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Abstract. Constructing and executing distributed applications that can adapt to 
their current operating context, in order to maintain or enhance Quality of Ser-
vice (QoS) attribute levels, are complex tasks. Managing multiple, interacting 
QoS features is particularly difficult since these features tend to be distributed 
across the system and tangled with other features. The crosscutting nature of 
QoS features can make them difficult to evolve, and it can make it complicated 
to dynamically optimize with respect to provided QoS during execution. Fur-
thermore, it complicates efficient construction of application variants that differ 
in their QoS characteristics to suit various execution contexts. This paper pre-
sents an aspect-oriented and model driven approach for constructing and a QoS-
aware middleware for execution of QoS-sensitive applications. Aspect-oriented 
modeling techniques are used to separate QoS features from primary applica-
tion logic, and for efficient specification of alternative application variants. 
Model driven engineering techniques are used to derive run-time representa-
tions of application variants from platform independent models. The developed 
middleware chooses the best variant according to the current operating context 
and the available resources. 

1   Introduction 

Distributed systems often execute in heterogeneous environments, in which the avail-
ability of resources such as bandwidth, memory, and computing power change over 
time. The increasing mobility and pervasiveness of computing systems require the 
consideration of the dynamic environment, when building suitable QoS features for 
maintaining desired QoS. Adaptive middleware addresses these challenges. It per-
forms run-time configuration and adaptation by choosing between alternative applica-
tion variants with similar functional properties but different QoS characteristics and 
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resource demands. Criteria for choosing an application variant are generally based on 
the context [1] or QoS characteristics [2][3]. 

Many concerns need to be considered when constructing alternative application 
variants, e.g., QoS preferences, context dependencies, and resource allocation. To 
manage this complexity, separation of concerns and support for defining and using 
suitable abstractions are needed. In Model Driven Engineering (MDE), abstractions 
and transformations between levels are used to manage complexity. For example, the 
Model Driven Architecture (MDA) [4] specifies three abstraction levels; a Computa-
tion Independent Model (CIM) describes the environment and specifies requirements; 
a Platform Independent Model (PIM) describes the parts that do not change from one 
platform to another; and a Platform Specific Model (PSM) includes descriptions of 
platform dependent parts. To further control the complexity of developing application 
variants that have similar functionality but differ in their QoS characteristics, mecha-
nisms for separating crosscutting QoS features from the primary application logic are 
needed. Examples of QoS characteristics are security, integrity, robustness, and per-
formance. Examples of corresponding QoS features are authentication, transaction 
control, error handling, and compression. Aspect-Oriented Software Development 
(AOSD) approaches [5]-[8] provide mechanisms for encapsulating crosscutting fea-
tures. In the Aspect Oriented Modeling (AOM) approach presented in [8], crosscut-
ting features are modeled as aspects and composed with the primary design model, to 
form integrated models.  

This paper presents an approach for Construction and Execution of Adaptable ap-
plications (CEA-Frame). CEA-Frame integrates MDE and AOM techniques to model 
application variants in platform-independent terms and to automatically transform 
PIMs to PSMs. QoS features are separated from the primary functionality as aspect 
models and designed to fit particular operating contexts. For the execution we have 
developed a context- and QoS-aware dynamic middleware named QuAMobile, which 
identifies and chooses the application variant that is considered best for the current 
context and available resources. The alternative application variants are deployed 
using platform independent specifications, called service plans [11].  

The separation of concern mechanisms in CEA-Frame improve the reusability of 
both design- and run-time artifacts through application-independent models of cross-
cutting QoS-features, and service plan specifications that separate meta-data from 
implementation code. Furthermore, modeling the QoS features separately in aspect 
models enables efficient representation of QoS variability from which a large number 
of application variants can be derived. The MDE based transformations make the 
transition from PIMs to PSMs faster, smoother and less error prone.   

Sect. 2 presents the integrated construction and execution concepts, mechanisms 
and activities of CEA-Frame. In Sect. 3 the CEA-Frame is illustrated and validated 
using a live media streaming application example. Sect. 4 discusses related work. 
Sect. 5 draws some conclusions and outlines future work. 

2   Construction and Execution of Adaptable Applications 

CEA-Frame (Fig. 1) provides: i) methods for specification of application variants 
combining model driven and aspect-oriented modeling techniques, ii) mappings  
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Fig. 1. Overview CEA-Frame 

generating platform level constructs from platform independent specifications, and iii) 
a QoS-aware planning and adaptation supplied by the QuAMobile middleware. 

