
Robert B. France 1

An Introduction to Patterns

Robert B. France
Colorado State University

Robert B. France 2

What is a Pattern? - 1
• Work on software development patterns stemmed

from work on patterns from building architecture
carried out by Christopher Alexander.

• Patterns are intended to capture the best available
software development experiences in the form of
problem-solution pairs.

• A pattern outlines solutions to a family of software
development problems in a particular context.

• A pattern outlines a process for transforming
problems targeted by the problem to solutions
characterized by the pattern.

Robert B. France 3

What is a Pattern? - 2
• Formally, a pattern consists of

– A characterization of a family of problems
• Determines the design problems that the pattern

targets
– A characterization of a family of solutions

• Defines solutions for the design problems targeted
by the pattern

– A set of transformation guidelines
• Guidelines for transforming a problem design to a

solution characterized by the pattern

Robert B. France 4

Example of a Software Development
Pattern - The Model-View-Controller

(MVC) Pattern
• Context: Developing user-interfaces (UIs)
• Problem: How to create a UI that’s resilient to

changes such as changes in look-and-feel
windowing system, changes in functionality.

• Factors: changes to UI should be easy and
possible at run-time; adapting or porting the UI
should not impact the implementation of the core
functionality.

Robert B. France 5

Solution outline: Split application into 3
areas:

• The Model component: encapsulates core
functionality; independent of input/output
representations and behavior.

• The View components: displays data from the
model component; there can be multiple views for
a single model component.

• The Controller components: each view is
associated with a controller that handles inputs;
the user interacts with the system via the controller
components.

Robert B. France 6

Patterns Summary
• A pattern addresses a recurring software

development problem that arises in a particular
context, and outlines a solution for it.

• A pattern captures ‘best practices’ in software
development (the intention!).
– A pattern should be based on actual experiences in

industry
• Patterns provide a common vocabulary for, and

understanding of ‘best practices’.
– Developers can refer to a pattern by name (e.g., the

Adapter pattern) and others familiar with the pattern
will not need further description

Robert B. France 7

Pattern Types
• Requirements Patterns: Characterize families of

requirements for a family of applications
– The checkin-checkout pattern can be used to obtain requirements

for library systems, car rental systems, video systems, etc.
• Architectural Patterns: Characterize families of

architectures
– The Broker pattern can be used to create distributed systems in

which location of resources and services is transparent (e.g., the
WWW)

– Other examples: MVC, Pipe-and-Filter, Multi-Tiered
• Design Patterns: Characterize families of low-level design

solutions
– Examples are the popular Gang of Four (GoF) patterns

• Programming idioms: Characterize programming
language specific solutions

Robert B. France 8

Gang of 4 (GoF) Design Pattern
Classification

Purpose categories described in “Design Patterns:…” by
Gamma, Helm, Johnson and Vlissides; Addison-Wesley
– Creational

• Patterns that can be used to make object creation more flexible (e.g.,
Abstract Factory) or restrict creation activities (e.g., Singleton).

• Help make a system independent of how objects are created,
composed, and represented (i.e., allows one to vary how objects are
created, composed, and represented)

– Structural
• Concerned with creating flexible mechanisms for composing objects

to form larger of structures
– Behavioral

• Concerned with creating flexible algorithms and with assigning
responsibilities to classes

Robert B. France 9

Scope Criterion
Scope determines whether a pattern applies to

classes or objects
• Classes

– static relations
– inheritance structures
– Examples: Factory Method (creation); Adapter

(structural); Interpreter (behavioral)
• Objects

– object relations
– Dynamic
– Examples: Abstract Factory (creation); Bridge

(structural); Iterator (behavioral)

Robert B. France 10

Creational Design Patterns

Robert B. France 11

Overview of Creational Patterns
• Separate object creation from representation.
• Flexibility in what gets created, who creates

objects, how objects are created, and when objects
are created.

• Class Patterns: use inheritance to vary class of
instantiated object

• Object Patterns: delegate instantiation to another
object.

