1
I-;I creatalrdinanyWall() | |
wdall
setSide{West w3) E] 1
createOrdinan\Wall()
| | wa:Wall |
satSide{North w4) 1
FI—;I createOrdinan\Wall() o
r wS W all
setSida(East,w5) 1 |
—_I-;I craaleOrdinaryWall()
I—J:] :J"I wEWall |

Maze Game with Abstract Factory

MazeFactory MazeGame
<LGREe>
MakeRoom() K———————— .
MakeDoor() sides MapSite
MakeWall() 1 _client
MakeMaze() 4 |Enter)
é}' i -maze
-maze
Maze
i
RoomMa()
AddRoom() -room 1.0
EnchantedMazeFactory BombedMazeFactory ‘flh‘ mazeRoms R <o
oom
=doars
MakeRoom) MakeRoom() g foomNumber 1 Door o
MakeDoor() MakeWall() Enter() _ «interfaces
SetSidel) 04 [sCpen Wall
GetSide() Enter() Enter(}
EnchantedMaze BombedMaze ™ T
o f A
1 from foars m—d’ E’F "‘B"%.
-l N
a
i
-bmaze i \
1 -gmaze / N
1.7 -trooms { Lt
DoorNeedingSpell OrdinaryWall BombedWall
RoomWithBomb EnchantedRoom
doors | 04 awall | o4 bwalls | 0.4
4
<from
-eRooms 1. 1 -broom i
-Foom
Room RoomWithBomb
25

Robert B. France

A

ﬂlle
|

bf .= createBombediMazefactony()

= bf BombedMazeFactory

game MazeGame

CreateBombedMaze(bf) 1

amaze:= makehlaze{)
L

| —

R1:=makeRoom()

L

R2:=makeRoomi) T
-

|
|
|
|
|
L
|
|
|
|
|
|

R1:RoomWithBomb

= R2:RoomWithBomb

d1=createDoonR1RZ) T

create() amaze:Maze
[
create() |
creater) |
i

lcr&at&i]

adJ?mm[m }

A

l:reate{]-|

d1:Door

wlWall

w2 Wall

addRoom(RZ)
wi-=makeWall) |
setSidelMorth,wi)
satE’de{EasLd‘l ¥
1
w2:=makeWall() I ceoaini]
5et$it|el:Sﬂu1h w2}

N N it 5 B

Solution Structure

Client

AbstractFaciory

AbstraciProduciA

ﬁl‘_\.

£|L

+CrealaProductad)
+CrealeProductBi)

G o

ConcreteFactory

ConcreteFactory2

+CreateProductsd)
+CraateProduciBi()

+CreateProductsdg)
+CraateProductBi)

N

Productad Producta2
NE
Lo e e e e o e e e e e J
AbstractProductB

5

ProductB1

ProductB 2

Robert B. France

applic

main()

T
|
|

create factory:
ConcreteFactory1
I
|
1
create(factory) }
client :
|
|
T |
|
| 3
op1() ™]
— - |
part1:=makePartA
create
= part1:ProductA1
1
part2:=makePartB create
>|j part2:ProductB1
|
|
|
|
|
B
I
oRts, = factory:
H ConcreteFactory2
I
[T
setFactory(factory) ‘ :
. i
|
op2() ™ !
- part1:=makePartA !
create
B part1:ProductA2
|
|
part2:=makePartB
) create
~ 7=t part2:ProductB2

CrderProcesson

FinagnciaiTaolsFactorny

TaxProcessar

HoalculateTaxes(

L R

EurnpeTaxPrnceasnd

HoalculateTaxes))

CanadaTaxProcessor

HoalculateTaxes)

|
|
|
|
ShipFeeProcessor :
:
|
|

HoalculateShippingF ee)

’_43

EuropeshipFesProcesar

+CalculateShippingFees)

—

CanadashipFeeProcessor

FoalculateShippingFesl)

Robert B. France

+CresteTaxProceszar)
+Creste=hipFeeProcessor

FuropeFinancialToolzFactary

HCreateTaxProcessor)
Horeate=hipFeeProcessor)
T

—_——e— e ———

LanadaFinancial ToolzFactary

rCreateTaxProcessor])
HCreateshipFeeProcessor)