At the platform independent level, a primary model and a set of aspect models 
are developed. Alternative application variants are obtained based on the following 
two mechanisms: i) compositions are used to derive application variants by com-
posing the primary model with different subsets of the aspect models,  and ii) vari-
ants of aspect models and primary models are described by means of model-based 
variability mechanisms such as specialization and parameterization. From the PIMs, 
service types in the form of Web-Service Description Language (WSDL) files and 
XML-based service plans are generated by our transformation engine. These map-
pings are implemented using the MOFScript Eclipse plug-in [10]. At the platform 
specific level, the QoS-aware planning process (in QuAMobile) uses the deployed 
service types and service plans to select the application variant that is considered 
best for the current context in order to meet the user’s QoS preferences. This also 
includes checking context dependencies (e.g., run-time environment, communica-
tion technology, and storage facility dependencies), and predicting the end-to-end 
QoS according to the available resources (e.g., processing load, data rate and mem-
ory usage). 

2.1   The Conceptual Service Model 

The CEA-Frame defines service, service type, and service plan as central architectural 
concepts (see Fig. 2). A service type can be composed from a set of service types. An 
application type is a service type. Services realize service types and their meta-
information is specified in service plans. Consequently, there may be different service 
plans for a service type. Services can be atomic or composite. Accordingly, there are 
atomic and composite plans. An atomic plan describes an atomic service, while a 
composite plan recursively describes a composite service by specifying the involved 
service types and the connections between them. In addition, both types of service 
plans contains: i) information about dependencies to context elements, ii) specifica-
tion of the parameter configurations and iii) specification of the QoS characteristics. 
These are vital information for the QoS-aware planning and adaptation. It is tedious to  
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Fig. 2. The service and service plan concepts of CEA-Frame 

develop the service plans manually, because many alternative application variants are 
required to support the different operating contexts of the application. In CEA-Frame 
the service plans are automatically generated from the more abstract PIMs. Service 
plans are further elaborated in [11]. 

2.2   Constructing Application Variants 

The basis for the modeling in CEA-Frame is our Aspect-Oriented Model Driven 
Framework (AOMDF) [12], which combines aspect-oriented and model driven tech-
niques to separate both vertical concerns such as technical platform, and user defined 
crosscutting concerns such as QoS. CEA-Frame extends AOMDF to support con-
struction and execution of QoS-aware adaptable applications.  

A design is expressed in terms of the following artifacts [7]: i) the primary model 
(PM) describes the application logic; ii) the aspect models (AM) describe crosscutting 
QoS features; iii) the bindings define where in the primary model the aspect models 
should be composed; and iv) the composition directives govern how aspect models 
are composed with primary models.  

Before an aspect model can be composed with a primary model in an application 
domain, the aspect model must be instantiated in the context of the same application 
domain. An instantiation is obtained by binding elements in the aspect model to ele-
ments in the application domain. The result is called a context-specific aspect model. 
Context-specific aspect models and the primary model are composed to obtain an 
integrated design view [8]. Fig. 3 shows the modeling and mapping activities when 
constructing alternative application variants using CEA-Frame. 

Starting at the platform independent level, the primary model is specified. Vari-
ability is specified using variability mechanisms provided in UML such as speciali-
zation, templates and multiplicity (e.g., “0..1” for optional elements). Then, QoS 
features are specified in aspect models. In our approach aspect models are reusable 
patterns that describe application specific QoS features when instantiated. In the 
composition, the aspects models are instantiated and composed with the primary 
model. An aspect model is instantiated by binding template parameters to actual 
values. 
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Fig. 3. CEA-Frame modeling and mapping activities 

2.3   Execution of Adaptable Applications 

In our implementation of CEA-Frame the distributed dynamic middleware QuAMobile 
and the Java virtual machine constitute the execution environment. QuAMobile im-
plements a plug-in architecture for inserting domain specific managers: service plan-
ner, context manager, resource manager, configuration manager, and adaptation 
manager as depicted in Fig. 4. Service types and plans are interpreted during deploy-
ment using the Java Document Object Model (JDOM) open source parser. Service 
implementations reside in the repository, while service types and plans are published to 
the broker. During executing, service types and plans represent the meta-level model 
of the running application. This model is causally connected to the application, that is, 
any changes made to the meta-level causes corresponding changes in the application.  

