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Abstract. We present a hybrid Genetic Algorithm that incorporates
the Generalized Partition Crossover (GPX) operator to produce an al-
gorithm that is competitive with the state of the art for the Traveling
Salesman Problem (TSP). GPX is respectful, transmits alleles and is ca-
pable of tunneling directly to new local optima. Our results show that
the Hybrid Genetic Algorithm quickly finds optimal and near optimal
solution on problems ranging from 500 to 1817 cities using a population
size of 10. It is also superior to Chained-LK given similar computational
effort. Additional analysis shows that all the edges found in the globally
optimal solution are present in a population after only a few generations
in almost every run. Furthermore the number of unique edges in the
population is also less than twice the problem size.
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1 Introduction

The state of the art for the Traveling Salesman Problem (TSP) is Chained Lin-
Kernighan (Chained LK) [6], a local search algorithm coupled with a carefully
designed operator called the “double bridge move”. In this paper, we present an
evolutionary algorithm that is competitive which Chained LK and that can be
shown to possess several desirable characteristics. Our hybrid Genetic Algorithm
combines local search with a new recombination operator, Generalized Partition
Crossover (GPX), which is a generalization of our Partition Crossover operator
(PX) [2].

PX is respectful and transmits alleles: this means that the children of parent
solutions are guaranteed to have all edges that are found in both parents (respect)
and any edge found in an offspring can also be found in one of the parents
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ernment is authorized to reproduce and distribute reprints for Governmental pur-
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(transmits alleles) [1]. Additionally the operator has a property which we call
“tunneling”: the offspring of parents that are locally optimal are also locally
optimal with high probability.

Partition Crossover (PX) partitions a graph G constructed from the union
of two parent tours. If a partition of cost 2 exists in this graph, PX is able to
construct two children which are distinct from the parents in O(n) time, where
n is the number of vertices in graph G. If there are multiple ways to partition
graph G into subgraphs, where each partition has cost 2, PX uses only one of
these partitions. But empirically we have found that multiple partitions exist
when recombining solutions that are already locally optimal. GPX exploits all

partitions of cost 2 with no significant increase to the O(n) running time of the
original PX operator; the resulting recombination is still respectful and transmits
alleles.

When we embed GPX in a hybrid GA, we can show improvements in effi-
ciency and effectiveness over Chained LK. We demonstrate its performance in
experiments in which we carefully control computational effort to provide a fair
comparison. On small 500 city problems the Hybrid Genetic Algorithm often
quickly finds the global optimum. It occasionally finds the global optimum on
larger problems instances using a very modest amount of computational effort
as compared to Chained LK.

More importantly, we analyze the cases when the hybrid GA does not easily
find the global optimum. We find that the edges in the global optimum which
may be missing from the best tour are present in other members of the popu-
lation. Furthermore, the number of unique edges in the population is relatively
small compared to the total number of edges in the cost matrix. In addition, the
edges from the global optimum which are missing from the best solutions are pre-
dominantly contained within a single subgraph which is the largest “component”
of the graph that is being broken apart during the recombination.

2 Generalized Partition Crossover

To recombine two Hamiltonian circuits, Partition Crossover partitions a graph
G = (V, E) where V is the set of vertices (i.e., cities) of an instance of a TSP and
E is the union of the edges found in two parents. An edge in E can be classified
as either a common edge or an uncommon edge. An edge in E is a common edge
if it is found in both parents; an edge is an uncommon edge if it is found in only
one parent.

Whitley et al. [2] prove that if graph G contains at least one partition of
cost 2, then it is possible to create at least two offspring in O(n) time which
are Hamiltonian circuits distinct from the parents. Figure 1(a) shows a graph G

created from two parents. The edges from one parent are represented by solid
lines and those from the other by dashed lines. When the common edges are
deleted, the graph breaks into 3 subgraphs. There are two partitions of this
graph with cost 2 (the heavy dark lines).
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Fig. 1. An example of (a) The graph G created from the union of two parent tours
with two partitions shown by the heavy dark lines and (b) The graph Gu, constructed
by deleting the common edges between the two parent tours from G

The original PX operator constructs two children using only one of the par-
titions of cost 2 in G. PX could construct two children using partition A in
Figure 1 by taking the solid edges from the left of A and the dashed edges from
the right, and the second child by taking the dashed edges from the left of A
and the solid edges from the right. Two different children would be constructed
if PX used partition B in a similar manner. Whitley, Hains and Howe [2] prove
that Partition Crossover is respectful and transmits alleles.