—_— e e, e, e e e, e ———

29

Application

main()

create(factory)

shipFeeProcessor:
EuropeShipFeePro

cessor

create — .| customer:
- Customer
create
=== order: Order
create factory:
EuropeFinancialT
ocolsFactory
T
I
i
I
,,,,,,,, creale(factory) euroOrderProcessor: [
Orderprocessor |
I
I
taxProcessor:= |
createTaxProcesso
. create taxProcessor:Europe
shipFeeProcessor:= TaxProcessor
createShipFee | T
Processor !
— create 1
1
i
I 1
1 I]
i | 1
1 I]
1 i 1
1 i !
| i i
I
processOrder(order) e | :
-— calculateTaxes(order)
-'l:l
'
calculateShipFee(order)
o
]
create

factory:
CanadaFinancial
ToolsFactory

canadaOrderProcessor:
Orderprocessor

taxProcessor:=
createTaxProc

taxProcessor:Canada
TaxProcessor

shipFeeProcesso
createShipFee

create
-— ==t

Processor

shipFeeProcessor:
CanadaShipFeePr
ocessor

Robert B. France

Benefits

« Separates clients from implementation of
created objects.

 Product family can be changed easily.

* Promotes consistency among products:
enforces use of compatible parts.

Robert B. France

31

Drawback

Difficult to introduce a new kind of product
family.

* Interface fixes components that are to be
created.

Robert B. France

32

What design changes are
accomodated?

e Can create a new product family during run-
time by passing In a specialized factory.

* A new class of members of the family can
be introduced during design by creating a
factory subclass.

Robert B. France 33

What changes are difficult to
handle?

« Cannot introduce a new product family with
different parts easily

— Interface fixes components that are to be
created.

Robert B. France 34

Builder Pattern

» Abstract construction steps of object
structures so that different implementations

of these steps can create different forms of
objects.

Robert B. France 35

Diractor

+Caonstruct() Q
I
i
i
I
I
|

Builder

For all objects in structure {

}

builder->builldPart()

:

BuildPart()

AN

ConcraeteBuilder

Product

+BuildPart()
+GetReasult()

Builder: Abstract interface for creating objects
Concrete Builder: Provides implementations of creation

operations in Builder

Director: Builds an object structure using a Builder object

Robert B. France

36

PromokitDirector

Example

Prommal tBaiider

+CreatePromokit)

+huild¥ideoPart()
+huildGarmentFart()
+huildBookPart(
+getPromokit)

AN

hienPromokitBuilder

+HhuildyideoPart()
HhuildGarmentPart)
+HhuildBookPart(

omenPromakitBuilder

+HhuildYideoPart()
+huildGarmentPart)
+HhuildBookPart(

HoetPromakdt() HoetPromokdt()
I I
e .)

| |
Pramokit
Garment "ideo Boak

Robert B. France

37

pu
pu

plic class PromoKitDirector {
olic PromoKit createPromoKit(

PromoKitBuilder builder) {
puilder.buildVideoPart();
ouilder.buildGarmentPart();
ouilder.buildBookPart();

return builder.getPromoKit();

}

Robert B. France

38

/I Integration with overal application
public class Application {
public static void main(String[] args) {
String gendre = "M";
PromoKitDirector director = new PromoKitDirector();
PromoKitBuilder promoKitBuilder = null;

if (gendre.equals("M"™)) {
promoKitBuilder = new MenPromoKitBuilder();

}

else if (gendre.equals('F")) {
promoKitBuilder = new WomenPromoKitBuilder();

¥
else{ /... }

PromoKit result = director.createPromoKit(promoKitBuilder);

}

Robert B. France 39

Benefits

e Can vary internal representation of object structure
(product)

— Builder provides abstract interface to objects that build
complex structures (Director objects)

— Same builder object can be used with different directors

 Allows control over construction

— Director can control when operations in builder are
called

— The director retrieves the product from the builder only
after it is finished

Robert B. France 40

Drawback

What are the drawbacks?