 

Fig. 4. QuAMobile core architecture 

In dynamic heterogonous environments QoS guarantees can not be made. Instead 
QuAMobile re-plans and adapts the applications to meet the changes in context and 
resource availability. In the middleware the two plug-ins service planner and adapta-
tion manager performs QoS-aware planning and adaptation.  Service planning is a 
process that identifies suitable application variants for the context in which the appli-
cation shall execute and choose the one that is considered most optimal with respect 
to the user’s QoS preferences. The planning commences when the user (i.e., client 
software) submits a service request with user QoS preferences in the form of utility 
functions to the platform. In CEA-Frame, utility is a measure of usefulness and is 
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expressed by a real number in the range [0, 1], where 0 represents useless and 1 repre-
sents as good as perfect. Service planning is a four step process starting with i) identi-
fying all the alternative application variants, ii) context dependency filtering, iii) QoS 
prediction, and iv) choosing the best suited variant according to the specified utility 
functions. 

The adaptation mechanisms operate on a meta-level, where the service types and 
service plans are used for reasoning and altering the running application. When 
changes in the context are detected, i.e., there is updated context and resource infor-
mation available, the service planner performs a re-planning of the running applica-
tion. If another application variant matches the user’s QoS preferences better, the 
middleware adapts the application. First, existing plans that constitute the meta-model 
of the running application are made available (reification). Then components involved 
in the adaptation are pushed to a safe-state (if this state is reachable), and changes are 
made to the meta-model. Lastly, the changes are absorbed by the application. Fig. 5 
shows the activities involved in the execution of an adaptable application, and is a 
detailing of the planning and adaptation activity of Fig. 3. 

 

 

Fig. 5. Planning and adaptation activities 

3   Illustrative Example 

This section illustrates the CEA-Frame by describing the construction and execution 
of a live media streaming system. The system captures events (e.g., news and sports), 
encode onsite, and forward the media stream to streaming servers that the users access 
over the Internet (see Fig. 6). Users are mobile, and switch from Local Area Network 
(LAN) to a Wireless LAN (WLAN), and between WLAN subnets. 

3.1   Modeling and Mapping 

The illustrative example of the modeling and mapping process is structured according 
to the CEA-Frame activities depicted in Fig. 3.  

Specify Primary Model and Primary Model Variants. The application level com-
posite structure of the media streaming primary model is shown in Fig. 6. 

SgnlCommunication initiates and controls the media stream on request from the 
MediaPlayer. LiveMediaSrc provides the video images, and MediaStrmService sends 
the stream to MediaPlayer through the StrmCommunication service. These services 
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Live Event

 

Fig. 6. Live media streaming system, application level composite structure  

are all composite. In this example we will look into details of the StrmCommunication 
service and its variants (Fig. 7). This service has both alternative compositions and 
parameter configurations from which variants are derived, high-lightening variability 
mechanisms and variant derivation provided in CEA-Frame. 

c)

a)

b)
 

Fig. 7. a) primary model of StrmCommunication and b) variations of types  

The types of the parts contained in the general StrmCommunication (Fig. 7a) are 
abstract and represent variation points. Possible variations of these types can be repre-
sented as a specialization hierarchy as shown in Fig. 7b. Here the allowed specializa-
tions for the encoder and decoder are MPEG-4 and H.262, and the allowed transport 
protocols are RTP and RTP_TFRC. Fig. 7c shows two of the four possible variants 
for this case. The dependency relationships in the specialization hierarchy ensure 
compliance for the source and sink of a particular variant.  

Specify Aspect Models and Aspect Model variants. QoS features are specified in 
aspect models. For wireless communication bit errors represent an inherent problem. 
To ensure a satisfactory video quality, Forward Error Correction (FEC) algorithms 
can be used to minimize the effect of bit errors. Also, due to the handover and roam-
ing between WLAN sub-nets, pre-fetching (using a buffer) can be used to reduce 
jitter. To improve smoothness and timeliness of the video when streaming over 
WLAN, the two aspect models depicted in Fig. 8a and Fig. 8b are specified. 
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b)a)

c)
 

Fig. 8. Aspect Models a) error correction, b) pre-fetching, and c) allowed values 

The aspect models are parameterized. The allowedValues stereotype is used to 
specify the values of these parameters for the particular application (Fig. 8c). For the 
ErrorCorrection and Buffer aspects, parameters that must be specified are buffer 
sizes, symbol sizes, and parity symbols. The set of combinations of these parameter 
configurations signify a corresponding set of aspect model variants (i.e., nine Error-
Correction variants and three Buffer variants) with different QoS characteristics and 
resource demands. For example, increasing the values for the parity symbols and the 
symbol size increase the protection level of the error correction, but at the cost of 
CPU usage and start-up time. 