Robert B. France 12

Overview of creational class and object
patterns

• Creational class patterns
– defer creation to subclasses.

• Creational object patterns
– defer creation to objects

Robert B. France 13

The Factory Method Pattern

• Defers object instantiation to subclasses: A factory
method defines the interface of an operation that
creates objects. The implementation of the
operation is provided by subclasses.

• Abstract operation may implement a default
implementation.

• Knowledge of what objects to create are
encapsulated in subclasses.

Robert B. France 14

Application/Document Example

• Application class manages multiple documents of
different types.

• Contains operations for manipulating documents.
• PROBLEM: Application knows when to create

documents but does not know what types of
documents to create.

• SOLUTION: Encapsulate knowledge of creation
of concrete documents in subclasses and defer
implementation to these subclasses.

Robert B. France 15

Factory Method Solution

Robert B. France 16

Solution Structure

Robert B. France 17

Applicability

• Class cannot anticipate type of objects to
create.

• Class wants its subclasses to determine type
of objects to create.

• Class delegates object creation
responsibility to a select set of subclasses.

Robert B. France 18

Consequences

• Creation of a new product class may require
creating a new Creator subclass.

• Gives subclasses a ‘hook’ for creating an
extended version of an object.

• Factory methods can be called by clients.

Robert B. France 19

Implementation
2 varieties
• Creator does not provide a default

implementation: requires creation of
concrete subclasses.

• Creator provides default implementation:
subclasses can either inherit method as is or
redefine it.

Robert B. France 20

What design changes are
accomodated?

• Changes to the type of products that can be
created by a creator class
– A new subclass can be added for each type of

product that is needed.

Robert B. France 21

What changes are difficult to
handle?

• One cannot add a new product to be created
during run-time

• If the product consists of subparts one cannot vary
the the types of subparts used.
– Abstract factory or builder is needed for this purpose

Robert B. France 22

Abstract Factory Pattern

• Used for building composite objects.

• Isolates clients from implementation of
components by providing an abstract
interface.

• Enforces creation using only compatible
components.

Robert B. France 23

Maze Game Class Model (not all operations shown)

Robert B. France 24

Robert B. France 25

Maze Game with Abstract Factory

Robert B. France 26

Robert B. France 27

Solution Structure

Robert B. France 28

Robert B. France 29

Robert B. France 30

Robert B. France 31

Benefits

• Separates clients from implementation of
created objects.

• Product family can be changed easily.

• Promotes consistency among products:
enforces use of compatible parts.

Robert B. France 32

Drawback

Difficult to introduce a new kind of product
family.

• Interface fixes components that are to be
created.

Robert B. France 33

What design changes are
accomodated?

• Can create a new product family during run-
time by passing in a specialized factory.

• A new class of members of the family can
be introduced during design by creating a
factory subclass.

Robert B. France 34

What changes are difficult to
handle?

• Cannot introduce a new product family with
different parts easily
– Interface fixes components that are to be

created.

Builder Pattern

• Abstract construction steps of object
structures so that different implementations
of these steps can create different forms of
objects.

Robert B. France 35

Robert B. France 36

Builder: Abstract interface for creating objects
Concrete Builder: Provides implementations of creation
operations in Builder
Director: Builds an object structure using a Builder object

Example

Robert B. France 37

public class PromoKitDirector {
public PromoKit createPromoKit(

PromoKitBuilder builder) {
builder.buildVideoPart();
builder.buildGarmentPart();
builder.buildBookPart();
return builder.getPromoKit();
}

}

Robert B. France 38

// Integration with overal application
public class Application {

public static void main(String[] args) {
String gendre = "M";
PromoKitDirector director = new PromoKitDirector();
PromoKitBuilder promoKitBuilder = null;
if (gendre.equals("M")) {

promoKitBuilder = new MenPromoKitBuilder();
}
else if (gendre.equals("F")) {

promoKitBuilder = new WomenPromoKitBuilder();
}
else { // }

PromoKit result = director.createPromoKit(promoKitBuilder);
}

}
Robert B. France 39

Robert B. France 40

Benefits
• Can vary internal representation of object structure

(product)
– Builder provides abstract interface to objects that build

complex structures (Director objects)
– Same builder object can be used with different directors

• Allows control over construction
– Director can control when operations in builder are

called
– The director retrieves the product from the builder only

after it is finished

Robert B. France 41

Drawback

What are the drawbacks?

