Genetic Algorithms

- Overview of GAs
- Architectural/Implementation issues
- Formal basis of GAs
- Misc: alternative algorithms, applications

Genetic Algorithms As Function Optimizers

- Genetic algorithms search a population representing different sample points in the search space.
- Each sample point is represented as a string which can be recombined with other strings to generate new sample points in the space.
- Algorithms are based on biological analogies with "population genetics" and "simulated evolution".

Genetic Algorithms: Machine Learning or Search?

- "a variant of stochastic beam search in which successor states are generated by combining two parent states…" [Russell and Norvig]
- Performance is often compared to that of search algorithms (e.g., local search).
- What do they learn?

GA Applications

- function optimization (maximize/minimize some function):
 - best control parameter settings
- combinatorial optimization (order a set of objects to achieve some objective):
 - manufacturing scheduling
- machine learning:
 - interpreting layers in geophysical data
Why Genetic Algorithms?

- **No Gradient Information Is Needed.** These algorithms do not search along the contours of the function, but rather by hyperplane sampling in Hamming space.
- **The Resulting Search is Global.** Since they do not hill-climb, they avoid local optima and so can be applied to multimodal functions.
- **Potential for Massive Parallelism.** Can effectively exploit thousands of processors in parallel.
- **They Can Be Hybridized** with conventional optimization methods.

Basic Algorithm

```
function Genetic-Algorithm(population, Fitness-Fn)
    returns an individual

inputs: population, a set of individuals
        Fitness-Fn, measures the fitness of an individual

repeat
    parents — Selection(population, Fitness-Fn)
    population — Reproduction(parents)
until some individual is fit enough
return the best individuals in population, according to Fitness-Fn
```

Issues: Encoding

- **Binary:** parameter values are encoded as binary numbers
- **Nonbinary:** larger alphabets, real-valued encodings, permutations

Arguments against:

- there will be fewer explicit hyperplane partitions
- the alphabetic characters will not be as well represented in a finite population.

Issues: Fitness Function

- Domain specific to goals of problem
- Single value output: multi-objective must be combined into single function
- Fast! May need to be executed hundreds of thousands of times
- Sometimes approximate to achieve speed
Genetic Algorithm Process

Selection (Duplication)
- String1
- String2
- String3
- String4
- ...

Recombination (Crossover)
- OffspringA
- OffspringB
- OffspringC
- OffspringD
- ...

Current Generation t

Intermediate Generation t

Next Generation t+1

Algorithm (R&N, modified)

```
Genetic-Algorithm(pop, fitness-fn)
repeat
    new-pop = {}
    loop for j from 1 to |pop| do
        x = Random-selection(pop, fitness-fn)
        y = Random-selection(pop, fitness-fn)
        child = Reproduce(x, y)
        if (random(1.0) < thresh) then child = Mutate(child)
        add child to new-pop
    pop = new-pop
until some # of iterations
return best from pop
```

Issues: Initializing Population

Random: generate n strings randomly, within encoding requirements.

Domain specific: use heuristic method to generate “ok” solutions that can be refined.

Selection in the Canonical Genetic Algorithm

- Population is evaluated according to a fitness function.
- Parents are selected for reproduction by ranking according to their relative fitness f_i
- Text method: probability of selection is proportional to fitness.
Issues: Selection

- **Fitness Selection:**
 - Stochastic sampling with replacement
 - Map individuals to space on a roulette wheel, more fit individuals are allocated proportionally more space.
 - Spin wheel repeatedly until desired population size is achieved

Population Example, **Stochastic Sampling w/Replacement**

<table>
<thead>
<tr>
<th>String</th>
<th>Fit</th>
<th>Space</th>
<th>copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>001000000</td>
<td>2.0</td>
<td>.995</td>
<td></td>
</tr>
<tr>
<td>101010101</td>
<td>1.9</td>
<td>.186</td>
<td></td>
</tr>
<tr>
<td>111100011</td>
<td>1.8</td>
<td>.371</td>
<td></td>
</tr>
<tr>
<td>010001100</td>
<td>1.7</td>
<td>.352</td>
<td></td>
</tr>
<tr>
<td>111000000</td>
<td>1.6</td>
<td>.429</td>
<td></td>
</tr>
<tr>
<td>101000110</td>
<td>1.5</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>011001110</td>
<td>1.4</td>
<td>.567</td>
<td></td>
</tr>
<tr>
<td>001110000</td>
<td>1.3</td>
<td>.629</td>
<td></td>
</tr>
<tr>
<td>001010100</td>
<td>1.2</td>
<td>.886</td>
<td></td>
</tr>
<tr>
<td>100100011</td>
<td>1.1</td>
<td>.738</td>
<td></td>
</tr>
<tr>
<td>010000111</td>
<td>1.0</td>
<td>.786</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String</th>
<th>Fit</th>
<th>Space</th>
<th>copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>011001111</td>
<td>0.9</td>
<td>.829</td>
<td></td>
</tr>
<tr>
<td>000100110</td>
<td>0.8</td>
<td>.387</td>
<td></td>
</tr>
<tr>
<td>110001100</td>
<td>0.7</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>110000111</td>
<td>0.6</td>
<td>.929</td>
<td></td>
</tr>
<tr>
<td>100100100</td>
<td>0.5</td>
<td>.952</td>
<td></td>
</tr>
<tr>
<td>011010011</td>
<td>0.4</td>
<td>.971</td>
<td></td>
</tr>
<tr>
<td>000110000</td>
<td>0.3</td>
<td>.986</td>
<td></td>
</tr>
<tr>
<td>001001000</td>
<td>0.2</td>
<td>.995</td>
<td></td>
</tr>
<tr>
<td>100110110</td>
<td>0.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>010010011</td>
<td>0.0</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Random #s: .93, .65, .02, .51, .20, .93, .20, .37, .79, .28, .13, .70, .80, .51, .76, .45, .61, .07, .76, .86, .29