Derive Variants Through Model Composition. The aspect models consist of tem-
plate forms of composite structure diagrams, expressed using a template variant of the 
Role Based Meta-Modeling Language (RBML) [18]. RBML is a pattern description 
language which characterizes a family of UML models. The aspect templates are 
instantiated by binding template parameters to values. The parameters are marked 
using the symbol “|” (see the aspects models in Fig. 8). When the role binding is 
specified the primary model is composed with the aspect models according to speci-
fied composition rules.  

We obtain four alternative compositions of the StrmCommunication service, two of 
which are shown in Fig. 9 (pre-fetching without FEC and usage of the primary model 
without including any aspects is not shown).  

 

Fig. 9. Composition variants of StrmCommunication 
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Specify Context Dependencies and QoS. Applying CEA-Frame, application specific 
QoS characteristics, resources, and context elements need to be defined. The QoS 
characteristics and resources definitions in our example are based on the ISO/IEC 
9126 QoS characteristics catalogue [14] and the General Resource Model (GRM) 
[15]. The specifications are modeled according to the guidelines of the UML profile 
for QoS standard [13]. A subset of QoS characteristics resource and context types 
used for the live media streaming application is shown in Fig. 10a. 

a)

b)

 

Fig. 10. a) QoS characteristics, resource, and context types, and b) context dependencies and 
QoS specification 

The specified services are associated with context dependencies, QoS require-
ments, and QoS prediction functions. For context dependency specifications we use 
the stereotype QoSContext. The QoSOffered stereotype us used to specify predicted 
QoS. Both stereotypes are provided by the UML profile for QoS standard [13]. In 
addition we have defined the QoSRequirement stereotype, which is used to specify the 
QoS levels a service needs to fulfill, e.g., min and max values. A QoSRequirement 
specification is identified based on expected usage of the service.  

QoSOffered specifies QoS prediction functions that the middleware uses to calcu-
late the QoS for a given set of context and resource QoS values. For example, 
StrmCommunication is associated with functions that predicts a long start-up time 
when the PreFetchBuffer is part of the composition. However, when connected to 
WLAN these functions predict increase in the frame drop rate and jitter. When 
streaming live media (e.g., news and sport events), the user defined trade-off may be 
to have low start-up time as long as the frame drop rate is below a certain limit. Fig. 
10b shows examples of application specific context and QoS specifications using the 
QoSContext, QoSOffered, and QoSRequirements stereotypes (the Object Constraint 
Language (OCL) is used for specification). 
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For composite services, QoSOffered is dependent on the QoS offered by its parts. 
Thus, QoS prediction in these cases need to take into account that the composite do 
not know what parts it consist of, since new parts can be added when composing 
aspect models. For example the offered startupTime for the StrmCommunication is a 
summation of the startupTime of its parts; consequently, the different composition 
variants will have different start-up times as expressed with the following OCL-based 
predictor function:  

(self.timeliness.startupTime = self.parts.collect(part:Property | part.type.feature->select (f:Feature | 
f.name = 'timeliness'))->collect (f:Feature | f.type.attribute->select (a:Property | a.name = 'startUpTime')) 
-> sum ()).  

Apply Transformation. To bridge the model and platform levels of the adaptable 
application, automated transformations are used for mapping UML models to applica-
tion variants and service type specifications. The PIM transformation source consists 
of the four composed models derived from the compositions of aspect and primary 
models, two of these are shown in Fig. 9. We refer to these as the base compositions. 
Additional input to the transformation, for our example, is the specialization hierarchy 
specifying primary model variants, the allowed values associated with aspect models 
parameters determining aspect model variants, and context and QoS specifications. 
From these a total number of 432 alternative variants of the StrmCommunication 
service can be derived (4 base compositions*4 primary model variants*9 ErrorCor-
rection aspect model variants*3 Buffer aspect model variants). Thus, this specific case 
illustrates the general challenge that the set of variants can be very large. To avoid a 
large number of variants, one can identify combinations of the parameter values that 
imply significant variation in the end-to-end QoS characteristics. Only these are de-
ployed as possible run-time variants. In the example this led to a reduction of combi-
nations of the three different sets of parity symbol lengths and symbol sizes for the 
FEC service from nine combination to the following three value pairs: {8, 1}, {16, 2}, 
or {32, 8}). The number of derived PSM variants then becomes 144.  