Generalized partition crossover (GPX), makes use of all partitions of cost 2 in
a single recombination with no significant increase to the O(n) running time of
PX. We recombine solutions by creating a subgraph of G, Gu = (V, Eu), where
V is the vertex set of the original TSP instance and Eu is the set of uncommon
edges found in E. Typically, Gu is made up of multiple disconnected subgraphs.
We use Breadth First Search on Gu to find each subgraphs (e.g., connected
components) of Gu; this has O(n) cost, because the degree of any vertex is at
most 4, and each vertex is processed only once. Some additional bookkeeping is
needed to track which partitions have cost 2 for graph G. When all the partitions
of cost 2 are applied, the graph G is broken into k pieces which we will define
to be partition components; not all connected components in Gu yield feasible
partition components because they may not yield partitions of cost 2.

Figure 1(b) shows an example of the graph Gu created from the graph G

shown in Figure 1(a). GPX creates children tours by using the common edges
from G and taking either the dashed or solid edges from each of the partition
components. The path followed by a tour within a partition component is inde-
pendent of the path followed by a tour in any other partition component. Thus,
within each component, a new tour could follow the path of the “dashed” parent
or the “solid” parent.

The GPX Theorem:
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Let graph G be constructed by unioning the vertices and edge found in two

Hamiltonian Circuits for some instance of the TSP. If graph G can be separated

into k partition components of cost 2, then there are 2k
− 2 distinct offspring;

every recombination is both respectful and transmits alleles.

Proof:

By construction, all of the common edges connecting partition components
are inherited. Within a partition component, a path followed by one of the
parents is followed. This also means that all common edges within a partition
component are inherited. Therefore the operator is respectful: all common edges
are inherited. Generalized Partition Crossover “transmits alleles” because it only
uses edges found in the graph G.

Let s be a string of k bits, one bit for each partition component. Let bit
si = 0 if a tour follows the path of the “dashed” parent in partition component
i. Let bit si = 1 if a tour follows the path of the “solid” parent in partition
component i. Clearly, there are 2k possible tours (and bit strings) that can be
constructed by GPX, but 2 of these represent the parents. Thus, if there are k

partition components, there are 2k
−2 possible offspring tours that are respectful

and that transmit alleles. 2

Since the objective function is linear, and all of the offspring are tours, if
we make a greedy choice in each partition component by deciding whether the
dashed-path or solid-path is shortest, we can also construct the shortest tour
possible of the 2k

− 2 possible offspring by making k greedy choices within each
partition component. This is also accomplished in O(n) time.

“Respect” means that children inherit the common edges; thus, partitions are

also always inherited. This means we could recombine the parents using some
partition A, then recombine the children again using some partition B to produce
grandchildren. Thus, Generalized Partition Crossover is equivalent to iterative
(i.e., multiple) applications of Partition Crossover.

2.1 GPX with Local Search

We run local search to generate an initial population and to further optimize the
offspring. We tested different local search operators. In our previous study [2]
looking at randomly chosen local optima produced by the application of 2-opt,
we found that Partition Crossover was feasible more than 90 percent of the time.
Since PX and GPX are closely related operators, when one is feasible the other
is feasible. When randomly chosen local optima are generated by the application
of 3-opt, we found that Generalized Partition Crossover is feasible in 100 percent
of the cases tested across all of the TSP instances studied in this paper; in more
than half of all cases, the offspring are still locally optimal under 3-opt.

To ascertain the number of partition components available to GPX, we re-
combined 50 random local optima generated using 2-opt [3], 3-opt and Lin-
Kernighan search [4] (LK-search). The results are presented in Table 1. The
instances rand500 and rand1500 are random Euclidean instances and att532,
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Instance rand500 att532 nrw1379 rand1500 u1817

2-opt 2.6 ± 0.1 3.3 ± 0.2 3.2 ± 0.2 3.7 ± 0.3 5.0 ± 0.3
3-opt 9.42 ± 0.4 10.5 ± 0.5 11.3 ± 0.5 24.9 ± 0.2 26.2 ± 0.7

LK-search 4.5 ± 0.2 5.3 ± 0.2 5.2 ± 0.3 10.6 ± 0.3 13.3 ± 0.4

Table 1. Average number of partition components used by GPX in 50 recombinations
of random local optima found by 2-opt, 3-opt and LK-search.

nrw1379 and u1817 are from the TSPLIB. The number of cities in each instance
is indicated by the numerical suffix.

