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Abstract

With the growing use of wireless networks and mobile devices, we are moving towards an

era of pervasive computing. Such environments will spawn new applications that use contex-

tual information to provide enhanced services. Traditional access control models cannot pro-

tect such applications because the access requirements maybe contingent upon the location of

the user and the time of access. Consequently, we propose a new spatio-temporal role-based

access control model that supports delegation for use in such applications. The model can be

used by any application where the access is contingent not only on the role of the user, but also

on the locations of the user and the object and the time of access. We describe how each entity

in the role-based access control model is affected by time and location and propose constraints

to express this. We also show how the formal semantics of our model can be expressed using

graph-theoretic notation. The various features of our model give rise to numerous constraints

that may interact with each other and result in conflicts. Thus, for any given application using

our model, it is important to analyze the interaction of constraints to ensure that conflicts or

security breaches do not occur. Manual analysis is tedious and error-prone. Towards this end,

we show how the analysis can be automated using Coloured Petri Nets. Since automated anal-
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ysis for large applications is time consuming, we propose anapproach that reduces the analysis

time.

1 Introduction

With the increase in the growth of wireless networks and sensor and mobile devices, we are mov-

ing towards an era of pervasive computing. The growth of this technologywill spawn applications,

such as, the Aware Home [14] and CMU’s Aura [17], that will make life easier for people. Per-

vasive computing applications introduce new security issues that cannot be addressed by existing

access control models and mechanisms. For instance, access to a computershould be automat-

ically disabled when a user walks out of the room. Traditional models, such as Discretionary

Access Control (DAC) or Role-Based Access Control (RBAC), do not take into account such en-

vironmental factors in making access decisions. Consequently, access control models are needed

that use environmental factors, such as, time and location, while determining access.

Researchers have proposed various models that use contextual information, such as, location

and time, for performing access control [1, 9, 10, 11, 14, 17, 24, 28,33, 34, 36, 39]. Many of

these were developed with commercial applications in mind and are based on RBAC. Examples in-

clude TRBAC [9], Geo-RBAC [10], Geotemporal RBAC [2, 3], and STRBAC [36]. These models

are more expressive than their traditional counterparts, and have various features which the users

can selectively use based on the application requirements. The differentfeatures of these models

interact in subtle ways resulting in inconsistencies and conflicts. Consequently, it is important to

formalize the models, analyze and understand their semantics, before they can be widely deployed.

We propose a new spatio-temporal access control model supporting delegation that improves

upon many of the previous works. It can be used by any application where access is contingent

upon the role of the user, the locations of the user and the object, and the time of access. Since

RBAC simplifies role-management and is widely used in commercial organizations, we base our
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work on it. Access control provided by our model depends not only on the role of the user but

also on the spatio-temporal constraints associated with the various entities. The different features

are expressed using formal predicates that must be satisfied by applications using our model. The

formal semantics of the model are defined using a graph-theoretic notation.The authorization

requirements of an application can be represented using this notation, whichwe term as itsaccess

control graph.

Various features of the model may interact in subtle ways resulting in inconsistencies and con-

flicts. The access control constraints of an application using our model must be analyzed to ensure

that such problems, which, in turn, may cause security breaches, do notoccur. Manual analysis

of the access control specifications of complex, real-world applications istedious and error-prone.

Towards this end, we propose the use of Coloured Petri Net (CPN) [19, 22, 27] for doing automated

analysis. A number of reasons motivated this choice. First, CPN has a well-defined semantics that

allows us to unambiguously define the behavior of the model. Second, the language supported

by CPN is expressive enough to specify various kinds of systems. Third, CPN offers interactive

simulations that can be used for studying the behavior of the system. Fourth,CPN provides tool

support for graphically representing the model and for performing simulation and formal analysis

[22]. Fifth, it has been used successfully for the verification of real-timeconcurrent systems.

Since access control specification of a real-world system may be very complex, the CPN anal-

ysis may take a significant amount of time. Towards this end, we show how to improve the per-

formance by transforming the access control graph to a more condensedversion, which we term

theprivilege acquisition graph. Although the privilege acquisition graph contains less information

than the corresponding access control graph, it is adequate for checking some problems with the

access control specification. Once a problem has been found, the source of the problem can be

identified by analyzing a sub-graph of the access control graph.

The rest of the paper is organized as follows. Section 2 describes the related work. Section
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3 presents our spatio-temporal access control model. Section 4 uses graph-theoretic notations

to provide a formal semantics of the model and shows how the access control requirements of

a real-world dengue decision support system can be formalized using our approach. Section 5

discusses how the access control specification of the application can be analyzed using CPNs.

Section 6 provides an approach for speeding up the analysis. Section 7 concludes the paper with

some pointers to future directions.

2 Related Work

Location-based access control has been addressed in works not pertaining to RBAC [1, 2, 3, 17,

18, 28, 31, 33, 48]. Atluri and Chun proposed the Geospatial Data Authorization Model (GSAM)

which is an authorization model for managing geospatial information [2, 3]. The requester can get

access to geospatial information provided his credentials and time of accessmatches the creden-

tial and temporal expressions defined in the authorization policy. Ardagnaet al. [1] present the

Location-Based Access Control (LBAC) model where the access is contingent upon the location

information of the user and his credentials. Yu et al. [48] proposed LTAM, a location-temporal

authorization model, which focuses on controlling user access to the different locations. Pu et al.

[31] present the context access control model, called CACM, which integrates the context infor-

mation to theUCONABC usage control model. Context Sensitive Access Control (CSAC) proposed

by Hulsebosch et al. [18] focus on using context information such as time,location, velocity to

control the accessibility of service while preserving the privacy of userinformation. Hengartner et

al. [17] discuss how location information pertaining to a user can be securely accessed.

Our work is based on RBAC [16] which is often used for addressing the access control needs

of commercial organizations. Researchers have also extended RBAC to support delegation which

causes temporary transfer or grant of access privileges from the delegator to delegatee [6, 7, 8, 15,

52]. Researchers have also worked on extending RBAC to support pervasive computing applica-
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tions [13, 14, 38]. Sampemane et al. [38] present a new access control model for active spaces

which denote the computing environment integrating physical spaces and embedded computing

software and hardware entities. Environmental aspects are adopted into the access control model

for active spaces, and the space roles are introduced into the implementationof the access control

model based on RBAC. Covington et al. [14] introduce environment rolesin a generalized RBAC

model (GRBAC) to help control access to private information and resources in ubiquitous comput-

ing applications. The environment roles differ from the subject roles in RBAC but do have similar

properties including role activation, role hierarchy and separation of duty. Environment roles are

also associated with permissions, and environment roles are activated when the environmental con-

ditions change. In a subsequent work [13], Covington et al. describethe Context-Aware Security

Architecture (CASA) which is an implementation of the GRBAC model.

Other extensions to RBAC include the Temporal Role-Based Access Control Model (TRBAC)

proposed by Bertino et al. [9] that adds the time dimension to the RBAC model. The authors in this

paper introduce the concept of role enabling and disabling. Temporal constraints determine when

the roles can be enabled or disabled. A role can be activated only if it has been enabled. Joshi et al.

[24] extend this work by proposing the Generalized Temporal Role BasedAccess Control Model

(GTRBAC) that introduces the concept of time-based role hierarchy andtime-based separation of

duty. In another work, Joshi and Bertino [25] extend the GTRBAC modelto support fine-grained

delegation. Although the authors support various forms of delegation, they do not discuss the effect

of temporal constraints or the delegation chain in this paper. The formal analysis of the different

types of time-based hybrid hierarchy, introduced in the earlier works [25, 24], is proposed by Joshi

et al. in [26]. Here, the authors introduce the notion ofuniquely activable set(UAS), which is a

set of roles that can be activated by the user assigned to the senior-mostrole in the hierarchy. This

information can be used by the system administrator to determine the access capabilities of a user

within a session. The authors also define the notion of equivalence between different hierarchies
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based on the permissions they possess. The transformation of hierarchyvia the modification of role

is analyzed in the latter part of the paper. The impact of separation of duty constraints on the role

hierarchy are outside the scope of this work.

Researchers have also extended RBAC to incorporate spatial information[10, 34]. The GEO-

RBAC model, proposed by Bertino et al. [10], makes role activation dependent on the location of

the user. For instance, a user can acquire the role of teacher only whenhe is in the school. Outside

the school, he can acquire the role of citizen. The model supports role hierarchies but does not deal

with separation of duty constraints. Another work incorporating spatial information is by Ray et al.

[34]. Here again, the authors show how each component of RBAC is influenced by location. The

authors define their formal model using theZ specification language. Role hierarchy and separation

of duty constraints are not addressed in this paper. None of these works discuss the impact of time

on location.

Incorporating both time and location in RBAC has been addressed in several works [11, 12, 36,

39]. Chandran’s work [11] combines the main features of GTRBAC and GEO-RBAC. Here again,

role is enabled by time constraints. The user can activate the role if the role is enabled and the user

satisfies the location constraints associated with role activation. Samuel et al.[39] propose GST-

RBAC which provides a framework to incorporate topological spatial constraints to the existing

GTRBAC model. The authors do this by augmenting GTRBAC operations with spatial constraints.

The operations are allowed only if the spatial and temporal constraints are satisfied. The model also

introduces the notion of Spatial Role Hierarchy and Spatial Separation of Duty (spSoD) constraints.

Our early work also extends RBAC with spatial and temporal constraints [36]. Although the goal

of this work is similar to that proposed by Chandran et al. and Samuel et al., our model can express

some real-world constraints that are not possible in the other ones. Subsequently, we extend our

model to support different types of spatio-temporal delegation [37]. The model allows user/role to

grant privileges to the delegatee which could be either user or role. However, the model does not
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support the transfer operation or the concept of delegation chain. Ourcurrent work eliminates this

shortcoming. Chen and Crampton develop a graph based representation for spatio-temporal RBAC

in [12]. The RBAC entities are represented by vertices while their relationships are represented

by the edges of a directed graph. Each vertex and edge in the graph is associated with spatio-

temporal constraints. The authors propose three types of models: standard, strong, and weak. In

the standard model, componentv1 is said to be authorized to componentvn if all vertices along the

authorization path satisfy the spatio-temporal constraints. In the strong model,componentv1 is said

to be authorized to componentvn if all vertices together with the edges along the authorization path

satisfy the spatio-temporal constraints. In the weak model, componentv1 is said to be authorized

to componentvn if both vertices satisfy the spatio-temporal constraints. The major contribution

of this work is that the authors provide a well-defined semantics for the threetypes of spatio-

temporal RBAC. The authors do not discuss separation of duty or delegation constraints in this

paper. Identifying how inconsistencies and conflicts can be detected in these models is also outside

the scope of this work.

A lot of work also appears that attempt to analyze RBAC and its extensions. Some have used

the Z specification language for specifying RBAC [49] and LRBAC [34].Although Z language can

represent RBAC and its constraints in a formal manner, it does not have tool support for automated

verification. Others have used an extension of the Unified Modeling Language (UML) called pa-

rameterized UML to visualize the properties of RBAC constraints [35]. The model describes how

one can visualize the conflicts that may occur with RBAC constraints. However, the approach is

not automated.

Researchers have advocated the use of existing formal specification languages with tool sup-

port for modeling and verifying RBAC and its extensions. Specifically, Schaad et al. [41] and

Zao et al. [50] describe how to analyze static properties of RBAC, such as, user-role assignment,

permission-role assignment, role hierarchy and static separation of duty. Samuel et al. [39] also
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illustrate how GST-RBAC can be specified in Alloy. They describe how the various GST-RBAC

functionalities, that is, user-role assignment, role-permission assignment, and user-role activation,

can be specified by Alloy. However, analyzing the interaction of the various features and identi-

fying sources of potential conflicts are not addressed in this paper. Our recent works [45, 46] fill

this gap. Specifically, one [45] shows how the numerous features in our spatio-temporal access

control model can be represented in Alloy and how their interactions can beanalyzed. In a sub-

sequent work [46], we analyze a more complex model – a spatio-temporal RBAC with delegation

– to identify the sources of conflicts. However, both these works focus on analyzing the model in

isolation and identify potential conflicts that may occur due to feature interactions. Such analysis is

independent of the application. However, when this model is to be used forany given application,

we need to ensure that no inconsistencies occur with respect to the access control requirements of

the given application. For example, we need to ensure that there are no users, roles, or permissions

in the application that are not connected to other entities. We may also need to ensure that separa-

tion of duty constraints or delegation constraints are not violated in the application. In one of our

recent work [47], we show how the access control requirement can be specified using the Unified

Modeling Language (UML). The UML2Alloy tool transforms this model to an Alloy specification

which is then automatically verified by the Alloy Analyzer.

Although Alloy supports automated analysis, it has limitations with respect to the types of ver-

ifications it can perform. For example, analyzing and understanding the behavior of the application

using Alloy is non-trivial. Such analysis is needed for dynamic systems where we need to ensure

that the system does not enter an undesirable state. Towards this end, researchers [5, 23, 27, 29, 32]

have investigated alternate approaches, such as, Coloured Petri Nets (CPNs) [19, 22, 27] for auto-

mated analysis. CPN allows one to represent the model in a graphical language, has a well-defined

semantics and has automated tools for doing simulation and verification. Rasmussen and Singh

[32] show how CPN is used in designing the PRISMA C96 intruder alarm system. The interac-
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tions of components were modeled and verified using CPN to detect if the configurations have any

conflicts. CPN has also been used in access control model verification. Jiang et al. [23] develop

a CPN model to verify the security properties of the Bell LaPadula (BLP) model. Laborde et al.

[27] propose the use of CPN for analyzing the traditional RBAC-based policies of network security

mechanisms. This work focuses on verifying confidentiality, integrity, availability, and filtering

rules.

Lu et al. [29] show how access control properties of workflows can be verified using CPNs.