The transformations have been implemented using the MOFScript Eclipse plug-in 
[10]. MOFScript was one of the proposed languages in the standardization process of 
MOF Model to Text Transformations, which has been adopted and is now in its final-
izing stage [9]. In general, the implemented transformations map CEA-Frame PIM 
concepts such as QoScharacteristics, QoScontext, and service specifications in pri-
mary and aspect models, to CEA-Frame PSM concepts such as service types, service 
plans, and service realizations. 

3.2   QoS-Aware Planning and Adaptation 

In our example QuAMobile is installed on a laptop and a streaming server. The instal-
lation creates a common service context that provides protocols for service discovery 
and context information sharing between the domain specific management plug-ins. 
The service planner residing on the streaming server is configured as master, i.e., 
centralized planning and local adaptation. To illustrate the QoS-aware planning and 
adaptation (tasks shown in Fig. 5) it is assumed that the user has the laptop connected 
to the LAN. After some time the user disconnects and moves over to WLAN.   

Deploy. Generated service types (WSDL), service plans, and components are de-
ployed and published on the machine on which the service is to execute.  
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Identify. When the user requests access to the live streaming service, alternative 
application variants are synthesized from the published services and discovered ser-
vice plans. QuAMobile identifies all of the 720 application variants (144 variants of 
the StrmCommunication and additional 5 variants of the LiveMediaSrc services, re-
sulting in 720 variants of the LiveMediaStreaming application (see Fig. 6).   

Context Dependency Filtering. Application variants that can not execute in the cur-
rent operating context are filtered, by comparing gathered context information against 
the specified context dependencies (QoSContext in the composite models). In 
QuAMobile, it is the context manager that gathers and processes data about the con-
text and makes information available to the service planner plug-in. For the identified 
application variants, it is the specified dependencies to the screen resolution that are 
caught by the context dependency filter, since three of the LiveMediaSrcs services 
require a screen with a higher resolution than what the laptop has. After context de-
pendency filtering 288 variants remains.  

QoS Prediction. End-to-end QoS characteristics are predicted using the specified 
functions (QoSOffered stereotype) in a bottom-up style, i.e., start by calculating the 
QoS of each atomic service and finishing of with the composite service. The QoS 
prediction functions are specified and deployed as text strings; hence, the expressions 
are calculated for each planning and adaptation process. Predicted QoS are checked 
against QoS requirements specified by the application developer (QoSRequirement 
stereotype).  

Choose. Utility functions are used to specify the user’s QoS preferences and tradeoff 
between user QoS dimensions, e.g., start-up time 6.0≥ , detail-level 6.0≥ , and 
smoothness 6.0≥ . By using the provided utility functions (see Fig. 11Fig. 11) and the 
predicted QoS QuAMobile calculates the utility of the application variants and 
chooses the one, which i) meets the specified minimum utility values and ii) has the 
highest utility-to-user QoS ratio. When the laptop is connected to the LAN it is the 
application variant with the StrmCommunication composition without the FEC and 
PreFetchBuffer services that is chosen, i.e., the primary model as depicted in Fig. 7. 
This variant is selected since the increase in utility for the detail level and smoothness 
dimensions are small compared to the increase in start-up time. 

 

Fig. 11. Utility Functions 

Execution. The application variant chosen is forwarded to the configuration managers 
on the laptop and streaming server. They create the components, configure, and bind 
them together. Execution of the initial application variant is like any other non- adapt-
able applications. 
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Adaptation. In our example the user disconnects the laptop from the LAN during the 
streaming of a particular news event, i.e., the streaming connection is moved over to 
WLAN by the RTP_TFRCTransport service. The context change makes the current 
application variant unsuitable, as the bit error rate associated with WLAN causes 
video frame to be dropped, i.e., too low utility for the smoothness dimension. 
QuAMobile therefore initiates re-planning and chooses the application variant which 
includes both the FEC and PreFetchBuffer services. This variant has a better balance 
between the start-up time and smoothness QoS dimensions. During adaptation service 
plans are used as a meta-model of the running application, enabling QuAMobile to 
make changes to the running application. 