Our data indicate 3-opt induces more partition components than 2-opt be-
cause it induces more subtours made up of common edges that can be used
to partition the graph. The big valley hypothesis [5] supports a strong inverse
correlation between the number of common edges shared with the global op-
timum and the evaluation of a tour. Tours produced by LK-search have even
more total common edges than 3-opt, but some partitions are now absorbed into
common subtours. Thus, there are a smaller number of common subtours (and
fewer partitions) than 3-opt but the common subtours become longer for LK.

Sometimes there are more than 20 partition components under 3-opt. Using
more than 20 partition components, one recombination is selecting the best of
more than 1 million solutions, most of which are local optima. Nevertheless,
working with LK-search gets us closer to the global optimum. In the remainder
of this paper we will only employ LK-search.

3 The Algorithms: Descriptions and Comparisons

Our hybrid GA is described in Figure 2. The initial population is produced by
randomly generating t tours and applying the same LK-search procedure used
in step 5. The algorithm was run for a fixed number of generations.

The version of LK-search used is the implementation from Applegate et al.
[6] with don’t-look bits and uses the default neighborhood list size and search
depth. By restricting moves (and clever programming), one iteration of LK-
search is faster than a full exploration of the 2-opt neighborhood. The ordering
and choice of neighbors is non-deterministic, meaning LK-search may improve
upon a tour with subsequent calls until the potential improving moves under
LK-search have been exhausted. Only one call to LK-search is done in Step 5.

One of the first questions we considered was whether to use truncation selec-
tion (always keep the t best solutions), or to try to preserve diversity by keeping
offspring containing edges that are under-represented in the population. When
GPX is applied in a greedy fashion, we generate two offspring. The first offspring
is the greedy offspring: the shortest path in each partition component is selected.
Usually, there are many small partition components, and one large partition com-
ponent that is typically 20% of the tour. The second offspring also inherits the
shortest path in all of the partition components, except for the largest partition



6 Darrell Whitley, Doug Hains, Adele Howe

Let P1 be a randomly generated population of size t;
Let P2 be a temporary child population of size t;
For each member of P1: apply LK-search and evaluate;

1. Attempt to recombine the best tour of P1 with the remaining t − 1 tours
using GPX; this generates a set of up to 2t offspring.

2. If recombine was not feasible between the best tour and tour i, mutate
tour i using a double bridge move and place in population P2;

3. Place the best solution found so far in population P2;
4. From the set of offspring, select offspring to fill population P2;
5. For each member of population P2: apply LK-search and evaluate;
6. P1 = P2; If stopping condition not met, goto 1.

Fig. 2. Algorithm for the hybrid GA; the GA is generational, but elitist.

component; in this component the offspring inherits the path not used by the
first greedy offspring. Thus, t recombinations produces 2t offspring.

We developed a strategy called diversity selection that uses an edge weighting
function d to quantify the diversity of edges contributed to the population by
each tour. For tour si in the population,

d(si) =
∑

e(j,k)∈si

1

M(j, k)

where e(j, k) is an edge from city j to k and M(j, k) is the number of times e(j, k)
appears in the population. We then retain tours from among the offspring with
the highest summed edge diversity, d(si).

The use of diversity selection means that the GA must be generational and
that offspring replace parents, because parents typically have higher diversity
than offspring. In empirical studies, a generational GA using diversity selection
consistently produced much better results than keeping the t tours with lowest
cost. Thus, we used “diversity selection” (step 4) in the Hybrid GA.

We retain the best tour found so far (step 3) in the population of offspring.
If GPX fails to recombine two tours, we then apply one double-bridge move to
tour i where i is not the best tour in the population, and directly place this
“mutated” tour in the population of offspring (step 2). The remaining members
of the offspring population are selected by diversity selection (step 4).

3.1 Comparisons: The Hybrid GA with GPX versus Chained-LK

The hybrid GA was run using a population of 10 tours. The hybrid GA used LK-
search as the local search method and Generalized Partition Crossover. We then
compare the minimum tour found using the Hybrid Genetic Algorithm against
the best tour found using Chained Lin-Kernighan. Both methods used exactly
the same implementation of LK-search using identical parameters.