Specifically, they describe how to formalize the control flow, authorization rules, and separation of

duty constraints in a workflow in the presence of role activation hierarchy. The authors first show

how to model each part (namely, control flow, authorization rules, and separation of duty) in iso-

lation. Subsequently, the authors propose an approach for producingthe integrated model which

allows one to study the interactions of the parts, such as RBAC authorization policy with sepa-

ration of duty constraints. Reachability analysis is used to detect conflicts between the features.

The size of the integrated model increases exponentially when new entities are added. To prevent

state explosion during reachability analysis, the authors introduce two rulesfor reducing the size

of the model. The model analyzed by the authors does not support many features which are needed

in workflow applications: permission inheritance hierarchy, separation ofduty for permission-role

assignment, and delegation. Atluri et al. [4] propose an authorization modelto use for workflows.

The model specifies constraints that allows authorized subjects to gain access on the required ob-

jects for the duration of the task. Subsequently, the authors extend this work to support task-based

separation of duty constraints and show how this extended model can be specified using CPN [5].

The authors then show how to do a reachability analysis to check whether thegiven tasks can be

executed in the presence of authorization constraints. Shafiq et al. [42]show how the various con-

straints of GTRBAC, such as, cardinality constraints, SoD constraints, and role hierarchy can be

modeled using CPN. The reachability analysis reveals the presence of infeasible paths where an en-
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tity cannot invoke the privileges assigned to him. However, analyzing the interaction of constraints

is not discussed in these works.

3 Our Model

3.1 Representing Location and Time

Representing Location

In order to perform location-based access control, we need to formalizethe concept of location

[10, 11] and propose the location comparison operators that are used inour model. There are

two types of locations:physicaland logical. All users and objects are associated with locations

that correspond to the physical world. These are referred to as the physical locations. A physical

location is formally defined by a set of points in a three-dimensional geometric space. Aphysical

location PLoci is a non-empty set of points{pi , p j , . . . , pn} where a pointpk is represented by

three co-ordinates. The granularity of each co-ordinate is dependentupon the application. Physical

locations are grouped into symbolic representations that will be used by applications. We refer to

these symbolic representations as logical locations. Examples of logical locations are Fort Collins,

Colorado etc. Alogical location is an abstract notion for one or more physical locations. We

assume the existence of a mapping functionm that converts a logical location to a physical one.

Definition 1

[Mapping Function m] m is a total function that converts a logical location into a physical one.

Formally, m : L → P, whereP is the set of all possible physical locations andL is the set of all

logical locations.

Different kinds of operations can be performed on location data. We define two binary opera-

tors, namely,containment⊆, andequality=, that we use in this paper. A physical locationplocj

is said to becontained inanother physical locationplock, denoted as,plocj ⊆ plock, if the follow-
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ing condition holds:∀pi ∈ plocj , pi ∈ plock. The locationplocj is called the contained location

andplock is referred to as the containing or the enclosing location. Intuitively, a physical location

plocj is contained in another physical locationplock, if all points in plocj also belong toplock.

Two physical locationsplocr and plocs areequal if plocr ⊆ plocs and plocs ⊆ plocr . Note that

these operators are defined on physical locations. Thus, logical locations must be transformed into

physical locations (using mapping functionm defined above) before we can apply these operators.

We define a logical location calledUniversethat contains all other locations.

Representing Time

Our model uses two kinds of temporal information. The first is known as time instant and the other

is time interval. Atime instantis one discrete point on the time line. The exact granularity of

a time instant is application dependent. For instance, in some application a time instantmay be

measured at the nanosecond level and in another one it may be specified at the millisecond level.

A time intervalis a set of time instants. We use the notationti ∈ d to mean thatti is a time instant

in the time intervald. Here again, we define operators containment⊆ and equality= for operating

on time intervals. A time intervald j is said to becontained inanother time intervaldk, denoted as,

d j ⊆ dk, if the following condition holds:∀ti ∈ d j , ti ∈ dk. The intervald j is called the contained

interval anddk is referred to as the containing or the enclosing interval. Two time intervalsds and

dr are said to be equal ifdr ⊆ ds andds ⊆ dr . We define a time interval calledAlwaysthat includes

all other time intervals.

Representing Time and Location as Spatio-Temporal Points

In order to simplify our presentation, we use the concept of spatio-temporal points to represent time

and location. A spatio-temporal point is represented as a pair of the form(d, l) whered represents

the temporal component andl represents the spatial one. Note that,d andl represent time interval
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and location respectively. We say that a spatio-temporal point(d, l) is contained in another(d′
, l ′),

denoted by(d, l) ⊆ (d′
, l ′) iff (d ⊆ d′)∧ (l ⊆ l ′). The union of two spatio-temporal points, denoted

as(d, l)∪(d′
, l ′), is given by(d, l)∪(d′

, l ′) = (d∪d′
, l ∪ l ′). The intersection of two spatio-temporal

points, denoted as(d, l)∩ (d′
, l ′), is given by(d, l)∩ (d′

, l ′) = (d∩d′
, l ∩ l ′).

3.2 Relationship of Core-RBAC Entities and Relationships with Time and Location

We begin by describing how the entities in RBAC, namely,Users, Roles, Sessions, Permissions,

andObjects, are associated with location and time.

Users

We assume that each valid user, interested in doing some location-sensitive operation, carries a

locating device that is able to track his location. The location of a user changes with time. The

relationUserLocation(u, t) gives the location of the user at any given time instantt. Since a user

can be associated with only one location at any given point of time, the following constraint must

be true. Note that, in this and all the subsequent formulae, we omit the quantification symbols.

(UserLocation(u, t) = l i)∧ (UserLocation(u, t) = l j) ⇔ (l i ⊆ l j)∨ (l j ⊆ l i)

We define a similar functionUserLocation(u,d) that gives the location of the user during the

time intervald. Note that, a single location can be associated with multiple users at any given point

of time.

Objects

Objects can be physical or logical. Example of a physical object is a computer. Files are examples

of logical objects. Physical objects have devices that transmit their locationinformation with the

timestamp. Logical objects are stored in physical objects. The location and timestamp of a logical
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object corresponds to the location and time of the physical object containingthe logical object.

Each location can be associated with many objects. The functionObjLocation(o,t)takes as input

an objecto and a time instancet and returns the location associated with the object at timet. Sim-

ilarly, the functionObjLocation(o,d)takes as input an objecto and time intervald and returns the

location associated with the object.

Roles

We have three types of relations with roles. These are user-role assignment, user-role activation,

and permission-role assignment. We begin by focusing on user-role assignment. Often times, the

assignment of user to roles is location and time dependent. For instance, a person can be assigned

the on-campus student role only when he is in the campus during the semester.Thus, for a user to

be assigned a role, he must be in designated locations during specific time intervals. In our model,

a user must satisfy spatial and temporal constraints before roles can be assigned. We capture this

with the concept ofrole allocation. A role is said to beallocatedwhen it satisfies the temporal and

spatial constraints needed for role assignment. A role can be assigned once it has been allocated.

RoleAllocTimeLoc(r) gives the set of spatio-temporal points where the role can be allocated.

The predicateUserRoleAssign(u, r,d, l) states that the useru is assigned to roler during the

time intervald and locationl . For this predicate to hold, the location of the user when the role was

assigned must be in one of the locations where the role allocation can take place. Moreover, the

time of role assignment must be in the interval when role allocation can take place.

UserRoleAssign(u, r,d, l) ⇒ (UserLocation(u,d) = l)∧ ((d, l) ⊆ RoleAllocTimeLoc(r))

Some roles can be activated only if the user is in some specific locations at given times. For

instance, the role of audience of a theater can be activated only if the useris in the theater when the

show is on. The role of conference attendee can be activated only if the user is in the conference site

while the conference is in session. In short, the user must satisfy temporaland location constraints
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before a role can be activated. We borrow the concept ofrole-enabling[9, 24] to describe this.

A role is said to beenabledif it satisfies the temporal and location constraints needed to activate

it. A role can be activated only if it has been enabled.RoleEnableTimeLoc(r) gives the set of

spatio-temporal points where roler can be activated.

The predicateUserRoleActivate(u, r,d, l) is true if the useru activated roler for the intervald

at locationl . This predicate implies that the location of the user and the duration of role activation

must be a subset of the allowable spatio-temporal points for the activated role and the role can be

activated only if it is assigned.

UserRoleActivate(u, r,d, l) ⇒ ((d, l) ⊆ RoleEnableTimeLoc(r))∧UserRoleAssign(u, r,d, l)

The permission-role assignment is discussed later.

Sessions

In mobile computing or pervasive computing environments, we have different types of sessions that

can be initiated by the user. Some of these sessions can be time-dependent, location-dependent,

or both. Thus, sessions are classified into different types. Each instance of a session is associated

with some type of a session. The type of session instances is given by the functionType(s). The

type of the session determines the allowable location and duration. The allowable spatio-temporal

points where a session of typest can be created is denoted bySessionTimeLoc(st).

When a useru wants to create a sessions, the session durationd and the location of the user

l must be contained within the spatio-temporal points associated with the session.The predicate

SessionUser(u,s,d, l) indicates that a useru has initiated a sessions for durationd at locationl .

SessionUser(u,s,d, l) ⇒ (d, l) ⊆ SessionTimeLoc(Type(s))

Since sessions are associated with time and locations, not all roles can be activated within some

session. The predicateSessionRoles(u, r,s,d, l) states that useru initiates a sessionsand activates a
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role r for durationd and at locationl . This is possible only if useru can activate roler for duration

d and at locationl and the session can be created during the same time and at the same location.

SessionRole(u, r,s,d, l) ⇒UserRoleActivate(u, r,d, l)∧ (d, l) ⊆ SessionTimeLoc(Type(s))

Permissions

Our model allows us to specify real-world requirements where access decision is contingent upon

the time and location associated with the user and the object. For example, a teller may access

the bank confidential file only if he is in the bank, the file location is the bank secure room, and

the time of access is during the working hours. Our model should be capableof expressing such

requirements.

Permissions are associated with roles, objects, and operations. We associate additional entities

with permission to deal with spatial and temporal constraints: user location, object location, and

time. We define three functions to retrieve the values of these entities.PermRoleLoc(p, r) specifies

the allowable locations that a user playing the roler must be in for him to get permissionp.

PermOb jLoc(p,o) specifies the allowable locations that the objecto must be in so that the user

has permission to operate on the objecto. PermDur(p) specifies the allowable time when the

permission can be invoked.

We define another predicate which we termPermRoleAcquire(p, r,d, l). This predicate is true

if role r has permissionp for durationd at locationl . Note that, for this predicate to be true, the

spatio-temporal point(d, l) must be contained in the point where the roler can be enabled and

where the permissionp can be invoked byr.

PermRoleAcquire(p, r,d, l) ⇒ (d, l) ⊆ RoleEnableTimeLoc(r)∩ (PermDur(p)×PermRoleLoc(p, r))

The predicatePermUserAcquire(u,o, p,d, l) means that useru can acquire the permissionp on

objecto for durationd at locationl . This is possible only when the permissionp can be acquired
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by role r during timed and at locationl , useru can activate roler at the same time and location,

and object location matches those specified in the permission.

PermUserAcquire(u,o, p,d, l) ⇒

PermRoleAcquire(p, r,d, l)∧UserRoleActivate(u, r,d, l) ∧(Ob jectLocation(o,d) ⊆

PermOb jectLoc(p,o))

3.3 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled asa hierarchy. This

organization structure is reflected in RBAC in the form of a role hierarchy [40]. Role hierarchy is

a transitive and anti-symmetric relation among roles. Roles higher up in the hierarchy are referred

to as senior roles and those lower down are junior roles. The major motivationfor adding role

hierarchy to RBAC was to simplify role management. Senior roles can inherit thepermissions of

junior roles, or a senior role can activate a junior role, or do both depending on the nature of the

hierarchy. This obviates the need for separately assigning the same permissions to all members

belonging to a hierarchy. Joshi et al. [24] identify two basic types of hierarchy. The first is the

permission inheritance hierarchy where a senior rolex inherits the permission of a junior roley.

The second is the role activation hierarchy where a user assigned to a senior role can activate a

junior role. Each of these hierarchies may be constrained by location and temporal constraints.

Consequently, we have a number of different hierarchical relationships in our model.

[Unrestricted Permission Inheritance Hierarchy] Sometimes we want a senior role to inherit

permissions of a junior role without any additional spatio-temporal constraints. For example, a

contact author can inherit the permissions of the author without any extra spatio-temporal con-

straints. That is, the contact author can invoke the author’s permission wherever and whenever the

author can invoke them. Unrestricted permission inheritance hierarchy allows the senior role to

16



acquire inherited permissions whenever and wherever the junior role canacquire them.

Letxandybe roles such thatx≥(Always,Universe) y, that is, senior rolexhas an unrestricted permission-

inheritance relation over junior roley. In such a case,x inheritsy’s permissions without any addi-

tional spatio-temporal constraints. This is formalized as follows:

(x≥(Always,Universe) y)∧PermRoleAcquire(p,y,d, l) ⇒ PermRoleAcquire(p,x,d, l)

[Unrestricted Activation Hierarchy] Sometimes a senior role may want to activate a junior role

without placing any additional constraints. For example, a user who has a role of mobile user can

activate the weekend mobile user role only if he/she is in the US during the weekend. Unrestricted

activation hierarchy allows the senior role to be activated whenever and wherever the junior role

can be activated.

Let x andy be roles such thatx <(Always,Universe) y, that is, senior rolex has an unrestricted role-

activation relation over junior roley. Then, a user assigned to rolex can activate roley at any time

and at any place thaty can be activated. This is formalized as follows:

(x<(Always,Universe) y)∧UserRoleActivate(u,x,d, l)∧ (d, l) ⊆ RoleEnableTimeLoc(y) ⇒

UserRoleActivate(u,y,d, l)

[Time Restricted Permission Inheritance Hierarchy]Sometimes a senior role can inherit a junior

role only at certain times. For example, a company may have a policy that allows the project

manager to inherit the permissions of the code developer role only when the product deadline date

is less than a given threshold. Time restricted permission inheritance hierarchy allows the senior

role to acquire the permissions of the junior role when the temporal constraintsassociated with the

hierarchy hold and the senior role satisfies the spatio-temporal constraintsthat are needed by the

junior role to invoke those permissions.