4   Related Work 

Atkinson et al. [19] combine model driven and aspect-oriented development. Aspect-
oriented techniques are used for refining specific aspects of the model (vertical sepa-
ration of concern) by architecture stratification. This approach differs from the aspect 
approach employed in CEA-Frame, in that the aspects are not composed but represent 
refinements of a particular part of the model at higher level stratums. Thus, each  
stratum represents the whole system. Furthermore, Atkinson et al. define possible 
refinements as pattern-based aspects applied through framework instantiations. In our 
approach we use standard AOM and MDE mechanisms such as compositions and 
transformations. 

MDE is used by Kulkarni et al. [16] for providing separation of concern between 
system concerns at both model and code level using templates and code weaving. 
This is similar to the AOM approach we employ, except that we use parameterized 
UML to specify aspects and perform model level composition avoiding the need for 
code level weaving. Clarke et al. [17] and Ray et al. [7] also apply aspects for separa-
tion of concern. The aspects models are weaved with application models, by adding 
and replacing both classes and operations. Kiczales et al. [5] employ aspect models 
for multiple concerns; functional behavior and crosscutting concerns. Hyper/J multi-
ple models are integrated, making it possible to model alternative static application 
variants.  CEA-Frame integrates aspect models with the application logic in a similar 
manner, but has additional support for parameter configuration, context, and QoS 
requirements. In addition, MDE principles are used to generate platform specific 
artifacts. 

There are examples of adaptive middleware platforms that are combined with soft-
ware engineering tools; 2KQ+ [2], QuO [3], and CoSMIC [20]. 2KQ+ provides an envi-
ronment for specifying alternative service compositions, their QoS characteristics, and 
adaptation steps. A platform dependent compiler produces executable code for adapt-
ing the application. QuO introduces description languages for specifying QoS, which 
is compiled to executable code for monitoring QoS and controlling the interaction 
between distributed objects. CoSMIC is a MDE toolkit, which model compositions 
and QoS requirements at the platform level (a component based QoS-aware CORBA 
middleware). CEA-Frame addresses the same problems as 2KQ+, QuO, and CoSMIC, 
but at a platform independent level. This avoids specification of all possible context 
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and resource allocations, and enable integration of the framework with any develop-
ment environment and middleware platform. Furthermore, CEA-frame pushes the 
task of identifying and choosing a variant to run-time, giving a larger solution space 
and higher probability of finding the best application configuration.  

5   Conclusion and Future Work 

The task of developing and operating distributed applications for heterogeneous dy-
namic environments is particularly difficult in the presence of multiple crosscutting 
QoS features. Our approach to tackle this problem is to separate the QoS features 
from the application logic, and place the responsibility of choosing and configuring 
the application at the middleware level.  

CEA-Frame combines AOM and MDE techniques for efficient construction of a 
potentially large number of alternatives application variants needed due to the dynam-
ics and heterogeneity of the execution environment. A context and QoS-aware mid-
dleware is developed to handle adaptation. The framework provides: i) methods and 
activity descriptions for constructing adaptable applications, ii) variability mecha-
nisms using aspects and model composition as well as parameterized primary and 
aspect models, iii) separation of crosscutting QoS features iv) automatic model trans-
formation and code generation, and v) a QoS-aware planning and adaptation process 
that configures and adapts the application to suit the operating context and resources 
available. The implementation of the framework has been validated by using it to 
construct and execute a live video streaming application.   

The construction of application variants is accomplished by separating QoS vari-
ability specifications from variability of the primary model and the composition of the 
primary model with different subsets of the aspect models. The automatic transforma-
tions support efficient derivation of a large number of alternative application variants 
and eliminate tedious error-prone manual implementations. At the platform specific 
level separating specifications of the alternative application variants and their QoS 
characteristics (using the service plan concept) improves reusability of the services. 
All information needed for the middleware to filter, order, and choose a suitable ap-
plication variant, is generated from platform independent models. CEA-Frame is 
based on standards such as the UML profile for QoS [13], GRM [15], ISO/IEC 9126 
[14], and MOF Model to Text [9].  

To develop the CEA-Frame, we will work further on the model composition tech-
niques and related tool support. We are also working on OCL-based templates that are 
easier to work with and more readable.  
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