Chained Lin-Kernighan is one of the best performing local search heuristics
for the TSP [6]. Chained LK applies LK-search to a single tour and then uses
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Generation −→ 5 10 20 50

Instance Algorithm 60 LK calls 110 LK calls 210 LK calls 510 LK calls

rand500 GA w/ GPX 0.29 ± 0.01 0.17 ± 0 0.1 ± 0 0.05 ± 0
Chained-LK 0.30 ± 0.01 0.19 ± 0.01 0.13 ± 0 0.09 ± 0

att532 GA w/ GPX 0.29 ± 0 0.18 ± 0 0.12 ± 0 0.07 ± 0
Chained-LK 0.30 ± 0.01 0.21 ± 0.01 0.13 ± 0 0.08 ± 0

nrw1379 GA w/ GPX 0.63 ± 0 0.48 ± 0 0.34 ± 0 0.23 ± 0
Chained-LK 0.62 ± 0.01 0.46 ± 0.01 0.32 ± 0 0.19 ± 0

rand1500 GA w/ GPX 0.71 ± 0.01 0.52 ± 0.01 0.36 ± 0 0.22 ± 0
Chained-LK 0.73 ± 0.01 0.54 ± 0.01 0.39 ± 0.01 0.25 ± 0

u1817 GA w/ GPX 1.61 ± 0.01 1.26 ± 0.01 0.95 ± 0.01 0.63 ± 0.01
Chained-LK 2.08 ± 0.02 1.61 ± 0.02 1.19 ± 0.01 0.83 ± 0.01

Table 2. Average percentage of the cost of the minimum tour found above the globally
optimal cost averaged over 500 experiments using Chained LK and the Hybrid GA.

a double bridge move [7] to perturb the solution; Chained-LK then reapplies
LK-search. Since the population size is 10, the hybrid GA uses 10 applications
of LK-search each generation; therefore, Chained LK is allowed to do 10 double-
bridge moves and apply the LK-search 10 times for every generation that the
Hybrid GA is allowed to execute. This means that each algorithm is allowed
to call LK-search exactly the same number of times. The Hybrid GA has the
additional cost of recombination, but this cost is O(n) with a small constant (of 4
or 5) and the computation is very small compared to one iteration of LK-search.
Furthermore, applying LK-search after a double bridge move is more expensive
that applying LK-search after recombination: the solutions are made poorer by
the double bridge move, and improved by recombination. Thus the run times are
approximately the same. (Exact comparisons of run times are difficult because
LK-search is integrated into the Chained-LK code, while the Hybrid GA uses a
simple but unoptimized interface to call the LK-search.)

Table 2 lists the average percentage of the cost of the minimum tour found
compared to the cost of the global optimum for each problem instance. The
hybrid GA was allowed to run for 50 generations in these experiments.

After 510 calls each to LK-search, the Hybrid GA using GPX yields better
results on all of the problems except nrw1379. This is remarkable because the
Hybrid GA must optimize 10 solutions and the best solution must be optimized
10 times faster than Chained-LK to obtain a better result.

If each algorithm is run longer, the performance of the Hybrid Genetic Al-
gorithm is increasingly better than Chained LK. Table 3 shows how many times
(out of 50 attempts) that each method finds the global optimum after 1010 calls
to LK-search (which is 100 generations for the Hybrid GA).
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rand500 att532 nrw1379 rand1500 u1817

Hybrid GA 50/50 26/50 1/50 12/50 1/50
Chained-LK 38/50 16/50 1/50 2/50 0/50

Table 3. The number of times the global optimum is found by each algorithm after
1010 calls to LK-search over 50 experiments.

Instance
Global Edges Global Edges Unique Edges
in Population in Minimum Tour in Population

rand500 500 ± 0 449.68 ± 1.98 941.56 ± 1.56

att532 532 ± 0 464.1 ± 2.11 979.54 ± 1.47

nrw1379 1378.9 ± 0.04 1162.3 ± 3.44 2709.34 ± 2.25

rand1500 1500 ± 0 1301.02 ± 4.15 2871.9 ± 3.14

u1817 1815.12 ± 0.18 1562.44 ± 3.22 3616.92 ± 4.71

Table 4. Results obtained by running the hybrid GA for only 5 generations and without

mutation (double-bridge moves). “Global Edges in population” is the number of edges
found in the global optimum that are also present in the population. “Global Edges
in Minimal Tour” is the number of edges shared in common between the best solution
found and the global optimum. “Unique Edges in Population” is the total number of
distinct edges found in the population at the end of generation 5. The number of edges
in each instance is indicated by the numerical suffix of the instance name

.

4 The Power of a Population

While it is encouraging that the Hybrid GA is able to yield performance that
exceeds that of Chained-LK, is this really the best way to exploit the population
of solutions that is being generated by the Hybrid GA? To explore this question,
we ran the Hybrid GA again. However, we turned off the mutation operator in
step 2. This means that step 4 now selects t− 1 offspring to place in population
P2. During the first few generations, recombination is almost always feasible.