Let x andy be roles such thatx≥(d′
,Universe) y, that is, senior rolex has a time restricted permission-

inheritance relation over junior roley. In such a case,x inherits y’s permissions together with
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the temporal constraints associated with the permissions and the hierarchy. This is formalized as

follows:

(x≥(d′
,Universe) y)∧PermRoleAcquire(p,y,d, l) ⇒ PermRoleAcquire(p,x,d∩d′

, l)

[Time Restricted Activation Hierarchy] In some applications, the senior role may need to be

activated only during specific periods. For example, the account auditorrole can activate the ac-

countant role only during the auditing period. Time restricted activation hierarchy allows the senior

role to activate the junior role when the temporal constraints associated with thehierarchy hold and

the senior role satisfies the spatio-temporal constraints that are needed to activate the junior role.

Let x andy be roles such thatx <(d′
,Universe) y, that is, senior rolex has a role-activation relation

over junior roley. Then, a user assigned to rolex can activate roley only at the location and time

when roley can be enabled and the additional temporal constraints are satisfied. This isformalized

as follows:

(x <(d′
,Universe) y)∧UserRoleActivate(u,x,d, l)∧ (d, l) ⊆ RoleEnableTimeLoc(y) ⇒

UserRoleActivate(u,y,d∩d′
, l)

[Location Restricted Permission Inheritance Hierarchy] Sometimes a senior role can inherit a

junior role only in certain locations. For example, a top secret nuclear scientist inherits the permis-

sions of a nuclear scientist only in top secret locations. Location restrictedpermission inheritance

allows the senior role to acquire the permissions of the junior role when the location constraints

associated with the hierarchy hold and the senior role satisfies the spatio-temporal constraints that

are needed by the junior role to invoke those permissions.

Letxandybe roles such thatx≥(Always,l ′) y, that is, senior rolexhas a location restricted permission-

inheritance relation over junior roley. In such a case,x inheritsy’s permissions together with the

location constraints associated with the permission and the hierarchy. This is formalized as follows:
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(x≥(Always,l ′) y)∧PermRoleAcquire(p,y,d, l) ⇒ PermRoleAcquire(p,x,d, l ∩ l ′)

[Location Restricted Activation Hierarchy] Sometimes we want the senior role to be able to

activate the junior role only at certain locations. For example, a department chair can activate

a staff role only when he is in the department. Location restricted activation hierarchy allows

the senior role to activate the junior role when the location constraints neededfor the hierarchy

activation hold and the senior role satisfies the spatio-temporal constraints needed to activate the

junior role.

Let x andy be roles such thatx <(Always,l ′) y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley only at the places when roley can

be enabled and the location constraints of the hierarchy are satisfied. Thisis formalized as follows:

(x <(Always,l ′) y)∧UserRoleActivate(u,x,d, l)∧ (d, l) ⊆ RoleEnableTimeLoc(y) ⇒

UserRoleActivate(u,y,d, l ∩ l ′)

[Time Location Restricted Permission Inheritance Hierarchy] Sometimes we may want to

place additional temporal as well as spatial constraints on the permission inheritance hierarchy.

For instance, a doctor can inherit the daytime nurse role only when he is in thehospital at the

daytime. Time-location restricted permission inheritance hierarchy allows the senior role to invoke

the permissions of the junior role provided the senior role satisfies the spatio-temporal constraints

of the inheritance hierarchy and also the spatio-temporal constraints needed to acquire the permis-

sions of the junior role.

Let x and y be roles such thatx ≥(d′
,l ′) y, that is, senior rolex has a time-location restricted

permission-inheritance relation over junior roley. In such a case,x inheritsy’s permissions to-

gether with the temporal and location constraints associated with the permission together with the

temporal and location constraints associated with the hierarchy. This is formalized as follows:

(x≥(d′
,l ′) y)∧PermRoleAcquire(p,y,d, l) ⇒ PermRoleAcquire(p,x,d∩d′

, l ∩ l ′)
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[Time Location Restricted Activation Hierarchy] Sometimes additional spatial and temporal

constraints must be satisfied for a senior role to activate a junior role. Emergency physicians can

activate the role of primary care physicians only when the patient is in an emergency room. Time

location restricted activation hierarchy allows the senior role to activate the junior role when the

spatio-temporal constraints associated with the hierarchy are satisfied together with the spatio-

temporal constraints associated with the invocation of the junior role.

Let x andy be roles such thatx <(d′
,l ′) y, that is, senior rolex has a role-activation relation over

junior roley. Then, a user assigned to rolex can activate roley only at the places and during the

time when roley can be enabled, and the additional spatio-temporal constraints assigned tothe

hierarchy are satisfied. This is formalized as follows:

(x <(d′
,l ′) y)∧UserRoleActivate(u,x,d, l)∧ (d, l) ⊆ RoleEnableTimeLoc(y) ⇒

UserRoleActivate(u,y,d∩d′
, l ∩ l ′)

It is also possible for a senior role and a junior role to be related with both permission inheri-

tance and activation hierarchies. In such a case, the application will choose the type of inheritance

hierarchy and activation hierarchy needed.

3.4 Impact of Time and Location on Static Separation Of Duty Constraints

Separation of duty (SoD) protects against the fraud that may be caused from a user or role gaining

too much power [44]. SoD can be either static or dynamic. Static Separation ofDuty (SSoD) comes

in two varieties. The first one, which is referred to asSSoD – User Role Assignment (SSoD-URA),

is with respect to user-role assignment. SSoD-URA is specified as a relationbetween roles – the

same user cannot be assigned to the roles that are related by the SSoD-URA relation. The second

one, which is referred to asSSoD – Permission Role Assignment (SSoD-PRA), is with respect to

permission-role assignment. SSoD-PRA is specified as a relation between permissions – the same

role cannot be assigned to the permissions that are related by the SSoD-PRA relation. Due to the
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presence of temporal and spatial constraints, we can have different flavors of separation of duties

– some that are constrained by temporal and spatial constraints and othersthat are not. In the fol-

lowing, we describe the different types of separation of duty constraints.

[Weak Form of SSoD - User-Role Assignment]Let x andy be two roles such thatx 6= y. (x,y) ∈

SSODURAw if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ UserRoleAssign(u,y,d, l)

The above definition says that a useru assigned to rolex during timed and locationl cannot be

assigned to roley at the same time and location ifx andy are related bySSODURAw. An example

where this form is useful is that a user should not be assigned the audience role and mobile user

role at the same time and location.

[Strong Temporal Form of SSoD - User-Role Assignment]Let x andy be two roles such that

x 6= y. (x,y) ∈ SSODURAt if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ (∃d′ ⊆ always•UserRoleAssign(u,y,d′
, l))

The above definition says that a useru assigned to rolex during timed and locationl cannot

be assigned to roley at any time in the same location ifx andy are related bySSODURAt . The

consultant for oil companyA will never be assigned the role of consultant for oil company B in the

same country.

[Strong Spatial Form of SSoD - User-Role Assignment]Let x andy be two roles such thatx 6= y.

(x,y) ∈ SSODURAl if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ (∃l ′ ⊆Universe•UserRoleAssign(u,y,d, l ′))
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The above definition says that a useru assigned to rolex during timed and locationl cannot be

assigned to roley at the same time at any location ifx andy are related bySSODURAl . A person

cannot be assigned the roles of student and instructor of the same course at the same time at any

location.

[Strong Form of SSoD - User-Role Assignment]Let x andy be two roles such thatx 6= y. (x,y) ∈

SSODURAs if the following condition holds:

UserRoleAssign(u,x,d, l) ⇒¬ (∃l ′ ⊂Universe,∃d′ ⊆ always•UserRoleAssign(u,y,d′
, l ′))

The above definition says that a useru assigned to rolex during timed and locationl cannot

be assigned to roley at any time or at any location ifx andy are related bySSODURAs. The

same employee cannot be assigned the roles of minority and non-minority employee at any given

corporation.

We next consider the second form of static separation of duty that deals with permission-role

assignment. The idea is that the same role should not acquire conflicting permissions.

[Weak Form of SSoD - Permission-Role Assignment]Let p andq be two permissions such that

p 6= q. (p,q) ∈ SSODPRAw if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ PermRoleAcquire(q,x,d, l)

The above definition says that if permissionspandqare related through weak SSoD Permission-

Role Assignment andx has permissionp at timed and locationl , thenx should not be given per-

missionq at the same time and location. The same role should not be assigned the permission of

chairing the session and presenting the paper in the conference at the same location and at the same
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time.

[Strong Temporal Form of SSoD - Permission-Role Assignment]Let pandqbe two permissions

such thatp 6= q. (p,q) ∈ SSODPRAt if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃d′ ⊆ always•PermRoleAcquire(q,x,d′
, l))

The above definition says that if permissionsp andq are related through strong temporal SSoD

Permission-Role Assignment andx has permissionp at timed and locationl , thenx should not

get permissionq at any time in locationl . The accountant should not get both the permissions of

modifying accounts and auditing accounts at the same branch location at anytime.

[Strong Spatial Form of SSoD - Permission-Role Assignment]Let p andq be two permissions

such thatp 6= q. (p,q) ∈ SSODPRAl if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃l ′ ⊆Universe•PermRoleAcquire(q,x,d, l ′))

The above definition says that if permissionsp andq are related through strong spatial SSoD

Permission-Role Assignment andx has permissionp at timed and locationl , thenx should not be

given permissionq at the same time. The same role should not be given the permission of grading

the exam and taking the exam at the same time at any location.

[Strong Form of SSoD - Permission-Role Assignment]Let p andq be two permissions such that

p 6= q. (p,q) ∈ SSODPRAs if the following condition holds:

PermRoleAcquire(p,x,d, l) ⇒ ¬ (∃l ′ ⊆Universe,∃d′ ⊆ always•PermRoleAcquire(q,x,d′
, l ′))

The above definition says that if permissionspandqare related through strong SSoD Permission-

Role Assignment, then the same role should never be given the two conflicting permissions. The
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permission to authorize a check and issue it should not be given to the same role at any time and at

any location.

3.5 Impact of Time and Location on Dynamic Separation of Duty Constraints

Dynamic separation of duty addresses the problem that a user is not able toactivate conflicting

roles during the same session.

[Weak Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈ DSODw if the following

condition holds:

SessionRole(u,x,s,d, l) ⇒¬ SessionRole(u,y,s,d, l)

The above definition says that if rolesx andy are related through weak DSoD and if useru has

activated rolex in some sessions for durationd and locationl , thenu cannot activate roley during

the same time and in the same location in sessions. In the same session, a user can activate a sales

assistant role and a customer role. However, both these roles should notbe activated at the same

time in the same location.

[Strong Temporal Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈ DSODt if the

following condition holds:

SessionRole(u,x,s,d, l) ⇒¬ (∃d′ ⊆ always,•SessionRole(u,y,s,d′
, l))

The above definition says that if rolesx andy are related through strong temporal DSoD and if

useru has activated rolex in some sessions, thenu can never activate roley any time at the same

location in the same session. In a teaching session in a classroom, a user cannot activate the the

grader role once he has activated the student role.
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[Strong Spatial Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈ DSODl if the

following condition holds:

SessionRole(u,x,s,d, l) ⇒¬ (∃l ′ ⊆Universe•SessionRole(u,y,s,d, l ′))

The above definition says that if rolesx andy are related through strong DSoD and if useru has

activated rolex in some sessions, thenu can never activate roley in sessionsduring the same time

in any location. If a user has activated the graduate teaching assistant role in his office, he cannot

activate the lab operator role at the same time.

[Strong Form of DSoD] Let x andy be two roles such thatx 6= y. (x,y) ∈ DSODs if the following

condition holds:

SessionRole(u,x,s,d, l) ⇒¬ (∃l ′ ⊆Universe,∃d′ ⊆ always•SessionRole(u,y,s,d′
, l ′))

The above definition says that if rolesx andy are related through strong DSoD and if useru

has activated rolex in some sessions, thenu can never activate roley in the same session. A user

cannot be both a code developer and a code tester in the same session.

3.6 Impact of Time and Location on Delegation

Many situations require the temporary delegation of access rights to accomplish a given task. For

example, a doctor may give certain privileges to a trained nurse when he is taking a break. In

such situations, the doctor can give a subset of his permissions to the nurse for a given period of

time. This requirement can be fulfilled by the delegation operation. The entity who delegates his

privileges temporarily to another entity is referred to as the delegator. The entity who receives

the privilege is known as the delegatee. Delegation can be eithergrant or transfer. Granting
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of privileges allows the delegator to temporarily assign his privileges to the delegatee without

relinquishing his own privileges. Transferring of privileges allows the delegator to transfer his

privileges temporarily to the delegatee. Note that, during the period of delegation the delegator

does not have the privileges which he has transferred to the delegatee.

The delegator can be either a user or a role. System administrators are responsible for over-

seeing delegation when the delegator is a role. Individual users administerdelegation when the

delegator is an user. The delegator can delegate either a set of permissions that he possesses by

virtue of being assigned to different roles or he can delegate a set of roles assigned to him directly

by the user-role assignment or indirectly by the effect of the activation hierarchy. We can therefore

classify delegation on the basis of role delegation or permission delegation. For role delegation,

the delegatee can be either role or user. For permission delegation, the delegatee can be role only.

This is to maintain the intent of RBAC – permissions should be assigned to user viarole, not to

user directly.

Role Delegation

A delegator (user or role) can delegate a role to a delegatee. Note that, fora delegator to delegate a

role r for timed and at locationl , the delegator must have been assigned to the roler during timed

and locationl either directly or indirectly. Depending on the type of delegation (grant or transfer),

the delegator may or may not continue to enjoy the privileges he has delegated.

Let DelegateR(dtr,dte, r,{g, t},d, l) be the predicate that allows the delegatordtr ∈ U ∪R to

grant (g) or transfer (t) a roler to the delegateedte∈U ∪R during timed and at locationl . This

will allow individual user (if dte∈ U) or all users assigned to dte (ifdte∈ R) to be temporary

assigned to roler at the specific location and time. The following specifies the various conditions

under which useru′ acquires roler for durationd′ and locationl ′ by virtue of delegation.

