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What Is a Pattern? - 1

Work on software development patterns stemmed
from work on patterns from building architecture
carried out by Christopher Alexander.

Patterns are intended to capture the best available
software development experiences in the form of
problem-solution pairs.

A pattern outlines solutions to a family of software
development problems in a particular context.

A pattern outlines a process for transforming
problems targeted by the problem to solutions
characterized by the pattern.
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What Is a Pattern? - 2

* Formally, a pattern consists of

— A characterization of a family of problems

» Determines the design problems that the pattern
targets

— A characterization of a family of solutions

 Defines solutions for the design problems targeted
by the pattern

— A set of transformation guidelines

 Guidelines for transforming a problem design to a
solution characterized by the pattern
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Example of a Software Development
Pattern - The Model-View-Controller
(MVC) Pattern

Context: Developing user-interfaces (Uls )

Problem: How to create a Ul that’s resilient to
changes such as changes in look-and-feel
windowing system, changes in functionality.

Factors: changes to Ul should be easy and
possible at run-time; adapting or porting the Ul
should not impact the implementation of the core

functionality.
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Solution outline: Split application into 3
areas:

* The Model component: encapsulates core
functionality; independent of input/output
representations and behavior.

* The View components: displays data from the
model component; there can be multiple views for
a single model component.

« The Controller components: each view IS
assoclated with a controller that handles inputs;
the user interacts with the system via the controller
components.
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Patterns Summary

A pattern addresses a recurring software
development problem that arises in a particular
context, and outlines a solution for it.

A pattern captures ‘best practices’ in software
development (the intention! ).

— A pattern should be based on actual experiences in
Industry

 Patterns provide a common vocabulary for, and
understanding of ‘best practices’.

— Developers can refer to a pattern by name (e.g., the
Adapter pattern) and others familiar with the pattern
will not need further description
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Pattern Types

Requirements Patterns: Characterize families of
requirements for a family of applications

— The checkin-checkout pattern can be used to obtain requirements
for library systems, car rental systems, video systems, etc.

Architectural Patterns: Characterize families of
architectures

— The Broker pattern can be used to create distributed systems in
which location of resources and services is transparent (e.g., the
WWW)

— Other examples: MVC, Pipe-and-Filter, Multi-Tiered

Design Patterns: Characterize families of low-level design
solutions
— Examples are the popular Gang of Four (GoF) patterns

Programming idioms: Characterize programming
language specific solutions
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Gang of 4 (GoF) Design Pattern
Classification

Purpose categories described in “Design Patterns:...” by
Gamma, Helm, Johnson and Vlissides; Addison-Wesley

— Creational

 Patterns that can be used to make object creation more flexible (e.g.,
Abstract Factory) or restrict creation activities (e.g., Singleton).

» Help make a system independent of how objects are created,
composed, and represented (i.e., allows one to vary how objects are
created, composed, and represented)

— Structural

» Concerned with creating flexible mechanisms for composing objects
to form larger of structures

— Behavioral

» Concerned with creating flexible algorithms and with assigning
responsibilities to classes
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Scope Criterion

Scope determines whether a pattern applies to
classes or objects

e Classes
— static relations
— Inheritance structures

— Examples: Factory Method (creation); Adapter
(structural); Interpreter (behavioral)

e Objects
— object relations
— Dynamic

— Examples: Abstract Factory (creation); Bridge
(structural); Iterator (behavioral)
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Creational Design Patterns

Robert B. France
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Overview of Creational Patterns

Separate object creation from representation.

Flexibility in what gets created, who creates
objects, how objects are created, and when objects
are created.

Class Patterns: use inheritance to vary class of
Instantiated object

Object Patterns: delegate instantiation to another
object.
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Overview of creational class and object
patterns

 Creational class patterns
— defer creation to subclasses.

 Creational object patterns
— defer creation to objects

Robert B. France
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The Factory Method Pattern

« Defers object instantiation to subclasses: A factory
method defines the interface of an operation that
creates objects. The implementation of the
operation Is provided by subclasses.

« Abstract operation may implement a default
Implementation.

« Knowledge of what objects to create are
encapsulated in subclasses.
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Application/Document Example

Application class manages multiple documents of
different types.