Robert B. France 42

What design changes are
accomodated?

What changes can be made with little effort?

Robert B. France 43

What changes are difficult to
handle?

Robert B. France 44

Singleton Pattern

Used to ensure that only one instance of a class
exists.

• The class keeps track of the sole instance and does
not permit instantiation if an instance already
exists.

• This is done by hiding the constructor from clients
(but not the subclasses), and defining a static
operation that creates an instance if and only if
there are no instances.

Robert B. France 45

Solution Structure

Robert B. France 46

MyShapeController Factory
// MyShapeControllerFactory.java
// MyShapeControllerFactory uses the Factory Method design
// pattern to create an appropriate instance of MyShapeController
// for the given MyShape subclass.
package com.deitel.advjhtp1.drawing.controller;

import com.deitel.advjhtp1.drawing.model.*;
import com.deitel.advjhtp1.drawing.model.shapes.*;

public class MyShapeControllerFactory {

// reference to Singleton MyShapeControllerFactory
private static MyShapeControllerFactory factory;

// MyShapeControllerFactory constructor
protected MyShapeControllerFactory() {}

Robert B. France 47

// return Singleton instance of MyShapeControllerFactory
public static final MyShapeControllerFactory getInstance()
{

// if factory is null, create new MyShapeControllerFactory
if (factory == null) {

factory = new MyShapeControllerFactory();
} // end if

return factory;

} // end method getInstance

Robert B. France 48

Structural Patterns

Robert B. France 49

Adapter Pattern

• An adapter pattern converts the interface
of a class into an interface that a client
expects

• Adapters allow incompatible classes to
work together

• Adapters can extend the functionality of
the adapted class

Robert B. France 50

When to Use

• Need to adapt the interface of an existing
class to satisfy client interface requirements
– Adapting Legacy Software
– Adapting 3rd Party Software

Robert B. France 51

Class Adapter Pattern

Robert B. France 52

Object Adapter Pattern

Robert B. France 53

What changes are easily
accomodated?

• One can use components with incompatible
interfaces

Robert B. France 54

What changes are difficult to
handle?

• When the adaptee provides only SOME of
the functionality needed to handle a
customer request, the additional
functionality must be provided somewhere
else (e.g., in the adapter)

Robert B. France 55

Bridge Pattern
• Used to decouple implementations from

abstraction when abstraction can have more
than one implementation.

Robert B. France 56

Bridge Pattern Example

Robert B. France 57

What changes are accomodated?

• One can vary the implementation associated
with an abstraction during run-time.

• One can add new implementations during
design by subclassing the implementation
superclass

Robert B. France 58

Façade Pattern
• Provides a unified interface to a set of

interfaces in a subsystem
• Helps to minimize communication and

dependencies across subsystems

Robert B. France 59

Façade Pattern Example
Use a session bean as a facade to encapsulate the complexity of interactions
between the business objects participating in a workflow. The Session Facade
manages the business objects, and provides a uniform service access layer to
clients.

Robert B. France 60

Façade Example – Sequence
Diagram

Robert B. France 61

Composite Pattern

• Use when one wants to treat elements in a
composite structure uniformly

Robert B. France 62

Composite Structure Example

Robert B. France 63

Behavioral Patterns

Robert B. France 64

Command Pattern
• Encapsulates a request as an object so that

clients can be parameterized with different
requests

Robert B. France 65

Using Polymorphism but not the
Command Pattern

Robert B. France 66

Thoughts on Non-Command

• What level of de-coupling is reached?
– The switch doesn’t have to call the individual

classes turn on and off method, just a general
appliance.