1. DelegateR(u,u′, r,g,d′
, l ′) ⇒UserRoleAssign(u′, r,d′

, l ′)
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2. DelegateR(u,u′, r, t,d′
, l ′) ⇒UserRoleAssign(u′, r,d′

, l ′)∧¬UserRoleAssign(u, r,d′
, l ′)

3. DelegateR(r ′,u′, r,g,d′
, l ′) ⇒UserRoleAssign(u′, r,d′

, l ′)

4. DelegateR(r ′,u′, r, t,d′
, l ′)∧UserRoleAssign(u, r ′,d′

, l ′)

⇒UserRoleAssign(u′, r,d′
, l ′)∧¬UserRoleAssign(u, r,d′

, l ′)

5. DelegateR(u, r ′, r,g,d′
, l ′)∧UserRoleAssign((u′, r ′,d′

, l ′) ⇒UserRoleAssign(u′, r,d′
, l ′)

6. DelegateR(u, r ′, r, t,d′
, l ′)∧UserRoleAssign((u′, r ′,d′

, l ′)

⇒UserRoleAssign(u′, r,d′
, l ′)∧¬UserRoleAssign(u, r,d′

, l ′)

7. DelegateR(r ′′, r ′, r,g,d′
, l ′)∧UserRoleAssign(u′, r ′,d′

, l ′) ⇒UserRoleAssign(u′, r,d′
, l ′)

8. DelegateR(r ′′, r ′, r, t,d′
, l ′)∧UserRoleAssign(u′, r ′,d′

, l ′) ⇒UserRoleAssign(u′, r,d′
, l ′)

∧UserRoleAssign(u, r ′′,d′
, l ′)∧¬UserRoleAssign(u, r,d′

, l ′)

The above eight conditions describe how useru′ can be assigned to roler for durationd′ and

locationl ′ under user to user, role to user, user to role and role to role delegation withthe grant and

transfer mode. Note that, the transfer mode causes the delegator to lose his privileges. With the

effect of role activation hierarchy, the delegatee of a delegated role can also activate all junior roles

in the activation hierarchy. Moreover, the delegatee inherits all permissions that the delegated role

can acquire directly through the permission-role assignment and indirectly through the permission

inheritance hierarchy.

Permission Delegation

A delegator (user or role) can delegate a permission to a delegatee. Note that, for a delegator to

delegate a permissionp for timed and at locationl , the delegator must have acquired the privilege

r during timed and locationl either directly or indirectly. Depending on the type of delegation

grant or transfer, the delegator may or may not continue to enjoy the privileges he has delegated.

Let DelegateP(dtr,dte, p,{g, t},d, l) be the predicate that allows the delegatordtr ∈ U ∪R to

grant or transfer a permissionp to the delegateedte∈ R during timed and at locationl . The
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following specifies the various conditions that allow permissionp to be delegated to roler ′ during

timed′ and locationl ′.

1. DelegateP(u, r ′, p,g,d′
, l ′) ⇒ PermRoleAcquire(p, r ′,d′

, l ′)

2. DelegateP(r, r ′, p,g,d′
, l ′) ⇒ PermRoleAcquire(p, r ′,d′

, l ′)

3. DelegateP(r, r ′, p, t,d′
, l ′) ⇒ PermRoleAcquire(p, r ′,d′

, l ′)∧¬PermRoleAcquire(p, r,d′
, l ′)

The first two conditions say that if a useru or roler has granted privilegep to roler ′ for dura-

tion d′ and locationl ′, then roler ′ acquires permissionp for durationd′ and locationl ′. The last

condition says that if a roler ′ has transferred privilegep to role r ′ for durationd′ and locationl ′,

then roler ′ acquires permissionp for durationd′ and locationl ′, and roler loses permissionp for

durationd′ and locationl ′. Note that, we have not specified transfer of privilege from useru to role

r ′. Since privileges are not directly assigned to any user, permissions cannot be removed directly

from the user. The only way to remove permission from a user is to revoke the permission from the

role assigned to the user and associated with the permission. However, this will impact all users

assigned to this role. Consequently, we do not allow transfer of permissionfrom user to role. Since

privileges are not directly assigned to the user, we do not define the permission delegation in which

the delegatee is the user.

Delegation Chains

In some cases, the delegator may allow the delegatee to further delegate the privileges that he has

acquired by virtue of delegation. This could cause a sequence of delegations called thedelegation

chainor delegation path[25, 51]. Once a delegatee is granted a privilege, he can grant or transfer

this privilege to another delegatee if the delegation chain is permitted by the delegator. However,

if a delegatee is transferred a privilege, he can only transfer it to another delegatee in the pres-

ence of the delegation chain. Thus, the transfer operation is more restrictive than grant operation

(grant > trans f er). We now formally define the two delegation chains that our model supports:
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Monotonic Role Delegation ChainandMonotonic Permission Delegation Chain.

[Monotonic Role Delegation Chain]Monotonic role delegation chain is the delegation chain of

the form:

n−1̂

i=0

DelegateR(dtei ,dtei+1, r,gti+1,di+1, l i+1)

wheredte0 represents the original delegator,dtei represents the delegatee in theith delegation,gti

refers to grant or transfer,di , l i refers to the time and location where theith delegation is valid, and

gti > gti−1, di+1 ⊆ di , andl i+1 ⊆ l i . The above formalism implies that this delegation will gradually

reduce the spatio-temporal points where the delegation can be granted or transferred. We define

monotonic permission delegation chain in a similar manner.

[Monotonic Permission Delegation Chain]Monotonic permission delegation chain is the dele-

gation chain of the form:

n−1̂

i=0

DelegateP(dtei ,dtei+1, p,gti+1,di+1, l i+1)

wheredte0 represents the original delegator,dtei represents the delegatee in theith delegation,gti

refers to grant or transfer,di , l i refers to the time and location where theith delegation is valid, and

gti > gti−1, di+1 ⊆ di , andl i+1 ⊆ l i .

The delegator may want to restrict the length of the delegation chain. LetD C (dtr,e) denote

the delegation chain starting from the original delegatordtr with respect to delegated entitye. The

function depthwhen applied to this delegation chain, that is,depth(D C (dtr,e)) gives the total

number of delegation operations that occurs inD C (dtr,e).
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4 Graph-Theoretic Representation of the Model

Although our proposed spatio-temporal model is syntactically strong and can represent the spatio-

temporal access control policies needed in real-world applications, we propose a graph-theoretic

representation that accurately reflects the semantics of the model. Our graph-theoretic represen-

tation was inspired by the work of Chen and Crampton [12]. However, we adapt this model to

better reflect our semantics. In our work, the set of verticesV = U ∪R∪P∪O correspond to the

RBAC entities: Users (U), Roles (R), Permissions (P), and Objects (O). The relationships of our

spatio-temporal role-based access control model constitute the edgesE = UA∪PA∪PO∪RH∪

SD∪RD∪PD where

• User-Role Assignment (UA) = U ×R

• Permission-Role Assignment (PA) = R×P

• Permission-Object Assignment (PO) = P×O

• Role Hierarchy (RH) = R×Rwhich can be categorized into

– activation hierarchyRHa consisting of unrestricted activationRHau, time restricted ac-

tivationRHat, location restricted activationRHal and time location restricted activation

RHatl hierarchies.

– permission inheritance hierarchyRHi consisting of unrestricted permission inheritance

RHiu, time restricted permission inheritanceRHit , location restricted permission inher-

itanceRHil , and time location permission inheritanceRHitl hierarchies.

• Separation of Duty (SD) = (R×R)∪ (P×P) which can be categorized into

– static separation of duty for user role assignmentsRSSDconsisting of weak-formRSSDw,

strong temporal formRSSDt , strong spatial formRSSDl and strong formRSSDs.

– static separation of duty for permission-role assignmentPSSDconsisting of weak-

form PSSDw, strong temporal formPSSDt , strong spatial formPSSDl and strong form
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PSSDs.

– dynamic separation of dutyDSDconsisting of weak-formDSDw, strong temporal form

DSDt , strong spatial formDSDl and strong formDSDs.

• Role Delegation (RD), which can be categorized into

– Role Delegation to User (RDU ) = U ×R

– Role Delegation to Role (RDR) = R×R

• Permission Delegation (PD) = R×P

An activation path(or act-path) betweenv1 and vn is defined to be a sequence of vertices

(v1, . . . ,vn) such that(v1,v2) ∈ (UA∪RDU) and (vi−1,vi) ∈ (RHa ∪RDR) for i = 3, . . . ,n. An

activation path(v1,v2, . . . ,vn) allows userv1 to activate rolevn. A usage path(or u-path) between

v1 and vn is defined to be a sequence of vertices(v1, . . . ,vn) such that(vi ,vi+1) ∈ RHi for i =

1, . . . ,n− 2, and(vn−1,vn) ∈ (PA∪PD). An usage path(v1,v2, . . . ,vn) allows rolev1 to acquire

permissionvn. An access path(or acs-path) betweenv1 and vn is defined to be a sequence of

vertices(v1, . . . ,vn), such that(v1,vi) is an act-path,(vi ,vn−1) is an u-path, and(vn−1,vn)∈ PO. An

access path(v1,v2, . . . ,vn−1,vn) allows userv1 to access objectvn using permissionvn−1. We define

two functions,ρ andµ, on the edgesE of the graph, whereE =UA∪PA∪PO∪RH∪SD∪RD∪PD.

Functionρ represents information associated with delegation edges and is specified asfollows.

ρ : (RDU ∪RDR∪PD)→ (U ∪R)×N that maps the delegation edge to the corresponding delegator

and delegation depth. If a delegator further delegates his delegated entity,the delegation depth of

the newly created delegation edge is calculated by subtracting one from the delegation depth of

its immediate preceding delegation edge.µ represents the spatio-temporal constraints associated

with all the edges in the graph and is defined as follows.µ : E → 2D whereD denotes the spatio-

temporal domain. Fore= (v,v′) ∈ E, µ(v,v′) denotes the set of spatio-temporal points at which the

association betweenv andv′ is enabled. In the following, we describe the value ofµ for each type

of edge in our graph.
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• if (u, r) ∈ UA, thenµ(u, r) = {(d, l)|UserRoleActivate(u, r,d, l)} denotes the set of spatio-

temporal points in which useru can activate roler.

• if (r, p) ∈ PA, thenµ(r, p) = {(d, l)|PermRoleAcquire(p, r,d, l)} denotes the set of spatio-

temporal points in which permissionp is assigned to roler.

• if (p,o) ∈ PO, thenµ(p,o) = PermDur(p)×PermOb jLoc(p,o) denotes the set of spatio-

temporal points at which objecto can be accessed by virtue of permissionp.

• if (r ′, r) ∈ RHau∪RHiu, thenµ(r ′, r) = RoleEnableTimeLoc(r) because senior role can ac-

tivate the junior role, or inherit permissions of junior role at all the spatio-temporal points

where the junior role can be enabled.

• if (r ′, r)∈RHat∪RHit , thenµ(r ′, r)= (d′
,Universe)∩RoleEnableTimeLoc(r), wherer ′ <(d′

,Universe)

r or r ′ ≥(d′
,Universe) r, because senior role can activate the junior role, or inherit permissions

of junior role when the junior role can be enabled and the hierarchy temporal constraints are

satisfied.

• if (r ′, r)∈RHal∪RHil , thenµ(r ′, r)= (Always, l ′)∩RoleEnableTimeLoc(r), wherer ′ <(Always,l ′)

r or r ′ ≥(Always,l ′) r, because senior role can activate the junior role, or inherit permissions

where the junior roles can be enabled and the hierarchy spatial constraints are satisfied.

• if (r ′, r) ∈ RHatl ∪RHitl , thenµ(r ′, r) = (d′
, l ′)∩RoleEnableTimeLoc(r), wherer ′ <(d′

,l ′) r

or r ′ ≥(d′
,l ′) r, because senior role can activate the junior role, or inherit permissions where

and when both the roles can be enabled, and the spatio-temporal constraints of the hierarchy

are satisfied.

• if (r ′, r)∈ RSSDw∪DSDw, thenµ(r ′, r) = (d, l) denotes the set of points in space-time where

no user should be assigned/allowed to activate rolesr andr ′.

• if (r ′, r) ∈ RSSDt ∪DSDt , thenµ(r ′, r) = (Always, l) because the same user cannot be as-

signed/allowed to activate rolesr andr ′ at specified locationl at any time.

• if (r ′, r) ∈ RSSDl ∪DSDl , thenµ(r ′, r) = (d,Universe) denotes the spatio-temporal points
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where the same user cannot be assigned or allowed to activate rolesr andr ′ from any loca-

tion.

• if (r ′, r)∈RSSDs∪DSDs, thenµ(r ′, r) = (Always,Universe) because no user can be assigned

or allowed to activate rolesr andr ′ from any place and at any time.

• if (p′, p) ∈ PSSDw, thenµ(p′, p) = (d, l) denotes the set of points in space-time where no

role should be assigned to conflicting permissionsp andp′.

• if (p′, p)∈PSSDt , thenµ(p′, p) = (Always, l) denotes the set of spatio-temporal points where

the same role cannot be assigned to conflicting permissionsp andp′ at any time.

• if (p′, p) ∈ PSSDl , thenµ(p′, p) = (d,Universe) denotes the set of spatio-temporal points

where the same role cannot be assigned to conflicting permissionsp andp′ at any location.

• if (p′, p) ∈ PSSDs, thenµ(p′, p) = (Always,Universe) because no role can be assigned to

conflicting permissionsp andp′ from any place and at any time.

• if (u′, r)∈RDU , thenµ(u′, r)= {(d, l)|DelegateR(u,u′, r,{g, t},d, l)∨DelegateR(r ′,u′, r,{g, t},d, l)}

denotes the set of points in space-time where useru′ has been delegated roler.