Contains operations for manipulating documents.

PROBLEM: Application knows when to create
documents but does not know what types of
documents to create.

SOLUTION: Encapsulate knowledge of creation
of concrete documents in subclasses and defer
Implementation to these subclasses.
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Factory Method Solution
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Product

T

Solution Structure
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Applicability

 Class cannot anticipate type of objects to
Create.

« Class wants Its subclasses to determine type
of objects to create.

» Class delegates object creation
responsibility to a select set of subclasses.
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Conseguences

« Creation of a new product class may require
creating a new Creator subclass.

* Glves subclasses a ‘hook’ for creating an
extended version of an object.

 Factory methods can be called by clients.
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Implementation

2 varieties

 Creator does not provide a default
Implementation: requires creation of
concrete subclasses.

 Creator provides default implementation:
subclasses can either inherit method as IS or
redefine It.
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What design changes are
accomodated?

» Changes to the type of products that can be
created by a creator class

— A new subclass can be added for each type of
product that is needed.

Robert B. France
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What changes are difficult to
handle?

e One cannot add a new product to be created
during run-time

* |f the product consists of subparts one cannot vary
the the types of subparts used.

— Abstract factory or builder is needed for this purpose
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Abstract Factory Pattern

» Used for building composite objects.

* |solates clients from implementation of
components by providing an abstract
Interface.

* Enforces creation using only compatible
components.

Robert B. France
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Maze Game Class Model (not all operations shown)
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Maze Game with Abstract Factory
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Solution Structure
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Benefits

« Separates clients from implementation of
created objects.

 Product family can be changed easily.

* Promotes consistency among products:
enforces use of compatible parts.

Robert B. France
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Drawback

Difficult to introduce a new kind of product
family.

* Interface fixes components that are to be
created.

Robert B. France

32



What design changes are
accomodated?

e Can create a new product family during run-
time by passing In a specialized factory.

* A new class of members of the family can
be introduced during design by creating a
factory subclass.
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What changes are difficult to
handle?

« Cannot introduce a new product family with
different parts easily

— Interface fixes components that are to be
created.
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Builder Pattern

» Abstract construction steps of object
structures so that different implementations

of these steps can create different forms of
objects.
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Diractor

+Caonstruct() Q
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AN
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Builder: Abstract interface for creating objects
Concrete Builder: Provides implementations of creation

operations in Builder

Director: Builds an object structure using a Builder object

Robert B. France

36




PromokitDirector

Example
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pu
pu

plic class PromoKitDirector {
olic PromoKit createPromoKit(

PromoKitBuilder builder) {
puilder.buildVideoPart();
ouilder.buildGarmentPart();
ouilder.buildBookPart();

return builder.getPromoKit();

}

Robert B. France
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/I Integration with overal application
public class Application {
public static void main(String[] args) {
String gendre = "M";
PromoKitDirector director = new PromoKitDirector();
PromoKitBuilder promoKitBuilder = null;

if (gendre.equals("M"™)) {
promoKitBuilder = new MenPromoKitBuilder();

}

else if (gendre.equals('F")) {
promoKitBuilder = new WomenPromoKitBuilder();

¥
else{ /... }

PromoKit result = director.createPromoKit(promoKitBuilder);

}
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Benefits

e Can vary internal representation of object structure
(product)

— Builder provides abstract interface to objects that build
complex structures (Director objects)

— Same builder object can be used with different directors

 Allows control over construction

— Director can control when operations in builder are
called

— The director retrieves the product from the builder only
after it is finished
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Drawback

What are the drawbacks?

Robert B. France
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What design changes are
accomodated?

What changes can be made with little effort?

Robert B. France
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What changes are difficult to
handle?

Robert B. France

43



Singleton Pattern

Used to ensure that only one instance of a class
exIsts.

* The class keeps track of the sole instance and does
not permit instantiation if an instance already
exists.

