Modeling and Analyzing Concurrent Systems using Model Checking

Robert B. France
What is Model Checking?

• “Model checking is an automated technique that, given a **finite-state model** of a system and a **logical property**, systematically checks whether this property holds for (a given initial state in) that model.” [Clarke & Emerson 1981]:

• Model checking tools automatically verify whether $M \models \varphi$, holds, where M is a **(finite-state) model of a system and property** φ (phi) characterizes a set of allowed behaviors.

 – M has behavior that is allowed by φ

 – Check that M is a model of φ
Model Checking process

1. Construct a model of the system (M)
2. Formalize the properties that will be evaluated in the model (P)
3. Use a model checker to determine if M satisfies P. Three results are possible:
 1. The model M satisfies the property P, i.e. M |= P
 2. M does not satisfy P; in this case a counterexample is produced
 3. No conclusive result is produced by the model checker (model checker ran out of space or time)
The eagle’s view

• What is a transition system?
 – Description of system behavior

• What is a linear time property?
 – Set of behaviors that satisfy the property

• How do we check the satisfaction property algorithmically?
 – Convert temporal properties to automatons
 – Compose automatons with transition system descriptions of behavior
Transition System (TS): Formal Definition

A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states,
- Act is a set of actions,
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation (the first element in the triplet is the source state, the second element is an action and the third element is the target state of the transition),
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions, and
- $L : S \rightarrow 2^{AP}$ is a labeling function (2^{AP} is the power set of AP)

TS is called *finite* if S, Act, and AP are finite.

(s, act, s') in \rightarrow is written as $s \xrightarrow{a} s'$

$L(s)$ are the atomic propositions in AP that are satisfied in state s. Given a formula, f, a state s satisfies f (i.e., is a model of f) if and only if f can be derived from the atomic propositions associated with state s via the labeling function L, that is:

$s \models f$ iff $L(s) \models f$
Toy Example

The atomic propositions in a transition system are chosen based on the properties the modeler wants to check.

Example property to verify: The vending machine only delivers a drink after the user pays (inserts a coin).

Relevant atomic propositions: AP = \{paid, delivered\}

Appropriate Labeling function:

L(pay) = empty set
L(soda)=L(beer)=\{paid, delivered\}
L(select)=\{paid\}
Some TS Operators

- **Post(s)** consists of all the target states associated with s via transitions from s.
- The **state graph** of a TS = (S, Act, ->, I, AP, L), G(TS) is the digraph (V, E) with vertices V = S and edges E = {(s,s’) ∈ S x S | s’ ∈ Post(s)}
 - G(TS) is obtained by omitting all atomic propositions in states, and all action labels.
 - Initial states are not distinguished in a state graph.
 - Multiple transitions between two states are represented by one edge in a state graph.
- **Post*(s)**: the set of states that are reachable from s in a state graph.
- If C is a set of states then Post*(C) = U s ∈ C Post*(s)
Modeling concurrent systems that manipulate data

- In software the transition from one state to another often depends on conditions expressed in terms of data
 - **Conditional transitions** are higher-level constructs used to describe actions that are performed only under certain conditions

- Models with conditional transitions are called **program graphs**
 - Program graphs are “higher-level” in that they can be transformed into TSs (Note: TSs do not have conditional transitions) via a process called **unfolding**
Program Graph (PG): Formal Definition

A program graph PG over set Var of typed variables is a tuple $(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$ where

- Loc is a set of locations and Act is a set of actions,
- $Effect : Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function,
 - $Eval(Var)$ is the set of assignments of values to variables in Var, e.g., \{<nbeer:= 10, nsoda:=20>, <nbeer:= 1, nsoda:=20>, <nbeer:=0, nsoda:=4>, ...\} is the set of assignments when $Var = \{nbeer, nsoda\}$
- $\rightarrow \subseteq Loc \times Cond(Var) \times Act \times Loc$ is the conditional transition relation,
 - $Cond(Var)$ is the set of all Boolean conditions (propositions) over Var
- $Loc_0 \subseteq Loc$ is a set of initial locations,
- $g_0 \in Cond(Var)$ is the initial condition.
select and start are called locations
nsoda, and nbeer are variables
coin, refill, sget, bget, ret_coin are actions
A simple text representation of the vending machine PG

start:
 coin; go to select
 refill{nsoda := max; nbeer := max}; go to start
select:
 nsoda > 0:: sget{nsoda := nsoda -1}; go to start
 nbeer > 0:: bget{nbeer := nbeer-1}; go to start
 nsoda = 0 and nbeer = 0:: ret_coin; go to start
Unfolding the vending machine PG
TS semantics of program graphs