• if (r ′, r)∈RDR, thenµ(r ′, r)= {(d, l)|DelegateR(u, r ′, r,{g, t},d, l)∨DelegateR(r ′′, r ′, r,{g, t},d, l)}

denotes the set of points in space-time where roler ′ has been delegated roler.

• if (r, p)∈PD, thenµ(r, p) = {(d, l)|DelegateP(u, r, p,g,d, l)∨DelegateP(r ′′, r, p,{g, t},d, l)}

denotes the set of points in space-time where roler has acquired permissionp by virtue of

permission delegation.

We writeµ̂(v1, . . . ,vn) = µ̂(v1,vn) ⊆ D to denote
Tn−1

i=1 µ(vi ,vi+1). Hence,µ̂(v1,vn) is the set of

points at which every edge in the path is enabled. The authorization scheme inthe access control

graph can be summarized as follows:

• a userv ∈ U may activate rolev′ ∈ R at pointd ∈ D if and only if there exists an act-path

v = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a role v ∈ R is authorized for permissionv′ ∈ P at point d ∈ D if there exists an u-path
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Table 1: DDS Permissions List
Task Task

p1 Read Premise Information p10 Read Vector Control (VC) Protocols
p2 Change Premise Informationp11 Change Vector Control Protocols
p3 Read Case Information p12 Read Work Record
p4 Change Case Information p13 Change Work Record
p5 Read Patient Record p14 Read VC Material Information
p6 Change Patient Record p15 Change VC Material Information
p7 Read Patient Names p16 Signal VC for Dengue Virus (DV)
p8 Read Work Schedule p17 Signal VC for Dengue Hemorrhagic Fever (DHF)
p9 Change Work Schedule

v = v1,v2, . . . ,vn = v′ andd ∈ µ̂(v,v′);

• a userv∈U is authorized for permissionv′ ∈ P with respect to objectv′′ ∈ O at pointd ∈ D

if and only if there exists an acs-pathv = v1,v2, . . . ,vi , . . . ,vn−1 = v′,vn = v′′ such thatvi ∈ R

for somei, v1, . . . ,vi is an act-path,vi , . . . ,vn−1 is an u-path,(vn−1,vn) ∈ POandd ∈ µ̂(v,v′′).

Note that, generating the access control graph consists of two steps. First, we have to create

all vertices corresponding to the entities which takesO(V) time. Next, we have to create all edges

corresponding to the relationships between entities. We label these edges and also indicate the

constraints associated with them. This step takesO(E) time. Hence, total time to create the whole

graph isO(V +E).

4.1 Example Application

In this section, we present a real-world application called the Dengue Decision Support (DDS)

system to illustrate our approach. The DDS helps state-level public health officials respond to local

outbreaks of dengue. Response consists of vector control and vector surveillance, namely spray-

ing for mosquitoes (control) and investigating locations where they might be breeding and living

(surveillance) and where the level of confirmed dengue cases have increased above a prescribed

threshold. Public health officials are organized in jurisdictions, based on population, and multiple
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jurisdictions are included in a single state. When the threshold is reached, officials at both lev-

els respond. The jurisdiction officer activates vector control and surveillance teams that are local

to the jurisdiction, with instructions regarding the specific control and surveillance protocols to

follow and the locations where they are to be performed. The state officer releases materials for

control to the team, and the local team then performs the controls and surveillance ordered. The

jurisdiction and state vector control officials are often located in differentbuildings, although the

vector control team is co-located with the jurisdiction officer. All control materials are located in

warehouses elsewhere, and for coordination reasons are controlledby the state officer. Information

about specific cases of dengue is retained in what is called an epidemiological study. This data

includes information about the patient, the location where the patient lives (thepremise), the case,

and control and surveillance actions performed at the premise. The patient and case data are con-

sidered private information, and are only available to epidemiologists at the jurisdiction and state

levels. The vector control team receives premise information along with orders for control and

surveillance. However, the team also needs to have names associated with the premises in order to

validate the location. The team therefore needs access to some of the patientdata for a fixed period

of time, in order to perform control and surveillance duties. For lack of space, we omit giving the

full specification of the DDS.

4.1.1 DDS Security Policies

Entities DDS system consists of the following entities

• Users:Alice, Bob, Ben, Charlie, Claire andDavid

• Roles: State Epidemiologist (State Epi), Jurisdiction Epidemiologist (Juris Epi), Clinic Epi-

demiologist (Clinic Epi), Clinician (Clinician), State Vector Control (State VC), Jurisdiction

Vector Control (Juris VC), and Local Jurisdiction Vector Control Team (Local VC Team).

• Permissions:pi where 1≤ i ≤ 17 whose descriptions are given in Table 1.

35



Table 2: DDS Role-Permission Assignment Constraints
Role Tasks Location Constraint Time Constraint
State Epi p16 A–State Office, B–Juris

Office
a–Regular Hours

Juris Epi p1, p3 B–Juris Office a–Regular Hours
p17 B–Juris Office b–Always

Clinic Epi p17 D–Universe b–Always
Clinician p1, p2 C–Clinic a–Regular Hours
State VC p11, p15 A–State Office a–Regular Hours
Juris VC p1, p8 B–Juris Office a–Regular Hours
Local VC Team p7 E–Emergency Location a–Regular Hours,

c–Emergency Hours

• Objects are omitted from the example to keep it simple.

Role AssignmentThe user-role assignments and permission-role assignments are specifiedas fol-

lows.

• User-role assignments:UserRoleAssign(Alice, State Epi,b,A∪B),UserRoleAssign(Bob,Clinic

Epi,b,C),UserRoleAssign(Ben, Clinician,a,C), andUserRoleAssign(Charlie, State VC,a,A∪

B).

• Permission-role assignments are summarized in Table 2.

Role Hierarchy Two pairs of roles are related by the unrestricted permission inheritance hierarchy.

These relationships are specified as follows:

• State Epi≥(Always,Universe) Juris Epi, State VC≥(Always,Universe) Juris VCandJuris VC≥(Always,Universe)

Local VC Team.

Separation of DutyThere are three separation of duty constraints in DDS system:

• User should not have permission to change VC protocols at the same time as hehas permis-

sion to change VC materials.

• User should not have permission to signal DV at the same time as signal DHF.
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• User should not be assigned to both Epidemiologist and Vector Control roles at any place

and time.

These can be represented as follows:

• SSODPRAl = {(p11, p15),(p16, p17)}

• SSODURAs ={ (State Epi, State VC), (Juris Epi, State VC), (Clinic Epi, State VC), (State Epi, Juris VC),

(Juris Epi, Juris VC), (Clinic Epi, Juris VC) }

DelegationOnly one delegation constraint is specified for this application. The system adminis-

trator decided to transfer permissionp17 from Clinic Epi role toClinician role during emergency

hours at the clinic. The administrator does not allow the delegatee to delegate the permission

further. This can be represented in our model as follows:

• DelegateP(Clinic Epi, Clinician, p17, t,c,C)

• depth(D C (Clinic Epi, p17)) = 1

The graph representation of the DDS security policies are shown in Figure1. To avoid crowd-

ing the graph, we show the spatio-temporal and delegation constraints in Table 3. ThePD edge

is represented by dashed arrow.SD edges are represented by dotted bi-directional arrows. The

activation paths and their associated spatio-temporal constraints are listed below:

• (Alice, State Epi)whereµ̂ (Alice, State Epi)= [b,A∪B]

• (Ben, Clinician)whereµ̂(Ben, Clinician)= [a,C]

• (Bob, Clinic Epi)whereµ̂(Bob, Clinic Epi)= [b,C]

• (Charlie, State VC)whereµ̂(Charlie, State VC)= [a,A∪B]

Some examples of usage paths and their associated spatio-temporal constraints are given below:

• (Clinician, p1) whereµ̂(Clinician, p1) = [a,C]
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Figure 1: DDS System’s Access Control Graph

• (Juris VC, Local VC Team)whereµ̂(Juris VC, Local VC Team)= [a∪c,E]

• (State VC, Juris VC, p1) whereµ̂(State VC, JurisVC, p1) = [a,B]

• (State VC, Juris VC, Local VC Team, p7) whereµ̂(State VC, Juris VC, Local VC Team, p7)

= [a, /0]

Some examples of access paths are as follows:

• (Alice, State Epi, p16) whereµ̂(Alice, State Epi, p16) = [a,A∪B]

• (Bob, Clinic Epi, p17) whereµ̂(Bob, Clinic Epi, p17) = [b,C]

• (Charlie, State VC, JurisVC, p1) whereµ̂(Charlie, State VC, Juris VC, p1) = [a,B]
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5 Model Analysis

The model that we proposed earlier has numerous features that can interact with each other to pro-

duce inconsistencies and conflicts. For example, incorrect spatio-temporal constraints may prevent

a user from invoking his permission. Similarly, incorrect delegation may cause violation of sep-

aration of duty constraints. Thus, we must perform an analysis to ensurethat inconsistencies or

security violations do not occur when a given application is using our model.Manual analysis is

error-prone and tedious. Towards this end, we show how Coloured Petri Nets (CPNs) can be used

for detecting problems in the authorization specifications.

5.1 Coloured Petri Nets

CPNs [19, 21, 22] have been widely used to model and analyze various types of real-world appli-

cations. With a comprehensive graphical representation and well-defined semantics, CPNs allow

users to perform formal analysis on a wide range of problems. We start by presenting the charac-

teristics of a CPN model as described by Laborde et al. [27]. The states of a CPN are represented

by theplaces, which are drawn as ellipses or circles. Each place is associated with acolor setthat

determines the type of data that the place may contain. A state of a CPN is called amarking. A

marking consists of a number of tokens that belongs to the individual places. Each token carries

a value (color), which belongs to the type of the place on which the token resides. The tokens

present on a particular place compromise the marking of that place. The tokens of a CPN are

distinguishable from each other. The marking of a place is, in general, a multi-set of token values.

The actions of a CPN are represented by means of transitions, which are represented as rect-

angles. Transitions and places are connected by arcs. Arcs cannot connect any two places or any

two transitions. An activation (firing) of a transition removes tokens from places connected to the

transition’s incoming arcs (input places) and adds tokens to places connected to transition’s outgo-

ing arcs (output places). This results in the changes of the marking (state)of the CPN. The exact
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number of tokens added and removed by the occurrence of a transition, and their data values are

determined by the arc expressions. In addition to the arc expressions, it ispossible to attach a

boolean expression (with variables), calledguards, to each transition. The transition can be acti-

vated and fired only when its guard function evaluates to true. The initial initialstate of the system

is described usinginitial markingand the final state is represented bydead marking.

Figure 2 shows a simple example of a CPN. This CPN consists of three places and one transi-

tion. TheUsersplace has a data typeUSERand is assigned an initial markingAllUsersconsisting

of six tokens, namely,Alice, Ben, Bob, Charlie, Claire, andDavid. Similarly, theURA1place has

a data typeURA TYPEand is assigned an initial markingAllURAsconsisting of four tokens. The

values of these two places can activate the transition calledCheckURA1. If there exists a valueu in

both places and the guard function ofCheckURA1is satisfied, that is,u is not null, then the transi-

tion CheckURA1will be activated and the token of valueu will be transferred to the terminal place

calledAssignedUser, which has typeUSER. For further details on CPN, we refer the interested

reader to [21].

u

(u,r,udur,uloc)

u

CheckURA1 AssignedUser

USER

URA1

AllURAs

URA_TYPE

Users

AllUsers

USER
u<>""

4
1`("Alice","State Epi",["a"],["A"])++
1`("Ben","Clinician",["a"],["C"])++
1`("Bob","Clinic Epi",["a","c"],["C"])+
+
1`("Charlie","State VC",["a"],["A"])

6

1`"Alice"++
1`"Ben"++
1`"Bob"++
1`"Charlie"++
1`"Claire"++
1`"David"

Figure 2: Simple example of CPN model

In this paper, we advocate the use of the CPN Tools [20, 22] to develop and analyze the CPN

model representing the access control specification. Using CPN Tools allows us to investigate the

behavior of the CPN model using simulation and state space analysis. CPN Tools will generate all

possible states that are reachable together with the values of environmentalvariables that cause the
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change. Checking all the generated states is a time consuming and error-prone task. To solve this

problem, we create queries using the Standard ML language [30] to selectonly those states which

have the exact properties that we are interested in. To avoid state explosion, we develop a CPN

model for each of the problems that we try to detect. The models are populatedusing values from

the access control graph representing the access control policies of the organization.

The CPN Tools have a well-defined user interface, shown in Figure 3, for creating the CPN

models and populating them with the initial values. Once the CPN model has been created, the

tool allows one to do a state space analysis. The CPN Tools will generate all possiblestatesof the

model. Figure 4 shows the graphical representation of one of the states generated by the model in

Figure 3. Note that, different states will store different tokens in each place. The state is represented

by a round cornered rectangle, where 1 is the state number, 0 is the numberof predecessors, and

4 is the number of successors. The sharp cornered rectangle shows the description of the state

which consists of the current values stored in each place at that specificstate. Since the number

of predecessors of the state in Figure 4 equals to zero, the figure represents the initial state where

none of the tokens has been moved to the new place. Figure 5 shows the complete set of states

generated by the model in Figure 3. The arrow connects a predecessorstate to each of its successor

states. For the complete reference on the CPN Tools, please refer to [22]. The details about how to

perform the state space analysis can be found in [30].
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Figure 3: CPN Tools User Interface
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1
0:4

1:

UserIE'User_Assign_Edges 1: 1`("Alice","State Epi","UA",["a","c"],["A","B"],"",0)++

1`("Ben","Clinician","UA",["a"],["C"],"",0)++

1`("Bob","Clinic Epi","UA",["a","c"],["C"],"",0)++

1`("Charlie","State VC","UA",["a"],["A","B"],"",0)

UserIE'Users 1: 1`"Alice"++

1`"Ben"++

1`"Bob"++

1`"Charlie"++

1`"Claire"++

1`"David"

UserIE'Assigned_Users 1: empty

1:

UserIE'User_Assign_Edges 1: 1`("Alice","State Epi","UA",["a","c"],["A","B"],"",0)++

1`("Ben","Clinician","UA",["a"],["C"],"",0)++

1`("Bob","Clinic Epi","UA",["a","c"],["C"],"",0)++

1`("Charlie","State VC","UA",["a"],["A","B"],"",0)

UserIE'Users 1: 1`"Alice"++

1`"Ben"++

1`"Bob"++

1`"Charlie"++

1`"Claire"++

1`"David"

UserIE'Assigned_Users 1: empty

Figure 4: Example of values stored in each state

6
2:2

7
2:2

8
2:2

9
2:2

10
2:2

11
2:2

2
1:3

3
1:3

4
1:3
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1:3
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3:1 13

3:1

14
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16
4:0
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0:4

Figure 5: Example of complete state graph

In this paper, we detect the following problems with the access control specification:

• Isolated entity occurs when an entity is not connected to any other entity.