Robert B. France

41

What design changes are
accomodated?

What changes can be made with little effort?

Robert B. France

42

What changes are difficult to
handle?

Robert B. France

43

Singleton Pattern

Used to ensure that only one instance of a class
exIsts.

* The class keeps track of the sole instance and does
not permit instantiation if an instance already
exists.

* This Is done by hiding the constructor from clients
(but not the subclasses), and defining a static
operation that creates an instance if and only if
there are no instances.

Robert B. France 44

Solution Structure

singleton

-instance : Singleton

-aingleton()
+Instance() - Singleton

Robert B. France

45

MyShapeController Factory

// MyShapeControllerFactory. java

// MyShapeControllerFactory uses the Factory Method design

// pattern to create an appropriate instance of MyShapeController
// for the given MyShape subclass.

package com.deitel .advjhtpl.drawing.controller;

import com.deitel _advjhtpl.drawing.model.*;
import com.deitel _advjhtpl.drawing.model.shapes.™*;

public class MyShapeControllerFactory {

// reference to Singleton MyShapeControllerFactory
private static MyShapeControllerFactory factory;

// MyShapeControllerFactory constructor
protected MyShapeControllerFactory() {}

Robert B. France 46

// return Singleton instance of MyShapeControllerFactory
public static final MyShapeControllerFactory getlnstance()

{

// 1t factory is null, create new MyShapeControllerFactory
iIT (factory == null) {
factory = new MyShapeControllerFactory();
} /7/ end if
return factory;

} 7/ end method getilnstance

Robert B. France

47

Structural Patterns

Robert B. France

48

Adapter Pattern

An adapter pattern converts the interface
of a class into an interface that a client
expects

Adapters allow incompatible classes to
work together

Adapters can extend the functionality of
the adapted class

Robert B. France 49

When to Use

* Need to adapt the interface of an existing
class to satisfy client interface requirements

— Adapting Legacy Software
— Adapting 3 Party Software

Robert B. France 50

Class Adapter Pattern

Client <<interface>> Adaptee
Target
pal Reguest() SpecialReques)
aTarget, Requeasi() Adapter
Reqyest()

public void Request()

{

specialRequeast()

.

Robert B. France

o1

Object Adapter Pattern

aTarget request(]);
Client 1 ATarget

+ void ; requesti)

void recquesty)

d

adaptes specificRequest(); |_ Ohjectidapter 1 Adapiee

!) - - + void : specificRequest

+ oid : request() F estt)

Robert B. France 52

What changes are easily
accomodated?

e One can use components with incompatible
Interfaces

Robert B. France 53

What changes are difficult to
handle?

* \When the adaptee provides only SOME of
the functionality needed to handle a
customer request, the additional
functionality must be provided somewhere
else (e.g., In the adapter)

Robert B. France

54

Bridge Pattern

» Used to decouple implementations from

abstraction when abstraction can have more

than one 1Im

nlementation.

Implemeantor

Client
Abstraction | implamentor
e
e

+Operation() |

Y

st
T implementor Operationimp() B‘

RefinedAbstracti

an

+Dparationimpl)

I

[l:nn cretelmplementord

ConcretelmplementorB

+Oparationlmpi)

+Operationlmpi}

Robert B. France

55

Bridge Pattern Example

Client

metupAbstraction()
Fdaing..]

Ahstraction

lials]

Implementation

setlmplementatian(.)
Operatian(..]

D erived Abstractioni

DaDperation(..)

L5

Derivedlmplementation

Operation ..

DerivedlmplementationZ

Do Cperation(..)

Do Operationi.)

Robert B. France

56

What changes are accomodated?

e One can vary the implementation associated
with an abstraction during run-time.

e One can add new implementations during
design by subclassing the implementation
superclass

Robert B. France 57

Facade Pattern

* Provides a unified interface to a set of
Interfaces in a subsystem

e Helps to minimize communication and
dependencies across subsystems

Facade

NN

S

Robert B. France

58

Facade Pattern Example

Use a session bean as a facade to encapsulate the complexity of interactions
between the business objects participating in a workflow. The Session Facade
manages the business objects, and provides a uniform service access layer to
clients.

