
J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 76–89, 2007.
© IFIP International Federation for Information Processing 2007

Construction and Execution of Adaptable Applications
Using an Aspect-Oriented and Model Driven Approach

Sten A. Lundesgaard1, Arnor Solberg2,*, Jon Oldevik2, Robert France3,
Jan Øyvind Aagedal2, and Frank Eliassen1

1 Simula Research Laboratory, Network and Distributed Systems,
P.O. Box 134, N-1325 Lysaker, Norway
{stena, frank}@simula.no

2 SINTEF, ICT,
P.O. Box 124, N-0314 Oslo, Norway

{arnor.solberg, jon.oldevik, jan.aagedal}@sintef.no
3 Colorado State University,

Fort Collins, CO-80532, USA
france@cs.colostate.edu

Abstract. Constructing and executing distributed applications that can adapt to
their current operating context, in order to maintain or enhance Quality of Ser-
vice (QoS) attribute levels, are complex tasks. Managing multiple, interacting
QoS features is particularly difficult since these features tend to be distributed
across the system and tangled with other features. The crosscutting nature of
QoS features can make them difficult to evolve, and it can make it complicated
to dynamically optimize with respect to provided QoS during execution. Fur-
thermore, it complicates efficient construction of application variants that differ
in their QoS characteristics to suit various execution contexts. This paper pre-
sents an aspect-oriented and model driven approach for constructing and a QoS-
aware middleware for execution of QoS-sensitive applications. Aspect-oriented
modeling techniques are used to separate QoS features from primary applica-
tion logic, and for efficient specification of alternative application variants.
Model driven engineering techniques are used to derive run-time representa-
tions of application variants from platform independent models. The developed
middleware chooses the best variant according to the current operating context
and the available resources.

1 Introduction

Distributed systems often execute in heterogeneous environments, in which the avail-
ability of resources such as bandwidth, memory, and computing power change over
time. The increasing mobility and pervasiveness of computing systems require the
consideration of the dynamic environment, when building suitable QoS features for
maintaining desired QoS. Adaptive middleware addresses these challenges. It per-
forms run-time configuration and adaptation by choosing between alternative applica-
tion variants with similar functional properties but different QoS characteristics and

* Two first authors are in alphabetical order.

 Construction and Execution of Adaptable Applications 77

resource demands. Criteria for choosing an application variant are generally based on
the context [1] or QoS characteristics [2][3].

Many concerns need to be considered when constructing alternative application
variants, e.g., QoS preferences, context dependencies, and resource allocation. To
manage this complexity, separation of concerns and support for defining and using
suitable abstractions are needed. In Model Driven Engineering (MDE), abstractions
and transformations between levels are used to manage complexity. For example, the
Model Driven Architecture (MDA) [4] specifies three abstraction levels; a Computa-
tion Independent Model (CIM) describes the environment and specifies requirements;
a Platform Independent Model (PIM) describes the parts that do not change from one
platform to another; and a Platform Specific Model (PSM) includes descriptions of
platform dependent parts. To further control the complexity of developing application
variants that have similar functionality but differ in their QoS characteristics, mecha-
nisms for separating crosscutting QoS features from the primary application logic are
needed. Examples of QoS characteristics are security, integrity, robustness, and per-
formance. Examples of corresponding QoS features are authentication, transaction
control, error handling, and compression. Aspect-Oriented Software Development
(AOSD) approaches [5]-[8] provide mechanisms for encapsulating crosscutting fea-
tures. In the Aspect Oriented Modeling (AOM) approach presented in [8], crosscut-
ting features are modeled as aspects and composed with the primary design model, to
form integrated models.

This paper presents an approach for Construction and Execution of Adaptable ap-
plications (CEA-Frame). CEA-Frame integrates MDE and AOM techniques to model
application variants in platform-independent terms and to automatically transform
PIMs to PSMs. QoS features are separated from the primary functionality as aspect
models and designed to fit particular operating contexts. For the execution we have
developed a context- and QoS-aware dynamic middleware named QuAMobile, which
identifies and chooses the application variant that is considered best for the current
context and available resources. The alternative application variants are deployed
using platform independent specifications, called service plans [11].