• Infeasible path occurs when a user cannot access a permission or an object in an access path.
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• Delegation constraint violation occurs when the spatio-temporal constraintsassociated with

delegation or the delegation depth constraint is violated.

• Separation of duty violation occurs when a user is assigned conflicting roles, when a permis-

sion is assigned conflicting roles, or when a user is able to activate conflicting roles.

5.2 Isolated Entity Detection

Isolated entity occurs when an entity is disconnected from other entities in the access control graph,

thus making it useless with respect to the access control specification. Consider the DDS example

discussed in Section 4.1. If we look at the graph in Figure 1 representing the access control policies

of the DDS, we find that usersClaire andDavid are not connected to any roles or permissions –

these are examples of isolated entities. A similar argument can be made for permissionsp4 and

p5. In our model, we can have three types of isolated entities, corresponding tousers, roles, and

permissions, as described below.

1. Type 1:User who is not assigned to any role which prevents him from acquiring any permis-

sion.

2. Type 2:Role which is not assigned to any permission or junior role and therefore cannot use

any permission.

3. Type 3:Permission that is not assigned to any role which prevents it from being invoked.

We develop CPN models to detect each of these types of isolated entities. In thefollowing, we

describe how to detect isolated users, that is, isolated entity of Type 1.

colset USER=STRING;

colset LOCATION = list STRING;

colset DURATION = list STRING;

colset VERTEX = STRING;
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colset EDGETYPE = STRING;

colset DEPTH = INT;

colset EDGE = product VERTEX*VERTEX*EDGETYPE*DURATION*LOCATION*VERTEX*DEPTH;

All types of entities and relationships in our model are represented usingcolor sets. From the

declaration above, edge is represented by a tuple of vertices. The colorset calledEDGETYPEis

used to distinguish between different types of edges. To representµ function, we use the product

of DURATIONandLOCATION. Similarly to representρ function, we use the product ofSTRING

andDEPTH.

We next model the states of the application that are of interest. The state of theapplication is

represented using CPN’splaceswhich are drawn as ellipses or circles. Each place has an associated

type, specified using color set, that determines the data type that the place maycontain. In Figure

6, we have three places denoted byUser Assign Edges, Users, andAssigned Usersthat have data

typesUSER, EDGEandUSERrespectively. Each state of a CPN is called amarking. The marking

of a place is represented by a multi-set of token values. The initial markings,representing the

initial states, are initialized using values from the access control graph andare shown in the boxes

adjoining the places. For example, the initial marking of theUsersplace, referred to asAllUsers,

consists of six tokens corresponding to the usersAlice, Ben, Bob, Charlie, Claire andDavid in

the access control graph.AllUsers is described using a multi-set. Since all users are unique, the

number of each multi-set member equals one. For example, the notation,1‘("Alice") indicates

there is only one userAlice. The union operation (++) is used to represent situations when there

are more than one member, as in our example. The initial marking of placeUser Assign Edges,

referred to asAllUserAssign, is specified in a similar manner and are populated using User-Role

Assignment and Role to User Delegation edges from the access control graph. Here, we repeat the

specifications of the initial markings.

val AllUsers=1‘("Alice")++1‘("Bob")++1‘("Ben")++1‘("Charlie")++
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1‘("Claire")++1‘("David");

val AllUserAssign=1‘("Alice","State Epi","UA",["a","c"], ["A","B"],"",0)++

1‘("Bob","Clinic Epi","UA",["a","c"], ["C"],"",0)++

1‘("Ben","Clinician","UA",["a"], ["C"],"",0)++

1‘("Charlie","State VC","UA",["a"], ["A","B"],"",0);

The actions of the CPN are described by transitions, which are represented using rectangles.

Arcs connect transitions and places. An activation (firing) of a transitionremoves tokens from

places connected to the transition’s incoming arcs (input places) and addstokens to the places

connected to the transition’s outgoing arcs (output places). This results inthe markings of the

CPN, that symbolizes its state, to change. It is also possible to attach a booleanexpression, referred

to as a guard, to each transition. In such a case, the guard function must evaluate to true before

it can be activated. The exact number of tokens added or removed by thefiring of a transition

and their respective data values are determined by the arc expressions.The transitions can be

fired repeatedly. When the marking of a place can no longer be changed,it is referred to as dead

marking.

Figure 6 shows one transitionMove Assigned Userthat is activated when the arc expressions

match on theu values and the guard function ofMove Assigned Userverifies thatu is not null. The

initial markings cause this transition to be fired. The correspondingu, (u,v,etype,d1, l1,dtr,depth)

get removed fromUsersandUser Assign Edgesplaces respectively andu gets added toAssigned

Users. The transitions are fired repeatedly until no more state change can take place. In the given

example, the transitions are fired for usersAlice, Ben, Bob and Charlie. The terminal state is

reached when no more transitions can be fired.
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Figure 6: CPN Model for Isolated Entity Detection (Type 1)

Query 1

Show all terminal states

SearchNodes (EntireGraph,

fn n => (length(OutArcs(n)) = 0),

NoLimit,

fn n => n,

[],

op ::)

We use Query 1, which is the general query to show all terminal states, to detect isolated en-

tity. This query is written using built-in query function of the State Space Tool calledSearchNodes

[20]. The first argument inSearchNodes, namely,EntireGraph, signify that we want to search

the whole graph. The second argument,fn n => (length(OutArcs(n)) = 0), states that we

want to check all nodes that have no outgoing arcs, that is, the terminal nodes. The third argu-

ment,NoLimit, states that we want the query to return all possible results. The fourth argument,

fn n => n, states that we do not want to change the value of the search result. The fifth argu-

ment states that the initial value of the result set is equal to empty list. The last argument,op ::,
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will combine all search results into one list. From the explanation above, Query 1 will return the

state where the transition cannot proceed anymore. The result is the state number 16 which can be

viewed using the command:print(NodeDescriptor 16).

The content of each place in state number 16 is shown below:

Users=1‘("Claire")++1‘("David");

User Assign Edges=empty;

Assigned User=1‘("Alice")++1‘("Ben")++1‘("Bob")++1‘("Charlie");

The result shows that tokens corresponding to users Claire and David are in placesUserswhen

the transitions cannot be fired anymore. These users cannot be transferred to the next state (As-

signed User) and they are isolated entities. With trivial modification, we can develop the CPN

models to detect the other types of isolated entities.

5.3 Infeasible Path Detection

Recall that in an access control graph, a useru is authorized for permissionp through roler if there

is an access path connectingu, r, andp. The spatio-temporal constraints may be specified in such

a manner that it may not be possible foru to invoker resulting in an infeasible path. Consider the

following access path given in Figure 1:(Ben,Clinician, p17). Ben is assigned toClinician role

during regular hours at theClinic. However, theClinician is delegated permissionp17 only during

emergency hours at theClinic. Thus, the temporal constraints prohibitBen from ever invoking

permissionp17. This is an example infeasible path.

Figure 7 shows the CPN model for detecting infeasible paths. This model is developed to

perform a depth first search on the access control graph and calculate theµ̂ function of each acs-

path. If there is an acs-path where the ˆµ function equal to empty set, then this acs-path is the

infeasible path. In this CPN model we have a transition calledGet Initial Vertex. This transition

will get the first token needed to start the analysis. Moreover, it will prevent other tokens from being
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retrieved while the previous token is still in the analysis process. The transition Retrieve Edgewill

retrieve the authorization edge which starts atv1, then add it to theAuthorization Pathplace as a

record. Then the transitionCalculate Mu Hatwill calculate the current ˆµ value. If either the spatial

value or temporal value of ˆµ equals empty set, it will trigger theInfeasible Pathtransition to fire.

This transition will send boolean valuetrue to theInfeasible Pathplace, which will notify us that

there exists an infeasible path in our policy. The initial marking of theUsersplace, denoted by

AllUsers, consists of all users in the access control model. The initial marking of theAuthorization

Edgesplace, denoted byAllAuthEdges, consists of all edges except the SoD edges in the access

control graph.

Query 2

Infeasible Path

fun InfeasiblePath() : Node list

= SearchNodes(

EntireGraph,

fn n=>(

(size(Mark.UserInfeasiblePath’Infeasible_Path 1 n) <> 0)

),

NoLimit,

fn n=>n,

[],

op ::)

Query 2 checks the infeasible path that may occur due to incorrect specifications in the spatio-

temporal constraints. The second argument in SearchNodes which represents a function states that

we want to check the states where the number of tokens inInfeasible Path place is not equal to
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if (intersection(d1,d2) <> []) andalso 
(intersection(l1,l2) <> []) andalso 
(etype <> "PA") then
1`v2
else empty (intersection(d1,d2), 

intersection(l1,l2))

(v1,v2,etype,d1,l1,dtr,depth)

(v1,v2,etype,d1,l1,dtr,depth)

true

(d2,l2)
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Figure 7: CPN Model for Infeasible Path Detection

zero. The result shows that states 37 and 47 contain the infeasible path. To observe the result, we

print the content of state number 47. Below is part of the content of state 47.

Authorization Path = 1‘("Charlie","State VC","UA",["a"], ["A","B"],"",0)++

1‘("State VC","Juris VC","RHI",["a"], ["B"],"",0)++

1‘("Juris VC","Local VC Team","RHI",["a","c"], ["E"],"",0);

The analysis reveals another infeasible path that exists in our DDS example:(Charlie, State
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VC, Juris VC, Local VC Team, p7). This infeasible path is caused because no spatial constraints

can be satisfied.Charlie is assigned the roleState VCin theState OfficeandJuris Office. However,

the State VCinheritsJuris VC’s permissions only in theJuris OfficeandJuris VC inheritsLocal

VC Team’s permission only inEmergency Location. This preventsCharlie from invoking any of

theLocal VC Team’s permission. State 37 reveals another infeasible path(Ben,Clinician, p17) that

exists in our application.

5.4 Delegation Constraint Violation Detection

A delegator can delegate only the roles or privileges assigned to him. Moreover, the delegation

duration and location should satisfy the associated spatio-temporal constraints. In the context of our

example, ifClinic Epi tried to delegate privilegep3 (which he does not possess), then it would be

an example of delegation constraint violation. Similarly, if the roleJuris Epidelegated permission

p3 to Clinician at locationA (State Office) and timec (Emergency Hours), then it would violate the

delegation constraint. This is because the roleJuris Epidoes not have permissionp3 in locationA

at timec.

The delegation should also not violate the delegation depth constraint. This type of violation

occurs when there is a chain of delegation and the delegatee further delegates the privilege beyond

the specified depth. For example, if the delegation depth is specified as one,then a delegation depth

violation will occur if the delegatee is trying to further delegate the privileges he has acquired by

virtue of delegation. In the context of our example, the roleClinic Epi transfers the permission

p17 to Clinician at timec and locationC and the delegation depth is specified as 1. Now, if the

Clinician further delegates privilegep17 to some other role, then the delegation depth constraint

will be violated.

Figure 8 shows the CPN model to detect the delegation constraint violation. This model is de-

veloped to ensure that both delegation depth constraint and delegation spatio-temporal constraint
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are satisfied by using the guard function of the transitionCheck Delegation DepthandCheck Del-

egation Constraintrespectively. If theCheck Delegation Depthtransition is activated, then there

exists a delegation depth violation. Similarly, if theCheck Delegation Constraintis activated, then

there exists a spatio-temporal delegation constraint violation that indicates that the delegator is del-

egating the privileges to which he has no accessibility. The model will send theproblematic edge

to the place corresponding to each type of error to notify the error.

The initial markings of theDelegation Edgesplace, denoted byAllDelEdges, consists of all

delegation edges, that is,RD∪PD. The initial markings of theDelegator Authorization Edges

place, denoted byAllDtrAuthEdges, consists of all edges belonging toUA∪RH∪PA.

(v1,v2,etype,d1,l1,dtr,depth)
(dtr,v2,etypeDtr,d2,l2,v,depthDtr)

(v1,v2,etype,d1,l1,dtr,depth)

(v1,v2,etype,d1,l1,dtr,depth)

(v1,v2,etype,d1,l1,dtr,depth)

Check 
Delegation
Constraint

(Subset(d1,d2)=false) orelse
(Subset(l1,l2)=false)

Check 
Delegation

Depth

(depth=0)

Delegator
Authorization 

Edges

AllDtrAuthEdges

EDGE

Constraint 
Violation

EDGE

Depth
Violation
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Delegation
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Figure 8: CPN Model for Delegation Constraint Violation Detection

We then formulate queries for delegation depth violation and delegation constraint violation.

Both queries return empty list, which ensures that our model is free from both types of violation.
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5.5 SoD Violation Detection

Separation of duty violations can be static or dynamic. Static separation of dutycan be with respect

to the user-role assignment or permission-role assignment. In DDS system we have two different

types of SSoD–one with respect to user-role assignment and the other withrespect to permission-

role assignment. Let us take the example of SSoD for permission-role assignment. No role should

have permissionsp16 (Signal VC for Dengue Virus) andp17 (Signal VC for Dengue Hemorrhagic

Fever) at the same time. Thus, if a role does have these conflicting permissions, SSoD will be

violated.