We ran 50 trials of the Hybrid GA for only 5 generations. At generation 5
we record the minimum tour found, the number of unique edges in the popula-
tion and the number of edges in the population that also appear in the global
optimum. When there is no mutation (i.e., double bridge moves) the Hybrid GA
converges very fast, but it also loses diversity and gets “stuck” after about 5
generations.

Nevertheless, the Hybrid GA is already finding very good solutions after
only 5 generations: for rand500 and att532, it found the global optimum in 2 out
of 50 trials, using only 50 recombinations and only 50 calls to LK-search. The
convergence to the global optimum is extremely fast in these exceptional cases.

As the data shows in table 4, the edges found in the global optimum are all
present in the population in the majority of the runs. On instances rand500,
att532 and rand1500 all of the edges found in the global optimum were also in
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the population on every single run. The population therefore contains all of the
edges needed to construct the globally optimal solution after only 5 generations.

Furthermore, the results for all of the TSP instances show that the total num-
ber of unique edges in the population was always less than 2n after 5 generations.
Assume that we merge all 10 members of the population after 5 generations into
a single graph. We can now search this reduced graph for a minimal Hamilto-
nian circuit. The search space is dramatically smaller than that of the original
TSP instances. This means that the optimization problem has been reduced to
finding the minimal Hamiltonian Circuit of length n in a graph with only 2n

edges.

4.1 Where are the Global Edges?

We next look at those edges that appear in the global optimum, but which do
not appear in the best tour in the population. We already know that typically
all of the edges found in the global optimum are present in the population
after 5 generations. Since we recombine the best tour with all members of the
population, those edges that are shared with the global but not found in the
minimal tour must be classified as uncommon by GPX and will appear in the
graph Gu during at least one recombination.

Because of the way GPX performs crossover, edges that appear in the same
partition component cannot be chosen on an individual level. Either all the edges
from one parent are chosen from that component or all the edges from the other
parent are chosen.

We want to determine if the uncommon globally optimal edges are spread
out among different partition components in Gu or if they appear in the same
component. If a majority of the uncommon global edges appear in the same
component, then this means it will be impossible for GPX (working without any
form of mutation) to reassemble these edges and reach the global optimum.

We looked at the trials from the previous experiments and found in the ma-
jority of recombinations the uncommon globally optimal edges fell into a single
partition component which was larger than the rest. In table 5 we report the
number of uncommon globally optimal edges which fell into this large partition
component, the size of this component, and the number of uncommon global
edges which fell into other components; we also report the number of shared
common global edges observed during recombination. Results for two instances,
att532 and u1817, are shown in table 5.

As can be seen from Table 5, the majority of edges that are not found in
the best solution but that are found in the global optimal solution appear as
uncommon edges that are largely contained in the largest component during the
recombination process. Nevertheless, most of the edges that are found in the
globally optimum actually appear as common edges (the first row in Table 5)
during recombination, meaning these edges will be passed onto the children.
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att532 u1817

Common Edges also found in the global optimum 406.75 1407.90

Uncommon edges in largest component also found in global optimum 87.39 268.62

Uncommon in all other components also found in global optimum 0.04 0.96

Total edges in the largest component 102.11 289.12

Table 5. Percentages were averaged over 50 trials. These results were captured during
recombination during the 5th generation. Common Edges can appear inside of compo-
nents, or between components of Graph Gu. Uncommon edges appear only inside of
components of Gu.

5 Conclusions and Future Work

A new recombination operation has been developed for the TSP.GPX is a gener-
alization of the previously described PX operator. Both operators are respectful
and transmits alleles. GPX in a hybrid GA with LK-search is capable of find-
ing better tours than Chained LK using double bridge moves. Additionally, we
find that the Hybrid Genetic Algorithm using GPX and LK-search is capable of
finding globally optimal solutions in a relatively small number of generations.

Additional analysis shows that all the edges found in the globally optimal
solution are present in a population after only a few generations in almost every
case. Furthermore, the number of unique edges in the population is also less than
twice the problem size.

When critical edges are concentrated in a single partition component, GPX
is not able to “re-assort” these edges. However, this represents a challenge as
well as an opportunity. Instead of needing to optimize over the entire search
space, effort can be focused on optimizing a small subregion of the search space.
Future research will examine how best to exploit this knowledge.
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