Homework 4 Solution

March 4, 2009

Question 1-7 and 9: 10 points each. Question 8 a) and b): 5 points each. Question 8 c) and d): 10 points each.

1. (a) YES. $X^* = XYWZ$
 (b) No. $(XW)^* = XW$, Z is not in there.

2. r satisfies $AD \rightarrow B$, $C \rightarrow DE$, $CD \rightarrow A$, $AE \rightarrow B$. But r does not satisfy $A \rightarrow B$ since the first two tuples of r have the same values for A, but different values for B.

3. (a) $A^* = ABEC$
 (b) $(AE)^* = ABEC$
 (c) $(ADE)^* = ABCDEI$

4. To see that F and G are equivalent, we need to verify that every FD in F is in G^*, and vice versa. We first check if $F \subseteq G^*$: (i) $A^* = ACD$, so $A \rightarrow C$ is in G^*. (ii) $AC_G^* = ACD$, so $AC \rightarrow D$ is in G^*. (iii) $(E)_G^* = ACDEH$, so $E \rightarrow AD$ is in G^*.
Next we verify if $G \subseteq F^*$: (i) $(A)_F^* = ACD$, so $A \rightarrow CD$ is in F^*. (ii) $(E)_F^* = ACDE$, so $E \rightarrow AHE$ is not in F^*.
Thus F and G and NOT equivalent.

5. (a) Let $F = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow D\}$. We need to obtain an equivalent set of FDs that satisfies the three properties of a minimal cover.
 • Right side of each FD in F must ne a single attribute: so we replace F by $F_1 = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow D\}$.
 • No extraneous attributes on the left side. We first check if A can be deleted from $AB \rightarrow D$. We can do so if $B \rightarrow D$ follows from F_1. Since $(B)_F^* = BC$, the answer is NO.
 We next check if B can be deleted from $AB \rightarrow D$. We can do if $A \rightarrow D$ follows from F_1. Since $(A)_F^* = ABCD$, the answer is YES. Let $F_2 = \{A \rightarrow BC, B \rightarrow C, A \rightarrow D\}$.
 • No redundant FDs: $A \rightarrow C$ can be deleted from F_2. Minimal cover = \{A $\rightarrow B$, B $\rightarrow C$, A $\rightarrow D$\}.
(b) Let \(F = \{ A \to C, AB \to C, C \to DI, EC \to AB, EI \to C \} \). We need to obtain an equivalent set of FDs that satisfies the three properties of a minimal cover.

- We replace \(F \) by \(F_1 = \{ A \to C, AB \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C \} \).
- No extraneous attributes on left side: it can be checked that \(B \) can be deleted from \(AB \to C \). Let \(F_2 = \{ A \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C \} \).
- No redundant FDs: None of the FDs are redundant.

Minimal Cover is \(\{ A \to C, C \to D, C \to I, EC \to A, EC \to B, EI \to C \} \).

6. (a) \(\rho \) is loss since \(AB \cap BCD = B \), and neither \(B \to AB \) not \(B \to BCD \) is true.

(b) The initial table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>a2</td>
<td>a3</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
</tr>
<tr>
<td>a1</td>
<td>b4</td>
<td>b5</td>
<td>a4</td>
<td>b6</td>
<td>a6</td>
</tr>
<tr>
<td>b7</td>
<td>a2</td>
<td>b8</td>
<td>a4</td>
<td>a5</td>
<td>a6</td>
</tr>
<tr>
<td>b9</td>
<td>b10</td>
<td>a3</td>
<td>a4</td>
<td>a5</td>
<td>a6</td>
</tr>
</tbody>
</table>

By applying the three FDs, we obtain a tableau that has one row consisting entirely of a’s. Hence \(\rho \) is lossless.

7. • No change if applying step 1.
• We can check that \(F \) does not have any extraneous FDs.
• For step 3, we need only consider \(AB \to C \). We can see that \(B \) is redundant by considering \((A)_C \). Since \((A)_C = ABC \), \(B \) is redundant. Thus, we replace \(AB \to C \) by \(B \to C \) to get the minimal cover \(\{ A \to C, C \to D, A \to B \} \). Unfortunately, this is not a minimal cover since the FD \(A \to B \) is now extraneous.

8. (a) \(IS \) is a candidate key since \((IS)^+ = IBO \) and \(S^+ = SD \).
(b) \(IS \) is the only candidate key since neither \(I \) nor \(S \) appear in the right hand side if any FD. Therefore any candidate key will have to contain both \(I \) and \(S \). But since \(IS \) forms a candidate key, it is the only candidate key.
(c) One possible decomposition is obtained as follows:
(d) We first find the minimal cover \(F = \{ S \to D, I \to B, IS \to Q, B \to O \} \). It turns that \(F \) is minimal. Thus \{SD, IB, ISQ, BO\} is required decomposition. Notice \(ISQ \to BOISQD \), hence the decomposition has lossless property.

9. Let’s rewrite the relation scheme as \(R = \text{EPBT and FDs as } EP \to T, P \to B, E = EMP_ID, P = \text{PROJECT, } B = \text{PROJECT_BUDGET, } T = \text{TIME_SPENT_BY_PERSON_ON_PROJECT.} \)

(a) Since \(EP \) is the only candidate key of \(R \), both \(E \) and \(P \) are prime attributes while \(T \) and \(B \) are nonprime attributes.
(b) R is not in 3NF since $P \rightarrow B$ holds in R, P is not a superkey and B is not a prime attribute.

(c) R is not BCNF since it’s not 3NF.