The separation of concern mechanisms in CEA-Frame improve the reusability of
both design- and run-time artifacts through application-independent models of cross-
cutting QoS-features, and service plan specifications that separate meta-data from
implementation code. Furthermore, modeling the QoS features separately in aspect
models enables efficient representation of QoS variability from which a large number
of application variants can be derived. The MDE based transformations make the
transition from PIMs to PSMs faster, smoother and less error prone.

Sect. 2 presents the integrated construction and execution concepts, mechanisms
and activities of CEA-Frame. In Sect. 3 the CEA-Frame is illustrated and validated
using a live media streaming application example. Sect. 4 discusses related work.
Sect. 5 draws some conclusions and outlines future work.

2 Construction and Execution of Adaptable Applications

CEA-Frame (Fig. 1) provides: i) methods for specification of application variants
combining model driven and aspect-oriented modeling techniques, ii) mappings

78 S.A. Lundesgaard et al.

Fig. 1. Overview CEA-Frame

generating platform level constructs from platform independent specifications, and iii)
a QoS-aware planning and adaptation supplied by the QuAMobile middleware.

At the platform independent level, a primary model and a set of aspect models
are developed. Alternative application variants are obtained based on the following
two mechanisms: i) compositions are used to derive application variants by com-
posing the primary model with different subsets of the aspect models, and ii) vari-
ants of aspect models and primary models are described by means of model-based
variability mechanisms such as specialization and parameterization. From the PIMs,
service types in the form of Web-Service Description Language (WSDL) files and
XML-based service plans are generated by our transformation engine. These map-
pings are implemented using the MOFScript Eclipse plug-in [10]. At the platform
specific level, the QoS-aware planning process (in QuAMobile) uses the deployed
service types and service plans to select the application variant that is considered
best for the current context in order to meet the user’s QoS preferences. This also
includes checking context dependencies (e.g., run-time environment, communica-
tion technology, and storage facility dependencies), and predicting the end-to-end
QoS according to the available resources (e.g., processing load, data rate and mem-
ory usage).

2.1 The Conceptual Service Model

The CEA-Frame defines service, service type, and service plan as central architectural
concepts (see Fig. 2). A service type can be composed from a set of service types. An
application type is a service type. Services realize service types and their meta-
information is specified in service plans. Consequently, there may be different service
plans for a service type. Services can be atomic or composite. Accordingly, there are
atomic and composite plans. An atomic plan describes an atomic service, while a
composite plan recursively describes a composite service by specifying the involved
service types and the connections between them. In addition, both types of service
plans contains: i) information about dependencies to context elements, ii) specifica-
tion of the parameter configurations and iii) specification of the QoS characteristics.
These are vital information for the QoS-aware planning and adaptation. It is tedious to

 Construction and Execution of Adaptable Applications 79

Fig. 2. The service and service plan concepts of CEA-Frame

develop the service plans manually, because many alternative application variants are
required to support the different operating contexts of the application. In CEA-Frame
the service plans are automatically generated from the more abstract PIMs. Service
plans are further elaborated in [11].

2.2 Constructing Application Variants

The basis for the modeling in CEA-Frame is our Aspect-Oriented Model Driven
Framework (AOMDF) [12], which combines aspect-oriented and model driven tech-
niques to separate both vertical concerns such as technical platform, and user defined
crosscutting concerns such as QoS. CEA-Frame extends AOMDF to support con-
struction and execution of QoS-aware adaptable applications.

A design is expressed in terms of the following artifacts [7]: i) the primary model
(PM) describes the application logic; ii) the aspect models (AM) describe crosscutting
QoS features; iii) the bindings define where in the primary model the aspect models
should be composed; and iv) the composition directives govern how aspect models
are composed with primary models.

Before an aspect model can be composed with a primary model in an application
domain, the aspect model must be instantiated in the context of the same application
domain. An instantiation is obtained by binding elements in the aspect model to ele-
ments in the application domain. The result is called a context-specific aspect model.
Context-specific aspect models and the primary model are composed to obtain an
integrated design view [8]. Fig. 3 shows the modeling and mapping activities when
constructing alternative application variants using CEA-Frame.

Starting at the platform independent level, the primary model is specified. Vari-
ability is specified using variability mechanisms provided in UML such as speciali-
zation, templates and multiplicity (e.g., “0..1” for optional elements). Then, QoS
features are specified in aspect models. In our approach aspect models are reusable
patterns that describe application specific QoS features when instantiated. In the
composition, the aspects models are instantiated and composed with the primary
model. An aspect model is instantiated by binding template parameters to actual
values.