Other Selection Methods

- **Tournament Selection:** randomly select two strings, place the best into the new population, repeat until intermediate population is full
- **Ranking:** order individuals by rank rather than fitness value

Another Fitness Selection Method

- Remainder stochastic sampling
 - Again map to roulette wheel, but this time add outer wheel with N evenly spaced pointers.
 - Spin once to determine all population members
Population Example,
Remainder Stochastic Sampling

<table>
<thead>
<tr>
<th>String</th>
<th>Fitness</th>
<th>Random</th>
<th>copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010000</td>
<td>2.0</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>10101010</td>
<td>1.9</td>
<td>0.93</td>
<td>2</td>
</tr>
<tr>
<td>11110011</td>
<td>1.8</td>
<td>0.65</td>
<td>2</td>
</tr>
<tr>
<td>01000110</td>
<td>1.7</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>11100000</td>
<td>1.6</td>
<td>0.51</td>
<td>2</td>
</tr>
<tr>
<td>10100010</td>
<td>1.5</td>
<td>0.20</td>
<td>1</td>
</tr>
<tr>
<td>01100110</td>
<td>1.4</td>
<td>0.93</td>
<td>2</td>
</tr>
<tr>
<td>00111000</td>
<td>1.3</td>
<td>0.20</td>
<td>1</td>
</tr>
<tr>
<td>00011010</td>
<td>1.2</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td>10000011</td>
<td>1.1</td>
<td>0.79</td>
<td>1</td>
</tr>
<tr>
<td>00000111</td>
<td>1.0</td>
<td>--</td>
<td>1</td>
</tr>
</tbody>
</table>

Random #s: .93, .85, .02, .51, .20, .93, .20, .37, .79, .28, .13, .70, .80, .51, .76, .45, .61, .07, .76, .86, .29

Reproduction: Recombination/Crossover

Two parents: binary strings representing an encoding of 5 parameters that are used in some optimization problems.

Recombination occurs as follows:

Producing the following offspring:

Issues: Combination Operators

1 point crossover: pick single crossover point, split strings at this point, recombine

2 point crossover: pick two crossover points, split strings at these points, recombine (think of ring for string)

Uniform crossover: randomly pick each element from one of the two parents
Other Combination Operators

HUX: exactly half of the differing bits are swapped

Given parents:
- 10011010111100010110
- 1011001110001100001

A new individual is:
- 1001001111100011010

More Combination Operators

Reduced Surrogate: Crossover points chosen within differing bits only

- 10011010111100010110
- 1011001110001100001

May become:
- 100110111100001100001

Domain specific: operations designed to match demands of the domain (e.g., reorder portions for scheduling application)

Crossover and Hypercube Paths

Why Might Reduced Surrogate Be Important

- Closely related to HUX
- Key idea: look only at portions of strings that differ

- 000111110110100111
- 00010011010010010

- How does probability of new string change with reduced surrogate versus 1-point crossover?
Mutation
- For each bit in population, mutate with probability p_m
- p_m should be low, typically < .01
- can mean randomly select a value for the bit or flip the bit

Issues: Which Strings in New Generation
- Replace with offspring
 - Assumption of canonical GA
 - Best of offspring and parents
 - Alternative view which guarantees always keep best and outs intensive pressure on population for improvement

Issues: Termination Criteria
- **Quality of solution**: best individual passes some pre-set threshold
- **Time**: certain number of generations have been created and tested
- **Diminishing returns**: improvement over each generation does not exceed some threshold

Alternatives to the Canonical GA Model
- Genitor
- CHC
- Parallel Algorithms
Genitor (Whitley et al.)

Differences with canonical genetic algorithm:
- Reproduction proceeds one individual at a time.
- Worst individual in population is replaced by new offspring.
- Fitness is assigned by rank.

Genitor Algorithm (Whitley)

- **Selection**
- **Crossover & Recombination**
- **Insert In population**

CHC (Eshelman)

- **Crossover** using generation elitist selection
- **Heterogeneous** recombination by incest prevention
 - Origin of HUX terminology
- **Cataclysmic** mutation, when population starts to converge

Parallel Genetic Algorithms

- **Simple parallel genetic algorithms**
 - Use tournament selection,
 - Implement on N/2 processors where each has two strings, each processor holds two independent tournaments, both processors get the winners
- **Parallel island models:**
 - Each processor has subpopulations
 - Run GA on each processor
 - Every 5 generations or so, allow subpopulations to swap some strings (*migration*)
Parallel GAs (cont.)