Client <<EJBSession=» 1+ BusinessOhject
SessionFacade -

ACCESSES

==EntityE B == ==5essionEJB==
BusinessEntity BusinessSession

e - - -~
e - -
ACCESSES - é:f accesses

DataAccessObject

Robert B. France 59

Facade Example — Sequence
Diagram

Cliar “=5eE5i0nEJB== =<EnlikYEJB== ==5gs5i0nEJB== ==EnlikEJB== DataAccessOhject
SEEsinnE e Buisiness5es 506, BusinessEnt by
| | | | [|
! 1 Invoke Method 1 | | | | l
SccsionFacate 1.1:Get/Setdata | : : |
ACCREIES ——— I | |
BusinessEntiby 1.2 Irvoke Method A [| [
I | :
i [|
T 27 Inwoke Wath I:II:I-E'I I | | |
2.1: Irvake Maethod B) I | |
{F=mr— |
| |
SesslonFacade ' 211 Getdata | |
ALCOESES — | |
BusinessSession | 212 Get data :
I I
I T I |
T 3 nvoke Methog 3 T | ' | :
SessionFacade = 31:Get I set dala I I | [
accesses — : Il |
DatafecessObject I I I I_T,l
T T I | | |
I | I | | |
I | [| | |
| | | | I |
I | [| | I

Robert B. France

60

Composite Pattern

e Use when one wants to treat elements In a
composite structure uniformly

Robert B. France

61

Composite Structure Example

Client Component .

+Oparation()

+Add(in Component)
+Removelin Component)
+GatChild{in indax - int)

L5 AN

Leaf Composite children

+Operation() +Operation()

+Add(in Component)
+Remove(in Component)
+GetChild(in index : int)

foreach child in children
child. Operation()

Robert B. France

Behavioral Patterns

Robert B. France

63

Command Pattern

e Encapsulates a request as an object so that
clients can be parameterized with different

Command

racalvar

—

+Executel)

AN

ConcreteCommand

state

requests
Client Invoker
I
I
| Receiver
: % —
: +Action()
I

+Execute()

receiver. Action() B‘
64

Using Polymorphism but not the
Command Pattern

® Switch
@ Appliance
1
Switchi)
¢ ." et) @ TurnOffi)
& flipDown() _)
. . @ TurnOn(}
& flipUp()
@ RunAppliances | tantiaten
PP — —# @ Fan @ Light
| @ TurnOff} @ TurnOff)
| @ an() @ TurnOn
| tantiat |

Robert B. France 65

Thoughts on Non-Command

 \What level of de-coupling is reached?

— The switch doesn’t have to call the individual
classes turn on and off method, just a general
appliance.

— The switch still knows that it Is attached to an
appliance, this we should get rid of.

— What happens if we want to change the
command that is preformed on a light?

Robert B. France 66

(G Runswiteh |— — — S ——

Command Pattern

1

@ Light

@ turnOn)

| @ Switch

@ LightOnCommand

, =4
@ turnCff)

& LightOnCommand()
@ execute()

.1 | @ Command

winterfaces

| & flipDown(}
| & fipUp()

@ =startRotate()
@ =topRetats()

i

@ execute()

@ LightOffCommand

& LightOffCommand()
@ execute)

|
® FanOnCommand

@ FanOffCommand

d: FanCnComrmand(}
@ execute()

& FanOffCommand()
@ execute()

Robert B. France

67

A Website’s model of the same

concept.
Client . Switch e<interfaces»
(Application) (invoker) ‘C » Command
: HipUp() execute()
: ' flipDown()
: el Light _
: mecaiver) | €] LightonCommand
turnon()
: turnOfi]) executel)

Robert B. France

-« {MyLIght turnOng;

68

Thoughts on Command

* 4 More classes added, though all small.

 Level of Decoupling much greater.

— The switch no longer knows anything about an
appliance on the end, just that it can be turned
on and off.

 Future flexibility much greater.

— If we change a fan or a light, it does not have
any side effects.