80 S.A. Lundesgaard et al.

Fig. 3. CEA-Frame modeling and mapping activities

2.3 Execution of Adaptable Applications

In our implementation of CEA-Frame the distributed dynamic middleware QuAMobile
and the Java virtual machine constitute the execution environment. QuAMobile im-
plements a plug-in architecture for inserting domain specific managers: service plan-
ner, context manager, resource manager, configuration manager, and adaptation
manager as depicted in Fig. 4. Service types and plans are interpreted during deploy-
ment using the Java Document Object Model (JDOM) open source parser. Service
implementations reside in the repository, while service types and plans are published to
the broker. During executing, service types and plans represent the meta-level model
of the running application. This model is causally connected to the application, that is,
any changes made to the meta-level causes corresponding changes in the application.

Fig. 4. QuAMobile core architecture

In dynamic heterogonous environments QoS guarantees can not be made. Instead
QuAMobile re-plans and adapts the applications to meet the changes in context and
resource availability. In the middleware the two plug-ins service planner and adapta-
tion manager performs QoS-aware planning and adaptation. Service planning is a
process that identifies suitable application variants for the context in which the appli-
cation shall execute and choose the one that is considered most optimal with respect
to the user’s QoS preferences. The planning commences when the user (i.e., client
software) submits a service request with user QoS preferences in the form of utility
functions to the platform. In CEA-Frame, utility is a measure of usefulness and is

 Construction and Execution of Adaptable Applications 81

expressed by a real number in the range [0, 1], where 0 represents useless and 1 repre-
sents as good as perfect. Service planning is a four step process starting with i) identi-
fying all the alternative application variants, ii) context dependency filtering, iii) QoS
prediction, and iv) choosing the best suited variant according to the specified utility
functions.

The adaptation mechanisms operate on a meta-level, where the service types and
service plans are used for reasoning and altering the running application. When
changes in the context are detected, i.e., there is updated context and resource infor-
mation available, the service planner performs a re-planning of the running applica-
tion. If another application variant matches the user’s QoS preferences better, the
middleware adapts the application. First, existing plans that constitute the meta-model
of the running application are made available (reification). Then components involved
in the adaptation are pushed to a safe-state (if this state is reachable), and changes are
made to the meta-model. Lastly, the changes are absorbed by the application. Fig. 5
shows the activities involved in the execution of an adaptable application, and is a
detailing of the planning and adaptation activity of Fig. 3.

Fig. 5. Planning and adaptation activities

3 Illustrative Example

This section illustrates the CEA-Frame by describing the construction and execution
of a live media streaming system. The system captures events (e.g., news and sports),
encode onsite, and forward the media stream to streaming servers that the users access
over the Internet (see Fig. 6). Users are mobile, and switch from Local Area Network
(LAN) to a Wireless LAN (WLAN), and between WLAN subnets.

3.1 Modeling and Mapping

The illustrative example of the modeling and mapping process is structured according
to the CEA-Frame activities depicted in Fig. 3.

Specify Primary Model and Primary Model Variants. The application level com-
posite structure of the media streaming primary model is shown in Fig. 6.

SgnlCommunication initiates and controls the media stream on request from the
MediaPlayer. LiveMediaSrc provides the video images, and MediaStrmService sends
the stream to MediaPlayer through the StrmCommunication service. These services

82 S.A. Lundesgaard et al.

Live Event

Fig. 6. Live media streaming system, application level composite structure

are all composite. In this example we will look into details of the StrmCommunication
service and its variants (Fig. 7). This service has both alternative compositions and
parameter configurations from which variants are derived, high-lightening variability
mechanisms and variant derivation provided in CEA-Frame.

c)

a)

b)

Fig. 7. a) primary model of StrmCommunication and b) variations of types

The types of the parts contained in the general StrmCommunication (Fig. 7a) are
abstract and represent variation points. Possible variations of these types can be repre-
sented as a specialization hierarchy as shown in Fig. 7b. Here the allowed specializa-
tions for the encoder and decoder are MPEG-4 and H.262, and the allowed transport
protocols are RTP and RTP_TFRC. Fig. 7c shows two of the four possible variants
for this case. The dependency relationships in the specialization hierarchy ensure
compliance for the source and sink of a particular variant.