• The TS is produced by unfolding the program graph
 – You can think of unfolding as a representation of the execution of a program described by a PG

• A state consists of a location (a point in the program) and an assignment of values to variables: \(<l, \eta>\)

• An initial state consists of an initial location and an assignment that satisfies the condition \(g_0\) defined in the PG
 – \(<l_0, \eta>\) is an initial state if \(l_0\) is an initial location and \(\eta \models g_0\)

• The propositions consists of the locations together with Cond(Var)
 – The proposition \(\text{loc}\) is true in any state of the form \(<\text{loc}, \eta>\), and false otherwise
The transition system $TS(PG)$ of program graph

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where

- $S = Loc \times \text{Eval}(\text{Var})$
- $\rightarrow \subseteq S \times Act \times S$ is defined by the following rule (see remark below):

$$\frac{\ell \xrightarrow{g;\alpha} \ell' \quad \eta \models g}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \text{Effect}(\alpha, \eta) \rangle}$$

- $I = \{\langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0\}$
- $AP = Loc \cup \text{Cond}(\text{Var})$
- $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in \text{Cond}(\text{Var}) \mid \eta \models g\}$.
Types of parallel composition operators

• **Interleaving**
 – Actions of concurrent processes are interleaved in a non-deterministic manner
 – Used to model processes whose behaviors are completely independent (*asynchronous* system of processes)

• **Communication via shared variables**
 – A process can influence the behavior of another process by changing the value of a variable that is shared with the process

• **Handshaking**
 – Two processes that want to interact must synchronize their actions such that they take part in the interaction at the same time

• **Channel systems**
 – In a channel system processes interact by reading from and writing to channels connecting them
Behavior: executions, paths, traces

- A **finite/infinite execution fragment** of a TS is a finite/infinite sequence of state transitions.
 - s_0-act1-$\rightarrow s_1$, s_1-act2-$\rightarrow s_3$ is written as an alternating finite execution that ends in a state, s_0,act1,s_1,act2,s_3

- A path fragment is a path s_0, s_1, s_2, ... where s_1 in Post(s_0), s_2 in Post(s_1) etc.
 - **Path(s)** is the set of maximal path fragments in which the first element is s

- The execution s_0,act0,s_1,act1,s_2,act2,s_3, ... can be represented as a **trace**, $L(s_0),L(s_1),L(s_2),L(s_3),...$ in a state view of a transition system
 - A trace is thus a **word** over the power set of AP in a transition system 2^{AP}
Trace operators

• trace(Π) is the set of traces obtained from the paths in the set of paths, Π

 \[\text{trace}(Π) = \{ \text{trace}(\pi) \mid \pi \in Π \} \]

• Traces(s) is the set of traces of s

 \[\text{Traces}(s) = \text{traces}(\text{Paths}(s)) \]

• Traces(TS) is the set of all traces for all initial states of TS

 \[\text{Traces}(\text{TS}) = \bigcup_{s \in \text{in} \text{TS}} \text{Traces}(s) \]
LT property

• A linear temporal property over a set of atomic propositions, AP is a subset of the set of all infinite words formed using only elements in AP (denoted $(2^{AP})^\omega$)

Definition 3.11. Satisfaction Relation for LT Properties

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ a transition system without terminal states.

$TS = (S, Act, \rightarrow, I, AP, L)$ satisfies P, denoted $TS \models P$, iff $\text{Traces}(TS) \subseteq P$. State $s \in S$ satisfies P, notation $s \models P$, whenever $\text{Traces}(s) \subseteq P$.

Starvation Freedom Example

- A process that wants to enter its critical section will eventually do so ($AP = \{ \text{wait1, crit1, wait2, crit2} \}$)
 - $P_{\text{finwait}} = \text{set of infinite words } A_0 A_1 A_2 \ldots \text{ such that } \forall j. \text{wait}_i \in A_j \Rightarrow \exists k \geq j. \text{crit}_i \in A_k \text{ for each } i \in \{1, 2\}$

- A process that waits often enters its critical section often
 - $P_{\text{nostarve}} = \text{set of infinite words } A_0 A_1 A_2 \ldots \text{ such that: } (\forall k \geq 0. \exists j \geq k. \text{wait}_i \in A_j) \Rightarrow (\forall k \geq 0. \exists j \geq k. \text{crit}_i \in A_j)$ for each $i \in \{1, 2\}$
 - In abbreviated form we write: $\exists^\infty j. \text{wait}_i \in A_j \Rightarrow \exists^\infty j. \text{crit}_i \in A_j$ for each $i \in \{1, 2\}$, where \exists^∞ stands for “there are infinitely many”.
Trace inclusion and equivalence