- Fine grain parallelism
 - One string per processor, strings seek best “mates” from adjacent processors
 - Produce one offspring which is kept in both processors

Underlying Theory: Hyperplane Sampling

Another View of Hyperplane Sampling

Population Example for Hyperplane Sampling
Some Schemata and Fitness Values

<table>
<thead>
<tr>
<th>Schema</th>
<th>Mean (μ)</th>
<th>Count</th>
<th>Expect (E)</th>
<th>Observe (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>3.70</td>
<td>2</td>
<td>3.4</td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>3.70</td>
<td>2</td>
<td>3.4</td>
<td>4</td>
</tr>
<tr>
<td>*01</td>
<td>3.38</td>
<td>5</td>
<td>6.9</td>
<td>6</td>
</tr>
<tr>
<td>**1</td>
<td>3.30</td>
<td>10</td>
<td>13.0</td>
<td>14</td>
</tr>
<tr>
<td>*11</td>
<td>3.22</td>
<td>5</td>
<td>6.1</td>
<td>8</td>
</tr>
<tr>
<td>11**</td>
<td>3.175</td>
<td>4</td>
<td>4.7</td>
<td>6</td>
</tr>
<tr>
<td>001**</td>
<td>3.166</td>
<td>3</td>
<td>3.5</td>
<td>3</td>
</tr>
<tr>
<td>1*</td>
<td>3.089</td>
<td>9</td>
<td>9.8</td>
<td>11</td>
</tr>
<tr>
<td>01**</td>
<td>3.033</td>
<td>6</td>
<td>6.2</td>
<td>7</td>
</tr>
<tr>
<td>10**</td>
<td>3.020</td>
<td>5</td>
<td>5.1</td>
<td>5</td>
</tr>
<tr>
<td>*0</td>
<td>3.010</td>
<td>10</td>
<td>10.1</td>
<td>12</td>
</tr>
<tr>
<td>*****</td>
<td>3.000</td>
<td>21</td>
<td>21.0</td>
<td>21</td>
</tr>
</tbody>
</table>

Hyperplane Deception

Since genetic algorithms are driven by hyperplane sampling a misleading problem can be constructed as follows.

- \(f(0^{**}) > f(1^{**}) \)
- \(f(*0*) > f(*1*) \)
- \(f(**0) > f(**1) \)
- \(f(00*) > f(01*), f(10*), f(11*) \)
- \(f(0*0) > f(0*1), f(1*0), f(1*1) \)
- \(f(*00) > f(*01), f(*10), f(*11) \)
- \(f(111) > f(000) \)

where \(f(x) \) gives the average fitness of all strings in the hyperplane slice represented by \(x \).

The Schema Theorem

Selection Only

\[
M(H, t + \text{ intermediate}) = M(H, t) \frac{f(H)}{f}
\]

An Exact Calculation

\[
M(H, t + 1) = \left(1 - p_c \right) M(H, t) \frac{f(H)}{f} + p_c \left[M(H, t) \frac{f(H)}{f} \left(1 - \text{ losses} \right) + \text{ gains} \right]
\]

Strings that do not undergo crossover
Crossover causes losses and gains.

Schema Theorem – Lower Bound

A Common Version of the Schema Theorem

\[
P(H, t + 1) \geq P(H, t) \left(1 - p_c \right) \frac{f(H)}{f} \left[1 - L^{-1} \left(1 - P(H, t) \frac{f(H)}{f} \right) \right]^{1 - p_m}
\]

Disruptions depend on the vulnerable proportion of the string times its inverse proportion in the population.

Mutations indicate the proportion left unaffected by flipping each vulnerable bit according to mutation probability.
Criticisms of the Schema Theorem

- Inequality, thus loss of information.
- Average fitness is only relevant for the first generation or two.

However…provides a lower bound for first few generations.

A Generator For String Losses

Given strings:
- 00000000000
- 0001000100

In what cases will we get losses during crossover?

For strings B and B', the middle $\Delta+1$ bits have pattern $b##...#b$

$\overline{b}##...#\overline{b}$

The b's are sentry bits and define the probability of disruption.

Visualizing the Generators

A Generator For String Gains

<table>
<thead>
<tr>
<th>Region -></th>
<th>Beginning</th>
<th>Middle</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length -></td>
<td>A</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Q characteristics</td>
<td>#...#R</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>R characteristics</td>
<td>=</td>
<td>=</td>
<td>\overline{R}...#</td>
</tr>
</tbody>
</table>
Visualizing String Gains

Total pairs: \[\sum_{j=1}^{\frac{n}{2}} j \times 2^j \]

10000
00001

#1000
00001

10000
0001#

##100
0001#

#100
001##

##100
001##

###10
001##

####10
0001#

####10
0001#

10000
00001

10000
0001#

10000
001##

10000
01###

spring 2005 ©cs640- Howe