Figure 9 shows the CPN model to detect separation of duty violations. The model will perform

a reverse depth first search starting from the vertices associated with theSoD edge. The ancestors

of the two vertices will be stored in two separate places calledV1 AncestorsandV2 Ancestors

respectively, together with their corresponding ˆµ value. If there exist a common ancestor and

there is an overlap of spatio-temporal points, then SoD is violated. The modelwill then send the

problematic SoD and its ancestor toSoD ViolateandSoD Violate Ancestorplaces respectively to

notify the error.

The initial marking of theSoD Edges, denoted byAllSoDEdgesis populated by all SoD edges

in the access control model. The initial markings ofAuthorization Edges V1andAuthorization

Edges V2, denoted byAllAuthEdges, consists of all edges except the SoD edges in the access

control graph. The content ofAllSoDEdgesis shown below.

val AllSoDEdges=

1‘("State Epi","State VC","RSSD",["a","c"],["A","B","C","E"],"",0)++

1‘("State Epi","Juris VC","RSSD",["a","c"],["A","B","C","E"],"",0)++

1‘("Juris Epi","State VC","RSSD",["a","c"],["A","B","C","E"],"",0)++

1‘("Juris Epi","Juris VC","RSSD",["a","c"],["A","B","C","E"],"",0)++

1‘("Clinic Epi","State VC","RSSD",["a","c"],["A","B","C","E"],"",0)++
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1‘("Clinic Epi","Juris VC","RSSD",["a","c"],["A","B","C","E"],"",0)++

1‘("p11","p15","PSSD",["a"],["A","B","C","E"],"",0)++

1‘("p16","p17","PSSD",["a"],["A","B","C","E"],"",0);

(v1,v2,etype,dSoD,lSoD,dtr,depth)

(v,intersection(dSoD,intersection(d1,d2)),
intersection(lSoD,intersection(l1,l2)))
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Figure 9: CPN Model for Separation of Duty Violation Detection

We then formulate a query to check for SoD violations. Our analysis revealsvarious SoD vio-

lations. For example, there is a SoD violation caused by assigning the roleState VCtwo conflicting

permissionsp11 and p15. Similarly, there is another SoD violation caused because roleState Epi

gets conflicting permissionsp16 andp17. Our analysis reveals that there is no SoD violation caused

by any user being assigned conflicting roles.
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5.6 Soundness and Completeness

The set of problems that we considered in this work are by no means exhaustive. For example, it is

quite possible that the spatio-temporal constraints have been incorrectly specified but this error does

not lead to isolated entities, infeasible path, SoD violation or delegation constraint violation and

will not be detected. However, with respect to the problems that we do detect, we can make a few

comments about the soundness and completeness. If the CPN model has been correctly constructed

and populated using the access control graph, then we can prove soundness and completeness

properties with respect to the given problem.

Consider, for example, the problem of detecting isolated users as shown inFigure 6. Let us

recall how this CPN will operate. The initial markingAllUsersare populated using the user entities

in the access control graph. Similarly, the initial markingAllUserAssignare initialized usingUA

andRDU edges in the access control graph. The transitionMove Assigned Userwill fire as long

as some useru matches the useru in the edge(u,v,etype,d1, l1,dtr,depth). This firing results in

removingu and(u,v,etype,d1, l1,dtr,depth) from UsersandUser Assign Edgesrespectively and

addingu to Assigned Users. When no more transitions can be fired, the terminal state has been

reached and the placeUserscontain isolated users.

Suppose there is some isolated userui in the access control graph that is not detected by this

CPN model. In other words, userui is not in theUsersplace when the terminal state is reached.

This leads to two possibilities: either userui is in Assigned Usersplace in the terminal state or it

is not. If ui is in Assigned Users, then there exists an edge of type(ui ,v,etype,d1, l1,dtr,depth)

in the initial markingAllUserAssign. This is possible only if there is a correspondingUA or RDU

edge in the access control graph involvingui ; this, in turn, precludesui from being an isolated user.

If ui is not in Assigned Usersin the terminal state and it is also not inUsers, thenui was not in

the initial markingAllUsers. This is possible only if the access control graph does not containui .

Since both the cases are not possible, it means that userui must be in theUsersplaces when the
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terminal state is reached. Thus, all isolated users are detected by the CPN model.

Supposeu j is detected as an isolated user by the CPN. This implies thatu j is in the placeUsers

in the terminal state. In other words, there is no edge of the form(u j ,v,etype,d1, l1,dtr,depth)

in the initial markingAllUserAssign. In other words, there is no UA edge orRDU edge associated

with u j in the access control graph. This implies thatu j is indeed an isolated user.

6 Improving the Analysis Performance

CPN explores the state space to check for violations of access control properties. Our investiga-

tions reveal that even a modest increase in the number of places and transitions cause a significant

increment to the number of states of the state space. This state explosion problem increases the

verification time substantially. In the worst case, if the number of states becomes too large, the

model cannot be verified. Consequently, we need to find techniques forreducing the size of the

CPN model.

We looked at the various CPN models that we generated for detecting problems with the access

control specifications. We observed that the number of states generatedin the CPN model were

related to the number of edges traversed in the access control graph fordetecting a specific problem.

We looked at the number of states generated for each problem. For detecting delegation constraint

violation, the number of states generated is of the orderO(|PD|+ |RD|) where |PD| and |RD|

represent the number of permission delegation edges and role delegation edges respectively. Since

typically the number of delegation edges will be small, we did not think it necessary to produce

further optimization. We next considered the problem of detecting infeasiblepaths. In this case,

the number of states generated is of the orderO(|U ||E|+ |IP|) where|U | is the number of users,

|E| is the number of edges in the access path, and|IP| is the number of infeasible paths. Next,

consider the problem of detecting SoD violations. Here, the number of statesgenerated is of the

order ofO(|SD||E|+ |SoD|) where|SD| is the number of SoD edges,|E| is the number of edges in
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the access path, and|SoD| is the number of SoD violations. Thus, one way to reduce the number

of states is to decrease the number of edges in the graph.

One way of reducing the number of edges is to flatten the hierarchy. We did some initial

experiments in order to understand the effect of flattening the hierarchy on the state space. We

created a very simple access control graph consisting of one user, oneuser-role assignment, one

permission-role assignment, and multiple levels of hierarchy. With 10 levels of hierarchy the state

space reduction was 40%, which is quite significant. This motivated us to transform the access

control graph to a smaller graph, which we term, theprivilege acquisition graph.

6.1 Privilege Acquisition Graph

In order to generate a smaller number of states in the CPN model that does efficient verification,

we propose to transform the access control graph into the privilege acquisition graph. The privilege

acquisition graph essentially flattens out the hierarchical structure.

It captures the following relationships:UA′, PA′, PO′ andSD′ whereUA′ represents the user-

role assignment that occurs either directly or indirectly via hierarchy and delegation constraints,PA′

represents permission-role assignment that occurs either directly or indirectly due to inheritance

and delegation,PO′ corresponds to the permission-object relationship (represented byPO in the

access control graph), andSD′ corresponds to separation of duty (represented bySD in the access

control graph). Algorithm 1 shows the transformation process. Step 1 adds all the vertices of

the access control graph to the privilege acquisition graph. Step 2 converts all the act-path in the

access control graph toUA′ edges in the privilege acquisition graph. Since the act-path consists

of a sequence of activation hierarchies, the activation hierarchies areflattened out at this point.

Step 3 converts all the u-path in the access control graph toPA′ edges in the privilege acquisition

graph. Since the u-path consists of a sequence of permission inheritancehierarchies, the permission

inheritance hierarchies are flattened out in this step. Steps 4 and 5 adds allthe PO, SD edges in
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the access control graph toPO′, SD′ edges in the privilege acquisition graph respectively. The time

complexity to generate the privilege acquisition graph isO(VE), whereV is the number of vertices

andE is the number of edges of the original access control graph.

Theorem 1

The role authorizations and user authorizations are equivalent in the access control graphG(V,E,µ,ρ)

and its corresponding privilege acquisition graphG′(V ′
,E′

,µ′).

Proof First, let us consider the case of role authorizations. Suppose rolev ∈ R is authorized for

permissionv′ ∈ P in the access control graphG. This is possible if there exists an u-path in the

access control graph(v,v1,v2, . . . ,vn,v′) andµ̂(v,v′) 6= /0. By step 3 of algorithm 1, if there exists

an u-path(v,v1,v2, . . . ,vn,v′) in the original graphG, it will be transformed to aPA′ edge in its

corresponding privilege acquisition graphG′ with the same spatio-temporal constraint (µ′(v,v′) =

µ̂(v,v′)). Hence, for every u-path inG, there exists aPA′ edge inG′ that authorizesv to acquire

permissionv′ at µ̂(v,v′) To show the converse, let us consider an edge(v,v′) ∈ PA′ in G′. Since

edge(v,v′) ∈ PA′ in G′ is created from some u-path inG, every role authorization inG′ has a

corresponding u-path inG that gives rolev permissionv′ at the same spatio-temporal points. Thus,

for every edge(v,v′) ∈ PA′, there exists an u-path inG that gives rolev permissionv′.

Next, let us consider user authorizations. Let userv ∈ U be authorized for permissionv′ ∈ P

with respect to objectv′′ ∈ O in the access control graphG. This is possible if there exists an acs-

path(v,v1,v2, . . . ,vi , . . . ,v′,v′′) such thatvi ∈ R for somei, (v1, . . . ,vi) is an act-path,(vi , . . . ,v′) is

an u-path,(v′,v′′) ∈ POandµ̂(v,v′′) 6= /0. Corresponding to this acs-path, the algorithm to generate

the privilege acquisition graph creates three edges in Steps 2, 3, and 4. The edges created are

(v,vi) ∈ UA′ whereµ′(v,vi) = µ̂(v,vi), (vi ,v′) ∈ PA′ whereµ′(vi ,v′) = µ̂(vi ,v′), and(v′,v′′) ∈ PO′

whereµ′(v′,v′′) = µ(v′,v′′). Moreover,µ′(v,vi)∩µ′(vi ,v′)∩µ′(v′,v′′) = µ̂(v,v′′). These three edges

(v,vi), (vi ,v′) and(v′,v′′) give the userv permissionv′ to access objectv′′ at pointsµ̂(v,v′′) in graph

G′. To prove the converse, let us assume that the privilege acquisition graph G′ provides some user
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Algorithm 1 Transform access control graph to privilege acquisition graph
{Input: Access control graphG(V,E,µ,ρ)}
{Output: Privilege acquisition graphG′(V ′

,E′
,µ′)}

BEGIN
V ′ ← /0
E′ ← /0
µ′ ← /0
{Step 1: Add all vertices of the access control graph to the privilegeacquisition graph}
for all v∈V do

V ′ ←V ′∪v
end for
{Step 2: Transform all act-path starting at each user vertex of the access control graph to the set of edges
of the privilege acquisition graph (UA′)}
for all v∈U do

for all act-pathacti = (v, . . . ,v′) do
E′ ← E′∪ (v,v′)
µ′(v,v′) ← µ̂(v,v′)
µ′ ← µ′∪µ′(v,v′)

end for
end for
{Step 3:Transform all u-path starting at each role vertex and endingat the permission vertex of the access
control graph to the set of edges of the privilege acquisition graph (PA′)}
for all (v∈ R)∧ (v′ ∈ P) do

for all u-pathui = (v, . . . ,v′) do
E′ ← E′∪ (v,v′)
µ′(v,v′) ← µ̂(v,v′)
µ′ ← µ′∪µ′(v,v′)

end for
end for
{Step 4: Add all PO edges from the access control graph to the set of edges of the privilege acquisition
graph (PO′)}
for all (v,v′) ∈ POdo

E′ ← E′∪ (v,v′)
µ′(v,v′) ← µ(v,v′)
µ′ ← µ′∪µ′(v,v′)

end for
{Step 5: Add all SDedges from the access control graph to the set of edges of the privilege acquisition
graph (SD′)}
for all SD edgesdi = (v,v′) do

E′ ← E′∪ (v,v′)
µ′(v,v′) ← µ(v,v′)
µ′ ← µ′∪µ′(v,v′)

end for
ReturnG′(V ′

,E′
,µ′)

END

59



u permissionp for objecto. This implies that there exists three edges of the(u, r)∈UA′, (r, p)∈PA′

and(p,o)∈PO′ and(µ′(u, r)∩µ′(r, p)∩µ′(p,o) 6= /0. The existence of these three edges is possible

only if there is an act-path(u,v1,v2, . . . ,vn, r), an u-path(r,v′1,v
′
2, . . . ,v

′
m, p), an edge(p,o) ∈ PO

in the corresponding access control graph. Moreover,µ′(u, r) = µ̂(u, r), µ′(r, p) = µ̂(r, p), and

µ′(p,o) = µ(p,o). Thus, useru will get permissionp to access objecto at the same spatio-temporal

points in graphG.

Lemma 1

Each isolated entity that exists in the access control graphG is also present in the corresponding

privilege acquisition graphG′ and vice-versa.

Proof Let ui be an isolated user in the access control graph. This means that there is noact-path

starting atui . Consequently, there is no edge inUA′ in the privilege acquisition graph of the form

(ui ,v). Since the edges inUA′ are the only edges joining users to roles in the privilege acquisition

graph,ui is also an isolated entity in the privilege graph. Conversely, letu j be an isolated user in

the privilege acquisition graph. Thus, there is no edge of the form(u j ,v) in UA′. This is possible

only if there is no act-path starting atu j in the access control graph, which implies thatu j is an

isolated entity in the access control graph. We can make similar arguments for isolated roles and

permissions.

Lemma 2

For each infeasible path that exists in the access control graphG, there exists a corresponding

infeasible path in the privilege acquisition graphG′ and vice-versa.