Robert B. France

69

Higher Level Concepts

 Basically, command separates (or
decouples) the invoker from the receiver by
creating an interface in-between them.

 Allows the passing of methods as
arguments. (Note that this Is much easier to
accomplish in C++ with function pointers)

Robert B. France 70

[terator Pattern

Aggregate Client lterator
< =1
+Create/terator() +Firsat()

AN +Meaxi|)
+lsDone()
+Currentltemi)

ConcreteAggregatel _ _ _ _ _ _ _ _ _ _ _ _ _ }'L':unr:reielie rator

+Createlterator)

return new Concretellerator this |

Robert B. France

71

Participants

The classes and/or objects participating in this pattern
are:

Iterator (Abstractiterator)
— defines an interface for accessing and traversing elements.

Concretelterator (Iterator)

— implements the Iterator interface.

— keeps track of the current position in the traversal of the
aggregate.

Aggregate (AbstractCollection)
— defines an interface for creating an lterator object

ConcreteAggregate (Collection)

— implements the Iterator creation interface to return an
iInstance of the proper Concretelterator

Robert B. France

72

Strategy Pattern

Context strateqy Strategy
> =
+Contaxtinterfacer) +Algorithminterfacea()
TANPANA

ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC

+Algonthminterface() +Algonthminterface() +Algonthminterface()

Robert B. France 73

Participants

o Strategy (SortStrategy)

— declares an interface common to all supported
algorithms. Context uses this interface to call the
algorithm defined by a ConcreteStrategy

 ConcreteStrategy (QuickSort, ShellSort,
MergeSort)

— Implements the algorithm using the Strategy
Interface

« Context (SortedList)
— 1S configured with a ConcreteStrategy object
— maintains a reference to a Strategy object

— may define an interface that lets Strategy access
Its data.

Robert B. France

74

Template Method

AbstractClass

PrimitveDperation1()

+TemplateMathod() —
+PrmitiveOperation ()

PrimifiveOperation2()

+PrimitiveCperation2()

JAN

AN

ConcreteClass

+PrimitiveOperation ()

+PrimitiveQperation2()

Robert B. France

75

	An Introduction to Patterns
	What is a Pattern? - 1
	What is a Pattern? - 2
	Example of a Software Development Pattern - The Model-View-Controller (MVC) Pattern
	Solution outline: Split application into 3 areas:
	Patterns Summary
	Pattern Types
	Gang of 4 (GoF) Design Pattern Classification
	Scope Criterion
	Creational Design Patterns�
	Overview of Creational Patterns
	Slide Number 12
	The Factory Method Pattern
	Application/Document Example
	Factory Method Solution
	Solution Structure
	Applicability
	Consequences
	Implementation
	What design changes are accomodated?
	What changes are difficult to handle?
	Abstract Factory Pattern
	Maze Game Class Model (not all operations shown)
	Slide Number 24
	Maze Game with Abstract Factory
	Slide Number 26
	Solution Structure
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Benefits
	Drawback
	What design changes are accomodated?
	What changes are difficult to handle?
	Builder Pattern
	Slide Number 36
	Example
	Slide Number 38
	Slide Number 39
	Benefits
	Drawback
	What design changes are accomodated?
	What changes are difficult to handle?
	Singleton Pattern
	Solution Structure
	MyShapeController Factory
	Slide Number 47
	Structural Patterns
	Adapter Pattern
	When to Use
	Class Adapter Pattern
	Object Adapter Pattern
	What changes are easily accomodated?
	What changes are difficult to handle?
	Bridge Pattern
	Bridge Pattern Example
	What changes are accomodated?
	Façade Pattern
	Façade Pattern Example
	Façade Example – Sequence Diagram
	Composite Pattern
	Composite Structure Example
	Behavioral Patterns
	Command Pattern
	Using Polymorphism but not the Command Pattern
	Thoughts on Non-Command
	Command Pattern
	A Website’s model of the same concept.
	Thoughts on Command
	Higher Level Concepts
	Iterator Pattern
	Participants
	Strategy Pattern
	Participants
	Template Method