* This Is done by hiding the constructor from clients
(but not the subclasses), and defining a static
operation that creates an instance if and only if
there are no instances.
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Solution Structure

singleton

-instance : Singleton

-aingleton()
+Instance() - Singleton
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MyShapeController Factory

// MyShapeControllerFactory. java

// MyShapeControllerFactory uses the Factory Method design

// pattern to create an appropriate instance of MyShapeController
// for the given MyShape subclass.

package com.deitel .advjhtpl.drawing.controller;

import com.deitel _advjhtpl.drawing.model.*;
import com.deitel _advjhtpl.drawing.model.shapes.™*;

public class MyShapeControllerFactory {

// reference to Singleton MyShapeControllerFactory
private static MyShapeControllerFactory factory;

// MyShapeControllerFactory constructor
protected MyShapeControllerFactory() {}
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// return Singleton instance of MyShapeControllerFactory
public static final MyShapeControllerFactory getlnstance()

{

// 1t factory is null, create new MyShapeControllerFactory
iIT ( factory == null ) {
factory = new MyShapeControllerFactory();
} /7/ end if
return factory;

} 7/ end method getilnstance

Robert B. France
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Structural Patterns

Robert B. France
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Adapter Pattern

An adapter pattern converts the interface
of a class into an interface that a client
expects

Adapters allow incompatible classes to
work together

Adapters can extend the functionality of
the adapted class
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When to Use

* Need to adapt the interface of an existing
class to satisfy client interface requirements

— Adapting Legacy Software
— Adapting 3 Party Software
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Class Adapter Pattern

Client <<interface>> Adaptee
Target
pal Reguest() SpecialReques)
aTarget, Requeasi() Adapter
Reqyest()

public void Request()

{

specialRequeast()

.
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Object Adapter Pattern

aTarget request(]);
Client 1 ATarget

+ void ; requesti)

void recquesty)

d

adaptes specificRequest(); |_ Ohjectidapter 1 Adapiee

! ) - - + void : specificRequest

+ oid : request() F estt)
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What changes are easily
accomodated?

e One can use components with incompatible
Interfaces
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What changes are difficult to
handle?

* \When the adaptee provides only SOME of
the functionality needed to handle a
customer request, the additional
functionality must be provided somewhere
else (e.g., In the adapter)

Robert B. France
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Bridge Pattern

» Used to decouple implementations from

abstraction when abstraction can have more

than one 1Im

nlementation.

Implemeantor

Client
Abstraction | implamentor
e
e

+Operation() |

Y

st
T implementor Operationimp() B‘
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an

+Dparationimpl)

I

[l:nn cretelmplementord

ConcretelmplementorB

+Oparationlmpi)

+Operationlmpi}
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Bridge Pattern Example

Client

metupAbstraction( )
Fdaing..]

Ahstraction

lials]

Implementation

setlmplementatian(. )
Operatian(..]

D erived Abstractioni

DaDperation(..)

L5

Derivedlmplementation

Operation ..

DerivedlmplementationZ

Do Cperation(..)

Do Operationi. )
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What changes are accomodated?

e One can vary the implementation associated
with an abstraction during run-time.

e One can add new implementations during
design by subclassing the implementation
superclass
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Facade Pattern

* Provides a unified interface to a set of
Interfaces in a subsystem

e Helps to minimize communication and
dependencies across subsystems

Facade

NN

S

Robert B. France
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Facade Pattern Example

Use a session bean as a facade to encapsulate the complexity of interactions
between the business objects participating in a workflow. The Session Facade
manages the business objects, and provides a uniform service access layer to
clients.

Client <<EJBSession=» 1+ BusinessOhject
SessionFacade -

ACCESSES

==EntityE B == ==5essionEJB==
BusinessEntity BusinessSession

e - - -~
e - -
ACCESSES - é:f accesses

DataAccessObject
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Facade Example — Sequence
Diagram
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BusinessSession | 212 Get data :
I I
I T I |
T 3 nvoke Methog 3 T | ' | :
SessionFacade = 31:Get I set dala I I | [
accesses — : Il |
DatafecessObject I I I I_T,l
T T I | | |
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| | | | I |
I | [ | | I
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Composite Pattern

e Use when one wants to treat elements In a
composite structure uniformly

Robert B. France
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Composite Structure Example

Client Component .