- Trace inclusion: TS is a correct implementation of TS’ if \(\text{Traces}(TS) \) is a subset of \(\text{Traces}(TS’) \).
- Equivalent statement: For any LT property \(P \): \(TS’ \models P \) implies \(TS \models P \).
- Transition systems \(TS \) and \(TS’ \) are trace-equivalent with respect to the set of propositions \(\text{AP} \) if \(\text{Traces}_{\text{AP}}(TS) = \text{Traces}_{\text{AP}}(TS’) \).
- \(\text{Traces}(TS) = \text{Traces}(TS’) \) iff \(TS \) and \(TS’ \) satisfy the same LT properties.
Equivalent TS example

For AP = \{pay, soda, beer\} the two TSs are trace equivalent

There does not exist an LT property that distinguishes between the two vending machine models

Figure 3.8: Two beverage vending machines.
Types of Linear Time Properties

- Important to distinguish between different types of properties because the approach to checking the properties will vary with the type.
- Safety properties: A property that is finitely refutable
 - Informally: Nothing bad ever happens
- Liveness properties: A property that is not finitely refutable
 - Informally: Something good eventually happens
Formal definition of a safety property

An LT property P_{safe} over AP is called a safety property if for all words $\sigma \in (2^{AP})^\omega \setminus P_{\text{safe}}$ there exists a finite prefix σ^\wedge of σ such that $P_{\text{safe}} \cap \{\sigma' \in (2^{AP})^\omega \mid \sigma^\wedge \text{ is a finite prefix of } \sigma\} = \emptyset$

- σ^\wedge is called a bad prefix for P_{safe}
- A bad prefix is minimal if there is no smaller prefix that is bad
- $\text{BadPref}(P_{\text{safe}})$ denotes set of all bad prefixes for P_{safe}
Satisfying safety properties

$TS \models P_{safe}$ if and only if $\text{Traces}_{fin}(TS) \cap \text{BadPref}(P_{safe}) = \emptyset$

Alternative: P_{safe} is a safety property iff

$\text{closure}(P_{safe}) = P_{safe}$

i.e., P_{safe} contains all the infinite traces whose finite prefixes are also prefixes of P_{safe}

$\text{closure}(P) = \{\sigma \in (2^AP)^\omega \mid \text{pref}(\sigma) \subseteq \text{pref}(P)\}$

where $\text{pref}(\sigma)$ is the set of finite prefixes of the word σ
Trace inclusion and safety properties

• Let TS and TS’ be transition systems without terminal states and with the same set of propositions AP. Then the following statements are equivalent:
 – \(\text{Traces}_{\text{fin}}(TS) \subseteq \text{Traces}_{\text{fin}}(TS') \)
 – For any safety property \(P_{\text{safe}} : TS' \models P_{\text{safe}} \) implies \(TS \models P_{\text{safe}} \)

• Note that even if \(\text{Traces}(TS) \) is not a subset of \(\text{Traces}(TS) \), but the finite traces are (a weaker condition), then safety properties of TS’ also holds for TS
Finite vs. infinite systems

- Traces(TS) is not a subset of Traces (TS) but Traces_{fin}(TS) is a subset of Traces_{fin}(TS').
- Property: eventually b holds.
Liveness definition

• A property P over AP is a liveness property when $\text{pref}(P) = (2^{AP})^*$

• Each finite word can be extended to an infinite word that satisfies P

• Stated differently, P is a liveness property iff for all finite words $w \in (2^{AP})^*$ there exists an infinite word $\sigma \in (2^{AP})^\omega$ satisfying $w\sigma \in P$
Examples

• Each process will eventually enter its critical section
 \((\exists j \geq 0. \text{crit}_1 \in A_j) \land (\exists j \geq 0. \text{crit}_2 \in A_j)\)

• Each process will enter its critical section infinitely often
 \((\forall k \geq 0. \exists j \geq k. \text{crit}_1 \in A_j) \land (\forall k \geq 0. \exists j \geq k. \text{crit}_2 \in A_j)\)

• Each waiting process will eventually enter its critical section
 \(\forall j \geq 0. (\text{wait}_1 \in A_j \Rightarrow (\exists k > j. \text{crit}_1 \in A_k)) \land \forall j \geq 0. (\text{wait}_2 \in A_j \Rightarrow (\exists k > j. \text{crit}_2 \in A_k))\)
Safety and liveness properties