Specify Aspect Models and Aspect Model variants. QoS features are specified in
aspect models. For wireless communication bit errors represent an inherent problem.
To ensure a satisfactory video quality, Forward Error Correction (FEC) algorithms
can be used to minimize the effect of bit errors. Also, due to the handover and roam-
ing between WLAN sub-nets, pre-fetching (using a buffer) can be used to reduce
jitter. To improve smoothness and timeliness of the video when streaming over
WLAN, the two aspect models depicted in Fig. 8a and Fig. 8b are specified.

 Construction and Execution of Adaptable Applications 83

b)a)

c)

Fig. 8. Aspect Models a) error correction, b) pre-fetching, and c) allowed values

The aspect models are parameterized. The allowedValues stereotype is used to
specify the values of these parameters for the particular application (Fig. 8c). For the
ErrorCorrection and Buffer aspects, parameters that must be specified are buffer
sizes, symbol sizes, and parity symbols. The set of combinations of these parameter
configurations signify a corresponding set of aspect model variants (i.e., nine Error-
Correction variants and three Buffer variants) with different QoS characteristics and
resource demands. For example, increasing the values for the parity symbols and the
symbol size increase the protection level of the error correction, but at the cost of
CPU usage and start-up time.

Derive Variants Through Model Composition. The aspect models consist of tem-
plate forms of composite structure diagrams, expressed using a template variant of the
Role Based Meta-Modeling Language (RBML) [18]. RBML is a pattern description
language which characterizes a family of UML models. The aspect templates are
instantiated by binding template parameters to values. The parameters are marked
using the symbol “|” (see the aspects models in Fig. 8). When the role binding is
specified the primary model is composed with the aspect models according to speci-
fied composition rules.

We obtain four alternative compositions of the StrmCommunication service, two of
which are shown in Fig. 9 (pre-fetching without FEC and usage of the primary model
without including any aspects is not shown).

Fig. 9. Composition variants of StrmCommunication

84 S.A. Lundesgaard et al.

Specify Context Dependencies and QoS. Applying CEA-Frame, application specific
QoS characteristics, resources, and context elements need to be defined. The QoS
characteristics and resources definitions in our example are based on the ISO/IEC
9126 QoS characteristics catalogue [14] and the General Resource Model (GRM)
[15]. The specifications are modeled according to the guidelines of the UML profile
for QoS standard [13]. A subset of QoS characteristics resource and context types
used for the live media streaming application is shown in Fig. 10a.

a)

b)

Fig. 10. a) QoS characteristics, resource, and context types, and b) context dependencies and
QoS specification

The specified services are associated with context dependencies, QoS require-
ments, and QoS prediction functions. For context dependency specifications we use
the stereotype QoSContext. The QoSOffered stereotype us used to specify predicted
QoS. Both stereotypes are provided by the UML profile for QoS standard [13]. In
addition we have defined the QoSRequirement stereotype, which is used to specify the
QoS levels a service needs to fulfill, e.g., min and max values. A QoSRequirement
specification is identified based on expected usage of the service.

QoSOffered specifies QoS prediction functions that the middleware uses to calcu-
late the QoS for a given set of context and resource QoS values. For example,
StrmCommunication is associated with functions that predicts a long start-up time
when the PreFetchBuffer is part of the composition. However, when connected to
WLAN these functions predict increase in the frame drop rate and jitter. When
streaming live media (e.g., news and sport events), the user defined trade-off may be
to have low start-up time as long as the frame drop rate is below a certain limit. Fig.
10b shows examples of application specific context and QoS specifications using the
QoSContext, QoSOffered, and QoSRequirements stereotypes (the Object Constraint
Language (OCL) is used for specification).

 Construction and Execution of Adaptable Applications 85

For composite services, QoSOffered is dependent on the QoS offered by its parts.
Thus, QoS prediction in these cases need to take into account that the composite do
not know what parts it consist of, since new parts can be added when composing
aspect models. For example the offered startupTime for the StrmCommunication is a
summation of the startupTime of its parts; consequently, the different composition
variants will have different start-up times as expressed with the following OCL-based
predictor function:

(self.timeliness.startupTime = self.parts.collect(part:Property | part.type.feature->select (f:Feature |
f.name = 'timeliness'))->collect (f:Feature | f.type.attribute->select (a:Property | a.name = 'startUpTime'))
-> sum ()).