+Oparation()

+Add(in Component)
+Removelin Component)
+GatChild{in indax - int)

L5 AN

Leaf Composite children

+Operation() +Operation()

+Add(in Component)
+Remove(in Component)
+GetChild(in index : int)

foreach child in children
child. Operation()
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Behavioral Patterns

Robert B. France
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Command Pattern

e Encapsulates a request as an object so that
clients can be parameterized with different

Command

racalvar

—

+Executel)

AN

ConcreteCommand

state

requests
Client Invoker
I
I
| Receiver
: % —
: +Action()
I

+Execute()

receiver. Action() B‘
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Using Polymorphism but not the
Command Pattern

® Switch
@ Appliance
1
Switchi)
¢ ." et ) @ TurnOffi)
& flipDown() _ )
. . @ TurnOn(}
& flipUp()
@ RunAppliances | tantiaten
PP — —# @ Fan @ Light
| @  TurnOff} @  TurnOff)
| @ an() @ TurnOn
| tantiat |
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Thoughts on Non-Command

 \What level of de-coupling is reached?

— The switch doesn’t have to call the individual
classes turn on and off method, just a general
appliance.

— The switch still knows that it Is attached to an
appliance, this we should get rid of.

— What happens if we want to change the
command that is preformed on a light?
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(G Runswiteh |— — — S ——

Command Pattern

1

@ Light

@ turnOn)

| @ Switch

@ LightOnCommand

, =4
@ turnCff)

& LightOnCommand()
@ execute()

.1 | @ Command

winterfaces

| & flipDown(}
| & fipUp()

@ =startRotate()
@ =topRetats()

i

@ execute()

@ LightOffCommand

& LightOffCommand()
@ execute)

|
® FanOnCommand

@ FanOffCommand

d: FanCnComrmand(}
@ execute()

& FanOffCommand()
@ execute()
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A Website’s model of the same

concept.
Client . Switch e<interfaces»
(Application) (invoker) ‘C » Command
: HipUp() execute()
: ' flipDown()
: el Light _
: mecaiver) | €] LightonCommand
turnon()
: turnOfi]) executel)

Robert B. France
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Thoughts on Command

* 4 More classes added, though all small.

 Level of Decoupling much greater.

— The switch no longer knows anything about an
appliance on the end, just that it can be turned
on and off.

 Future flexibility much greater.

— If we change a fan or a light, it does not have
any side effects.

Robert B. France
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Higher Level Concepts

 Basically, command separates (or
decouples) the invoker from the receiver by
creating an interface in-between them.

 Allows the passing of methods as
arguments. (Note that this Is much easier to
accomplish in C++ with function pointers)
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[terator Pattern

Aggregate Client lterator
< =1
+Create/terator() +Firsat()

AN +Meaxi| )
+lsDone()
+Currentltemi )

ConcreteAggregatel  _ _ _ _ _ _ _ _ _ _ _ _ _ }'L':unr:reielie rator

+Createlterator)

return new Concretellerator this |
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Participants

The classes and/or objects participating in this pattern
are:

Iterator (Abstractiterator)
— defines an interface for accessing and traversing elements.

Concretelterator (Iterator)

— implements the Iterator interface.

— keeps track of the current position in the traversal of the
aggregate.

Aggregate (AbstractCollection)
— defines an interface for creating an lterator object

ConcreteAggregate (Collection)

— implements the Iterator creation interface to return an
iInstance of the proper Concretelterator

Robert B. France
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Strategy Pattern

Context strateqy Strategy
> =
+Contaxtinterfacer ) +Algorithminterfacea()
TANPANA

ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC

+Algonthminterface() +Algonthminterface() +Algonthminterface()
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Participants

o Strategy (SortStrategy)

— declares an interface common to all supported
algorithms. Context uses this interface to call the
algorithm defined by a ConcreteStrategy

 ConcreteStrategy (QuickSort, ShellSort,
MergeSort)

— Implements the algorithm using the Strategy
Interface

« Context (SortedList)
— 1S configured with a ConcreteStrategy object
— maintains a reference to a Strategy object

— may define an interface that lets Strategy access
Its data.

Robert B. France
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Template Method

AbstractClass

PrimitveDperation1()

+TemplateMathod() —
+PrmitiveOperation ()

PrimifiveOperation2()

+PrimitiveCperation2( )

JAN

AN

ConcreteClass

+PrimitiveOperation ()

+PrimitiveQperation2()
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