Proof Let P = (v1,v2, . . . ,vn) be an infeasible path in the access control graph where(v1, . . . ,vi)

is an act-path,(vi , . . . ,vn−1) is an u-path and(vn−1,vn) be in PO. SinceP is an infeasible path,

µ̂(v1,vn) = µ̂(v1,vi)∩ µ̂(vi ,vn−1) ∩µ̂(vn−1,vn) = (d, l) where eitherd = /0 or l = /0. The construction

of the privilege graph from this acquisition graph generates the following edges:(v1,vi), (vi ,vn−1),

and(vn−1,vn) where(v1,vi) ∈UA′, (vi ,vn−1) ∈ PA′ and(vn−1,vn) ∈ PO′ andµ′(v1,vi) = µ̂(v1,vi),
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µ′(vi ,vn−1) = µ̂(vi ,vn−1), andµ′(vn−1,vn) = µ̂(vn−1,vn). Thus, µ̂′(v1,vi) = µ̂(v1,vn) = µ̂(v1,vi)

∩µ̂(vi ,vn−1) ∩µ̂(vn−1,vn) = (d, l) where eitherd = /0 or l = /0. Thus, the path(v1,vi ,vn−1,vn) is an

infeasible path in the privilege acquisition graph. The converse can be similarly proved.

Lemma 3

For every SoD violation that exists in the access control graphG, there exists a corresponding SoD

violation in the privilege acquisition graphG′ and vice-versa.

Proof Suppose the access control graph has a SSoD role-permission violation of the form(r1, r2, . . . , rn, pi),

(r1, r ′2, . . . , r
′
n, p j) and(pi , p j) where(r1, r2, . . . , rn, pi), (r1, r ′2, . . . , r

′
n, p j) are u-paths and(pi , p j) is

a SoD edge and ˆµ(r1, pi)∩ µ̂(r1, p j)∩ µ̂(pi , p j) = (d, l) whered 6= /0 and l 6= /0. By construc-

tion, the following edges are generated for the privilege acquisition graph: (r1, pi) and(r1, p j) are

edges inPA′ and(pi , p j) is an edge inSD′. Sinceµ′(r1, pi) = µ̂(r1, pi), µ′(r1, p j) = µ̂(r1, p j), and

µ′(pi , p j) = µ̂(pi , p j), we haveµ′(r1, pi)∩µ′(r1, p j)∩µ′(pi , p j) = (d, l). Thus, the edges(r1, pi),

(r1, p j) and (pi , p j) indicate there is a SoD violation. The converse can be proved in a similar

manner. We can also prove the other types of SoD constraint violations similarly.

Theorem 2

The privilege acquisition graph accurately captures isolated entities, infeasible paths, and SoD

violations.

Proof The proof follows from Lemmas 1, 2, and 3.

Note that, the privilege acquisition graph contains less information than the corresponding

access control graph. For example, information about the role hierarchy is no longer present in

the privilege acquisition graph. The CPN analysis of privilege acquisition graphs will detect the

problems, but it may not have enough information to identify the source of theproblem. Thus, if

a problem exists, the access control graph or its subgraph related to the problem must be analyzed.

For instance, if the analysis of the CPN corresponding to the privilege acquisition graph identifies
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that there is an infeasible path(v1,vi ,vn−1,vn), then to detect where the spatio-temporal constraints

have been violated we need to find the subgraph of the access control graph involving these vertices

and analyze it. Similarly, if the CPN analysis of the privilege acquisition graph reveals a potential

SoD violation involving edges(r1, pi), (r1, p j), and(pi , p j), the corresponding subgraph of the

access control graph must be analyzed to identify the source of the problem.

The subgraph can be generated by performing the reverse depth firstsearch from both ends of

the SoD edge in the original access control graph. The time complexity to generate the subgraph

is O(|V|+ |E|). Once the subgraph is generated, we can replace the set of edges of the access

control graph in the CPN model with the set of edges of the subgraph and perform the analysis in

the same manner. This significantly reduces the analysis time because the size of the subgraph is

substantially smaller.

6.2 DDS Example Privilege Acquisition Graph

We use Algorithm 1 to transform the access control graph of the DDS system into the privilege

acquisition graph, shown in Figure 10. The new spatio-temporal constraints can be calculated from

the µ̂(v,v′) function as described in Algorithm 1. For instance,µ(State Epi, p1) in the condensed

graph can be calculated from ˆµ(State Epi, p1) of the original access control graph, which equals to

µ(State Epi,Juris Epi)∩µ(Juris Epi, p1) = [b,B]∩ [a,B] = [b∩a,B∩B] = [a,B]. Note that in this

example durationb meansAlways, hence,b∩a= a. We compute other spatio-temporal constraints

in the same manner. All new spatio-temporal constraints are shown in Table 4.

6.2.1 Problem Detection using Privilege Acquisition Graph

In this section, we show how to detect infeasible paths and separation of duty violations using our

modified approach.
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Figure 10: DDS System’s Privilege Acquisition Graph

Infeasible Path Detection

We define the types in the model using colorset as shown in Section 5. We usethe privilege

acquisition graph instead of the access control graph to populate the initial markings of our pre-

vious CPN model shown in Figure 7. The initial marking forAuthorization Edges, denoted as

AllAuthEdgesis populated by theUA′ and thePA′ edges of the privilege acquisition graph. The

rest of the initial markings for other places are the same as before.

We allow the execution of this model and run the queries to detect infeasible paths. The analysis

result shows that the system contains infeasible path. The query shows that a set of states{42,43}

suffers from the infeasible path. To check this, we use theprint command to check the descriptor

(environmental variables) of the state. For instance, let us check the state43. Below is part of the

content of state 43.

Authorization Path = 1‘("Ben","Clinician","UA",["a"], ["C"],"",0)++

1‘("Clinician","p17","PA",["c"], ["C"],"",0);

The result shows that the infeasible path occurs because userBencannot acquirep17 assigned

to him via theClinician role. The percentage reduction in the number of states when using the

privilege acquisition graph instead of the access control graph is only 8 percent in this case.
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In this analysis, we do not have enough information about howBenwas assigned theClinician

role, whether through direct assignment or indirect assignment by hierarchy or delegation. If we

are interested in knowing the source of conflict, we have to verify the original graph. However,

since we know that onlyp17 causes the problem, we can bypass the verification of other irrelevant

entities. To do this, from the access control graph, we create a subgraph consists of all entities

related withp17 by performing a reverse depth first search starting fromp17. The subgraph derived

from the access control graph is shown in Figure 11.
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Figure 11: Subgraph of the related entities ofp17

We then run the same CPN model for the derived subgraph, which is similar to Figure 2. We

observe the state variable, which shows thatp17 is the delegated permission which has temporal

conflict with roleClinician.

SoD Violation Detection

We run our previous CPN model for detecting the SoD violation shown in Figure 9 on the priv-

ilege acquisition graph. We then create the state space graph and execute the query to detect con-

flicts. The percentage reduction in the number of states obtained by using theprivilege acquisition

graph is 25 percent. The tools return a list of possible conflict states{38,46,48,50,53,55,56,57,58,59}.
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We run the print command to show the value of environmental variables of statenumber 46. Below

is part of the content of state 46 which shows that the conflict occurs betweenp16 andp17.

SoD Violate Ancestor = 1‘("State Epi",["a"], ["B"]);

SoD Violate = 1‘("p16","p17","PSSD",["a"], ["A", "B", "C", "D", "E"], "", 0);

Since CPNs based on the privilege acquisition graph can detect conflicts but not identify the

source, we create a subgraph from the access control graph by performing a reverse depth first

search starting from node forp16 and then forp17. The resulting subgraph is shown in Figure 12.

This subgraph can be analyzed as described in Section 5 to reveal the source of conflict. Since the

subgraph is much smaller than the original access control graph, it will takesignificantly less time.

We then run the model again on the derived subgraph. This time the model indicates thatp17 is

the inherited permission which together with the assigned permissionp16 of role State Epihave

violated the SSoD for permission-role assignment.
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Figure 12: Subgraph of the related entities ofp16 andp17
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7 Conclusion and Future Work

Traditional access control models base their authorization decisions solelyon the attributes of the

user (identity, security level, or role). Since they do not take into accountenvironmental factors,

such as time and location, in making access decisions, they may not be very suitable for mobile

computing or pervasive computing applications. Towards this end, we propose a spatio-temporal

role-based access control model where authorization decisions depend on the role of the user and

other spatio-temporal constraints.

We investigated how the various entities and relationships in RBAC may be impactedby time

and location and describe how the traditional RBAC can be enhanced by spatio-temporal con-

straints. The various features of the model are expressed using logicalconstraints and the formal

semantics are specified using a graph-theoretic notation. The various features of the model may in-

teract with each other in subtle ways resulting in conflicts and other inconsistencies. Consequently,

we need to analyze the access control constraints of the application to ensure that such problems

do not occur. Since manual analysis is tedious and error-prone, we show how the analysis can

be automated using Coloured Petri Nets. For large complex applications, the analysis may take a

significant amount of time. Towards this end, we show how to speed up the analysis by condensing

the graph representing the application and verifying this condensed graph.

In this work, we have made some simplifying assumptions. We have assumed thatthe precise

locations of subjects and objects are known at any given point of time. However, in practice this

may not be feasible. Specifically, as pointed out by Shin and Atluri [43], approximate locations are

maintained in mobile environments to minimize the updates. Some related works [1, 43]exist on

how to use imprecise location data to make access decisions – we plan to incorporate some of these

approaches in our future work. A similar problem exists with representing temporal information. In

a future work, we plan to provide a more realistic representation of time and location in our models;

this, in turn, will necessitate the use of alternative tools for analyzing problems with access control
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specifications.

Since pervasive computing applications will typically be modeled as dynamic workflows, we

need to augment our model to support them. The new model must be analyzedto ensure that

authorization constraints and the various workflow dependencies do notgive rise to conflicts and

the workflow can execute correctly and complete. We also plan to implement ourmodel. Im-

plementation will require us to investigate additional issues, such as, how to store location and

temporal information and perform operations involving spatio-temporal constraints in an efficient

manner. Once we have an implementation, we plan to validate our model using the example real-

world application for the dengue decision support system. Implementing the model for real-world

applications will further help refine our model and make it more useful.
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NAME DESCRIPTION CONSTRAINTS

µ ρ
(Alice,State Epi) User-Role Assignment [b, A∪B]
(Bob,Clinic Epi) User-Role Assignment [b, C]
(Ben,Clinician) User-Role Assignment [a, C]
(Charlie,State VC) User-Role Assignment [a, A∪B]
(State Epi,Juris Epi) Permission Inheritance Hierarchy[b, B]
(State VC,Juris VC) Permission Inheritance Hierarchy[a, B]
(Juris VC,Local VC Team) Permission Inheritance Hierarchy[a∪c, E]
(State Epi, p16) Permission-Role Assignment [a, A∪B]
(Juris Epi, p1) Permission-Role Assignment [a, B]
(Juris Epi, p3) Permission-Role Assignment [a, B]
(Juris Epi, p17) Permission-Role Assignment [b, B]
(Clinic Epi, p17) Permission-Role Assignment [b, D]
(Clinician, p1) Permission-Role Assignment [a, C]
(Clinician, p2) Permission-Role Assignment [a, C]
(State VC, p11) Permission-Role Assignment [a, A]
(State VC, p15) Permission-Role Assignment [a, A]
(Juris VC, p1) Permission-Role Assignment [a, B]
(Juris VC, p8) Permission-Role Assignment [a, B]
(Local VC Team, p7) Permission-Role Assignment [a∪c, E]
(Clinician, p17) R2R Permission Delegation [c, C] [Clinic Epi, 1]
(State Epi,State VC) Role Static SoD [b, D]
(State Epi,Juris VC) Role Static SoD [b, D]
(Juris Epi,State VC) Role Static SoD [b, D]
(Juris Epi,Juris VC) Role Static SoD [b, D]
(Clinic Epi,State VC) Role Static SoD [b, D]
(Clinic Epi,Juris VC) Role Static SoD [b, D]
(p11, p15) Permission Static SoD [a, D]
(p16, p17) Permission Static SoD [a, D]

Table 3: DDS Relationships and Constraints
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NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN

(µ)
(Alice,State Epi) User-Role Authorization [b, A∪B]
(Bob,Clinic Epi) User-Role Authorization [b, C]
(Ben,Clinician) User-Role Authorization [a, C]
(Charlie,State VC) User-Role Authorization [a, A∪B]
(State Epi, p1) Permission-Role Authorization [a, B]
(State Epi, p3) Permission-Role Authorization [a, B]
(State Epi, p16) Permission-Role Authorization [a, A∪B]
(State Epi, p17) Permission-Role Authorization [b, B]
(Juris Epi, p1) Permission-Role Authorization [a, B]
(Juris Epi, p3) Permission-Role Authorization [a, B]
(Juris Epi, p17) Permission-Role Authorization [b, B]
(Clinic Epi, p17) Permission-Role Authorization [b, D]
(Clinician, p1) Permission-Role Authorization [a, C]
(Clinician, p2) Permission-Role Authorization [a, C]
(Clinician, p17) Permission-Role Authorization [c, C]
(State VC, p1) Permission-Role Authorization [a, B]
(State VC, p7) Permission-Role Authorization [a, /0]
(State VC, p8) Permission-Role Authorization [a, B]
(State VC, p11) Permission-Role Authorization [a, A]
(State VC, p15) Permission-Role Authorization [a, A]
(Juris VC, p1) Permission-Role Authorization [a, B]
(Juris VC, p7) Permission-Role Authorization [a∪c,E]

(Juris VC, p8) Permission-Role Authorization [a, B]
(Local VC Team, p7) Permission-Role Authorization [a∪c,E]

(State Epi,State VC) Role Static SoD [b, D]
(State Epi,Juris VC) Role Static SoD [b, D]
(Juris Epi,State VC) Role Static SoD [b, D]
(Juris Epi,Juris VC) Role Static SoD [b, D]
(Clinic Epi,State VC) Role Static SoD [b, D]
(Clinic Epi,Juris VC) Role Static SoD [b, D]
(p11, p15) Permission Static SoD [a, D]
(p16, p17) Permission Static SoD [a, D]

Table 4: New Relationships and Constraints
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