Apply Transformation. To bridge the model and platform levels of the adaptable
application, automated transformations are used for mapping UML models to applica-
tion variants and service type specifications. The PIM transformation source consists
of the four composed models derived from the compositions of aspect and primary
models, two of these are shown in Fig. 9. We refer to these as the base compositions.
Additional input to the transformation, for our example, is the specialization hierarchy
specifying primary model variants, the allowed values associated with aspect models
parameters determining aspect model variants, and context and QoS specifications.
From these a total number of 432 alternative variants of the StrmCommunication
service can be derived (4 base compositions*4 primary model variants*9 ErrorCor-
rection aspect model variants*3 Buffer aspect model variants). Thus, this specific case
illustrates the general challenge that the set of variants can be very large. To avoid a
large number of variants, one can identify combinations of the parameter values that
imply significant variation in the end-to-end QoS characteristics. Only these are de-
ployed as possible run-time variants. In the example this led to a reduction of combi-
nations of the three different sets of parity symbol lengths and symbol sizes for the
FEC service from nine combination to the following three value pairs: {8, 1}, {16, 2},
or {32, 8}). The number of derived PSM variants then becomes 144.

The transformations have been implemented using the MOFScript Eclipse plug-in
[10]. MOFScript was one of the proposed languages in the standardization process of
MOF Model to Text Transformations, which has been adopted and is now in its final-
izing stage [9]. In general, the implemented transformations map CEA-Frame PIM
concepts such as QoScharacteristics, QoScontext, and service specifications in pri-
mary and aspect models, to CEA-Frame PSM concepts such as service types, service
plans, and service realizations.

3.2 QoS-Aware Planning and Adaptation

In our example QuAMobile is installed on a laptop and a streaming server. The instal-
lation creates a common service context that provides protocols for service discovery
and context information sharing between the domain specific management plug-ins.
The service planner residing on the streaming server is configured as master, i.e.,
centralized planning and local adaptation. To illustrate the QoS-aware planning and
adaptation (tasks shown in Fig. 5) it is assumed that the user has the laptop connected
to the LAN. After some time the user disconnects and moves over to WLAN.

Deploy. Generated service types (WSDL), service plans, and components are de-
ployed and published on the machine on which the service is to execute.

86 S.A. Lundesgaard et al.

Identify. When the user requests access to the live streaming service, alternative
application variants are synthesized from the published services and discovered ser-
vice plans. QuAMobile identifies all of the 720 application variants (144 variants of
the StrmCommunication and additional 5 variants of the LiveMediaSrc services, re-
sulting in 720 variants of the LiveMediaStreaming application (see Fig. 6).

Context Dependency Filtering. Application variants that can not execute in the cur-
rent operating context are filtered, by comparing gathered context information against
the specified context dependencies (QoSContext in the composite models). In
QuAMobile, it is the context manager that gathers and processes data about the con-
text and makes information available to the service planner plug-in. For the identified
application variants, it is the specified dependencies to the screen resolution that are
caught by the context dependency filter, since three of the LiveMediaSrcs services
require a screen with a higher resolution than what the laptop has. After context de-
pendency filtering 288 variants remains.

QoS Prediction. End-to-end QoS characteristics are predicted using the specified
functions (QoSOffered stereotype) in a bottom-up style, i.e., start by calculating the
QoS of each atomic service and finishing of with the composite service. The QoS
prediction functions are specified and deployed as text strings; hence, the expressions
are calculated for each planning and adaptation process. Predicted QoS are checked
against QoS requirements specified by the application developer (QoSRequirement
stereotype).

Choose. Utility functions are used to specify the user’s QoS preferences and tradeoff
between user QoS dimensions, e.g., start-up time 6.0≥ , detail-level 6.0≥ , and
smoothness 6.0≥ . By using the provided utility functions (see Fig. 11Fig. 11) and the
predicted QoS QuAMobile calculates the utility of the application variants and
chooses the one, which i) meets the specified minimum utility values and ii) has the
highest utility-to-user QoS ratio. When the laptop is connected to the LAN it is the
application variant with the StrmCommunication composition without the FEC and
PreFetchBuffer services that is chosen, i.e., the primary model as depicted in Fig. 7.
This variant is selected since the increase in utility for the detail level and smoothness
dimensions are small compared to the increase in start-up time.