– The switch still knows that it is attached to an
appliance, this we should get rid of.

– What happens if we want to change the
command that is preformed on a light?

Robert B. France 67

Command Pattern

Robert B. France 68

A Website’s model of the same
concept.

Robert B. France 69

Thoughts on Command

• 4 More classes added, though all small.
• Level of Decoupling much greater.

– The switch no longer knows anything about an
appliance on the end, just that it can be turned
on and off.

• Future flexibility much greater.
– If we change a fan or a light, it does not have

any side effects.

Robert B. France 70

Higher Level Concepts

• Basically, command separates (or
decouples) the invoker from the receiver by
creating an interface in-between them.

• Allows the passing of methods as
arguments. (Note that this is much easier to
accomplish in C++ with function pointers)

Robert B. France 71

Iterator Pattern

Robert B. France 72

Participants
The classes and/or objects participating in this pattern

are:
• Iterator (AbstractIterator)

– defines an interface for accessing and traversing elements.
• ConcreteIterator (Iterator)

– implements the Iterator interface.
– keeps track of the current position in the traversal of the

aggregate.
• Aggregate (AbstractCollection)

– defines an interface for creating an Iterator object
• ConcreteAggregate (Collection)

– implements the Iterator creation interface to return an
instance of the proper ConcreteIterator

Robert B. France 73

Strategy Pattern

Robert B. France 74

Participants
• Strategy (SortStrategy)

– declares an interface common to all supported
algorithms. Context uses this interface to call the
algorithm defined by a ConcreteStrategy

• ConcreteStrategy (QuickSort, ShellSort,
MergeSort)
– implements the algorithm using the Strategy

interface
• Context (SortedList)

– is configured with a ConcreteStrategy object
– maintains a reference to a Strategy object
– may define an interface that lets Strategy access

its data.

Robert B. France 75

Template Method

	An Introduction to Patterns
	What is a Pattern? - 1
	What is a Pattern? - 2
	Example of a Software Development Pattern - The Model-View-Controller (MVC) Pattern
	Solution outline: Split application into 3 areas:
	Patterns Summary
	Pattern Types
	Gang of 4 (GoF) Design Pattern Classification
	Scope Criterion
	Creational Design Patterns�
	Overview of Creational Patterns
	Slide Number 12
	The Factory Method Pattern
	Application/Document Example
	Factory Method Solution
	Solution Structure
	Applicability
	Consequences
	Implementation
	What design changes are accomodated?
	What changes are difficult to handle?
	Abstract Factory Pattern
	Maze Game Class Model (not all operations shown)
	Slide Number 24
	Maze Game with Abstract Factory
	Slide Number 26
	Solution Structure
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Benefits
	Drawback
	What design changes are accomodated?
	What changes are difficult to handle?
	Builder Pattern
	Slide Number 36
	Example
	Slide Number 38
	Slide Number 39
	Benefits
	Drawback
	What design changes are accomodated?
	What changes are difficult to handle?
	Singleton Pattern
	Solution Structure
	MyShapeController Factory
	Slide Number 47
	Structural Patterns
	Adapter Pattern
	When to Use
	Class Adapter Pattern
	Object Adapter Pattern
	What changes are easily accomodated?
	What changes are difficult to handle?
	Bridge Pattern
	Bridge Pattern Example
	What changes are accomodated?
	Façade Pattern
	Façade Pattern Example
	Façade Example – Sequence Diagram
	Composite Pattern
	Composite Structure Example
	Behavioral Patterns
	Command Pattern
	Using Polymorphism but not the Command Pattern
	Thoughts on Non-Command
	Command Pattern
	A Website’s model of the same concept.
	Thoughts on Command
	Higher Level Concepts
	Iterator Pattern
	Participants
	Strategy Pattern
	Participants
	Template Method

