1. [Circle one] Queues:
 a. Have O(C) for additions and removals in the 3 implementations from class.
 b. Use three operations: push, pop and peek.
 c. Are implemented efficiently as an array.
 d. Are used to manage recursive program calls.

2. [Circle all that are true] If a queue is implemented as a circular array,
 a. when nothing is in it, \texttt{front} = 0 and \texttt{back} = 0.
 b. \texttt{front} always equals 0.
 c. \texttt{front} = \texttt{back} when \texttt{count} = 1.
 d. when \texttt{front} = 10, \texttt{max_queue} = 15 and \texttt{count} = 8, then \texttt{back} = 3.

3. [Circle one] The pros/cons of different queue implementations:
 a. in a circular array implementation, the problem of drift is eliminated.
 b. a doubly linked list implementation always requires less space.
 c. a Vector cannot be used because it is too hard to keep track of the back.
 d. an array implementation always requires shifting elements for a dequeue operation.

4. [Circle one] Operations on a queue can modify:
 a. its front only
 b. its back only
 c. both its front and back
 d. any position

5. [Circle one] In analyzing complexity/efficiency of two algorithms, one compares:
 a. their growth rates
 b. the number of lines of code in their implementations
 c. their run times on two different computers
 d. the kinds of data they take as input