Fig. 11. Utility Functions

Execution. The application variant chosen is forwarded to the configuration managers
on the laptop and streaming server. They create the components, configure, and bind
them together. Execution of the initial application variant is like any other non- adapt-
able applications.

 Construction and Execution of Adaptable Applications 87

Adaptation. In our example the user disconnects the laptop from the LAN during the
streaming of a particular news event, i.e., the streaming connection is moved over to
WLAN by the RTP_TFRCTransport service. The context change makes the current
application variant unsuitable, as the bit error rate associated with WLAN causes
video frame to be dropped, i.e., too low utility for the smoothness dimension.
QuAMobile therefore initiates re-planning and chooses the application variant which
includes both the FEC and PreFetchBuffer services. This variant has a better balance
between the start-up time and smoothness QoS dimensions. During adaptation service
plans are used as a meta-model of the running application, enabling QuAMobile to
make changes to the running application.

4 Related Work

Atkinson et al. [19] combine model driven and aspect-oriented development. Aspect-
oriented techniques are used for refining specific aspects of the model (vertical sepa-
ration of concern) by architecture stratification. This approach differs from the aspect
approach employed in CEA-Frame, in that the aspects are not composed but represent
refinements of a particular part of the model at higher level stratums. Thus, each
stratum represents the whole system. Furthermore, Atkinson et al. define possible
refinements as pattern-based aspects applied through framework instantiations. In our
approach we use standard AOM and MDE mechanisms such as compositions and
transformations.

MDE is used by Kulkarni et al. [16] for providing separation of concern between
system concerns at both model and code level using templates and code weaving.
This is similar to the AOM approach we employ, except that we use parameterized
UML to specify aspects and perform model level composition avoiding the need for
code level weaving. Clarke et al. [17] and Ray et al. [7] also apply aspects for separa-
tion of concern. The aspects models are weaved with application models, by adding
and replacing both classes and operations. Kiczales et al. [5] employ aspect models
for multiple concerns; functional behavior and crosscutting concerns. Hyper/J multi-
ple models are integrated, making it possible to model alternative static application
variants. CEA-Frame integrates aspect models with the application logic in a similar
manner, but has additional support for parameter configuration, context, and QoS
requirements. In addition, MDE principles are used to generate platform specific
artifacts.

There are examples of adaptive middleware platforms that are combined with soft-
ware engineering tools; 2KQ+ [2], QuO [3], and CoSMIC [20]. 2KQ+ provides an envi-
ronment for specifying alternative service compositions, their QoS characteristics, and
adaptation steps. A platform dependent compiler produces executable code for adapt-
ing the application. QuO introduces description languages for specifying QoS, which
is compiled to executable code for monitoring QoS and controlling the interaction
between distributed objects. CoSMIC is a MDE toolkit, which model compositions
and QoS requirements at the platform level (a component based QoS-aware CORBA
middleware). CEA-Frame addresses the same problems as 2KQ+, QuO, and CoSMIC,
but at a platform independent level. This avoids specification of all possible context

88 S.A. Lundesgaard et al.

and resource allocations, and enable integration of the framework with any develop-
ment environment and middleware platform. Furthermore, CEA-frame pushes the
task of identifying and choosing a variant to run-time, giving a larger solution space
and higher probability of finding the best application configuration.

5 Conclusion and Future Work

The task of developing and operating distributed applications for heterogeneous dy-
namic environments is particularly difficult in the presence of multiple crosscutting
QoS features. Our approach to tackle this problem is to separate the QoS features
from the application logic, and place the responsibility of choosing and configuring
the application at the middleware level.

CEA-Frame combines AOM and MDE techniques for efficient construction of a
potentially large number of alternatives application variants needed due to the dynam-
ics and heterogeneity of the execution environment. A context and QoS-aware mid-
dleware is developed to handle adaptation. The framework provides: i) methods and
activity descriptions for constructing adaptable applications, ii) variability mecha-
nisms using aspects and model composition as well as parameterized primary and
aspect models, iii) separation of crosscutting QoS features iv) automatic model trans-
formation and code generation, and v) a QoS-aware planning and adaptation process
that configures and adapts the application to suit the operating context and resources
available. The implementation of the framework has been validated by using it to
construct and execute a live video streaming application.