• Are safety and liveness properties disjoint? Yes, if you exclude the set of all traces
• Are all linear properties either a safety or liveness property? No

• Theorem 3.37. Decomposition Theorem
 For any LT property P over AP there exists a safety property P_{safe} and a liveness property P_{live} (both over AP) such that $P = P_{safe} \cap P_{live}$.
Fairness constraints

- Fairness constraints are used to rule out “unrealistic” behaviors from a transition system semantics of a concurrent system
 - E.g., refine model to resolve non-deterministic behaviors
- Different types of fairness constraints
 - **Unconditional fairness** (impartiality): e.g., a process can execute infinitely often
 - **Strong fairness** (compassion): e.g., a process that is enabled infinitely often gets it turns to execute infinitely often
 - **Weak fairness** (justice): e.g., a process that is continuously enabled after a certain time, gets its turn to execute infinitely often
Expressing fairness constraints
(action view)

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without
terminal states, $A \subseteq Act$, and infinite execution fragment

$\rho = s_0 \rightarrow s_1 \rightarrow s_2 - \ldots$ of TS:

• ρ is unconditionally A-fair whenever $\exists^\infty j. \alpha_j \in A$

• ρ is strongly A-fair whenever

 $(\exists^\infty j. Act(s_j) \cap A \neq \emptyset) \Rightarrow (\exists^\infty j. \alpha_j \in A)$

• ρ is weakly A-fair whenever

 $(\forall^\infty j. Act(s_j) \cap A \neq \emptyset) \Rightarrow (\exists^\infty j. \alpha_j \in A)$
A = \{\text{enter}_2\}: The dashed line execution is not unconditionally A-fair, but is strongly A-fair (vacuously)
The execution shown in dotted lines is not strongly A-fair, but is weakly A-fair.
A **fairness assumption** for Act is a triple

$$\mathcal{F} = (\mathcal{F}_{u\text{cond}}, \mathcal{F}_{\text{strong}}, \mathcal{F}_{\text{weak}})$$

with $\mathcal{F}_{u\text{cond}}, \mathcal{F}_{\text{strong}}, \mathcal{F}_{\text{weak}} \subseteq 2^{\text{Act}}$. Execution ρ is \mathcal{F}-fair if

- it is unconditionally A-fair for all $A \in \mathcal{F}_{u\text{cond}},$
- it is strongly A-fair for all $A \in \mathcal{F}_{\text{strong}},$ and
- it is weakly A-fair for all $A \in \mathcal{F}_{\text{weak}}.$

If the set \mathcal{F} is clear from the context, we use the term fair instead of \mathcal{F}-fair.
Satisfaction and Fairness

Definition 3.48. Fair Satisfaction Relation for LT Properties

Let P be an LT property over AP and F a fairness assumption over Act. Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ fairly satisfies P, notation $TS \models_F P$, if and only if $\text{FairTraces}_F(TS) \subseteq P$.

Note that the following may occur: $TS \models_F P$ whereas $TS \not\models_F P$.

Unconditional fairness rules out more behaviors than strong fairness, and strong fairness excludes more behaviors than weak fairness.

$$TS \models_{F_{\text{weak}}} P \Rightarrow TS \models_{F_{\text{strong}}} P \Rightarrow TS \models_{F_{\text{ucond}}} P.$$
Fairness and safety properties

- Fairness may be necessary to verify liveness properties, but they are not needed for proving safety properties when a suitable scheduling strategy is used.

Definition 3.54. Realizable Fairness Assumption

Let TS be a transition system with the set of actions Act and F a fairness assumption for Act. F is called *realizable* for TS if for every reachable state s: $\text{FairPaths}_F(s) \neq \emptyset$.

Theorem 3.55. Realizable Fairness is Irrelevant for Safety Properties

Let TS be a transition system with set of propositions AP, F a realizable fairness assumption for TS, and P_{safe} a safety property property over AP. Then:

$$TS \models P_{safe} \iff TS \models F \ P_{safe}.$$
Checking Linear Temporal Safety Properties

• Regular safety properties: a safety property whose bad prefixes form a regular language
 – Recall that a trace is a word (sequence of sets of atomic propositions)
 – Satisfaction checking reduced to invariant-checking on a transition system produced by forming the product of the system TS and the automaton characterizing bad prefixes

• ω-regular properties: Generalization of above approach that is also applicable to checking some liveness properties
 – Buchi automata accept infinite words
 – Satisfaction checking reduced to persistence checking (checking for “eventually forever the property holds”)