The construction of application variants is accomplished by separating QoS vari-
ability specifications from variability of the primary model and the composition of the
primary model with different subsets of the aspect models. The automatic transforma-
tions support efficient derivation of a large number of alternative application variants
and eliminate tedious error-prone manual implementations. At the platform specific
level separating specifications of the alternative application variants and their QoS
characteristics (using the service plan concept) improves reusability of the services.
All information needed for the middleware to filter, order, and choose a suitable ap-
plication variant, is generated from platform independent models. CEA-Frame is
based on standards such as the UML profile for QoS [13], GRM [15], ISO/IEC 9126
[14], and MOF Model to Text [9].

To develop the CEA-Frame, we will work further on the model composition tech-
niques and related tool support. We are also working on OCL-based templates that are
easier to work with and more readable.

References

1. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mIddle-
ware System for Mobile Applications. IEEE Trans. on Software Engineering 29(10),
929–945 (2003)

2. Nahrstedt, K., Xu, D., Wichadakul, D., Baochun, L.: QoS-Aware Middleware for Ubiqui-
tous and Heterogeneous Environments. IEEE Communications Magazine 39(11), 140–148
(2001)

 Construction and Execution of Adaptable Applications 89

3. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Karr, D., Vanegas, R., Anderson, K.: QoS
Aspect Languages and Their Runtime Integration. In: O’Hallaron, D.R. (ed.) LCR 1998.
LNCS, vol. 1511, pp. 303–318. Springer, Heidelberg (1998)

4. OMG, MDA TM Guide v1.0.1, http://www.omg.org/docs/omg/03-06-01pdf
5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., Irwin, J.:

Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–241. Springer, Heidelberg (1997)

6. Ossher, H., Tarr, P.: Using Multidimensional Separation of Concerns to (Re)shape evolv-
ing Software. Communications of the ACM 44(10), 43–50 (2001)

7. Ray, I., France, R., Li, N., Georg, G.: An Aspect-Based Approach to Modeling Access
Control Concerns. Journal of Info. and Software Tech. 46(9), 575–587 (2004)

8. France, R., Ray, I., Georg, G., Ghosh, S.: An aspect-oriented approach to design modeling.
IEE Proc. Software, vol. 151(4) (2004)

9. OMG: MOF Models to Text Transformation Language Final Adopted Specification.
Technical report, OMG document ptc/06-11-01 (2006)

10. MOFScript Eclipse plug-in, http://www.modelbased.net/mofscript
11. Lundesgaard, S., Lund, K., Eliassen, F.: Utilising Alternative Application Configurations

in Context- and QoS-aware Mobile Middleware. In: Donatelli, S., Thiagarajan, P.S. (eds.)
ICATPN 2006. LNCS, vol. 4024, pp. 228–241. Springer, Heidelberg (2006)

12. Simmonds, D., Solberg, A., Reddy, R., France, R., Ghosh, S.: An Aspect Oriented Model
Driven Framework. In: Proc. the Enterprise Distributed Object Computing Conference,
pp. 119–130 (2005)

13. UML profile for modeling QoS and Fault Tolerance characteristics and Mechanisms.
Adopted standard, OMG May 2005, Document ptc/05-05-02 (2005)

14. ISO/IEC JTC1/SC7, 1999a, Information Technology -Software product quality -Part 1:
Quality model, ISO/IEC, Report: 9126-1

15. Object Management Group, UML Profile for Schedulability, Performance, and Time
Specification, ad/2000-08-04 (2002)

16. Kulkarni, V., Reddy, S.: Separation of Concerns in Model-driven Development. IEEE
Software 20(5), 64–69 (2003)

17. Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards Im-
proved Alignment of Requirements, Design and Code. In: Proc. of 14th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Application,
pp. 325–339 (1999)

18. France, R.B., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Tech-
nique. IEEE Trans. on Software Eng. 30(3), 193–206 (2004)

19. Atkinson, C., Kühne, T.: Aspect-Oriented Development with Stratified Frameworks. IEEE
Software 20(1), 81–89 (2003)

20. Gokhale, A., Balasubramanian, K., Krishna, A., Balasubramanian, J., Edwards, G., Deng,
G., Turkay, E., Parsons, J., Schimdt, D.: Model Driven Middleware: A New Paradigm for
Developing Distributed Real-time Embedded Systems. Science of Computer programming
(2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

