Fault Tolerant Computing
CS 530
Reliability Analysis

Yashwant K. Malaiya
Colorado State University

Reliability Analysis

• Permanent faults
 • The unit will eventually fail. Thus reliability “decays”.
• Temporary faults
 • Faults come and go. Often Steady state characterization is possible.
 • Permanent faults subject to repair are modeled as temporary faults.
• Design faults
 • Reliability growth occurs during testing & debugging. We will study this under “Software Reliability” later.

Why Mathematical Analysis?

• You can determine reliability by constructing a large number of copies of the target system, and collecting failure data. However, that would be infeasible except for special cases.
• Thus we need to be able to determine the reliability before a system is built, by using the information we have about the components and the proposed architecture.

Reliability Analysis: Outline

Reliability measures:
• Reliability, availability, Transaction Reliability,
• MTTF and R(t), MTBF

Basic Cases
• Single unit with permanent failure, failure rate
• Single unit with temporary failures

Combinatorial Reliability: Block Diagrams
• Serial, parallel. K-out-of-n systems
• Imperfect coverage

Redundancy
• TMR, spares
• Generalized
Basic Reliability Measures

- **Reliability**: durational (default)
 \[R(t) = P\{\text{correct operation in duration } (0,t)\} \]
 - This is the default definition of reliability.
- **Availability**: instantaneous
 \[A(t) = P\{\text{correct operation at instant } t\} \]
 - Applied in presence of temporary failures
 - A steady-state value is the expected value over a range of time.
- **Transaction Reliability**: single transaction
 \[R_s = P\{\text{a transaction is performed correctly}\} \]
 - The term “Reliability” is sometimes used with a non-standard meaning.

Mean Time to Failure (MTTF)

- There is a very useful general relation between MTTF and \(R(t) \). Here \(T \) is time to failure, which is a random variable.

\[
MTTF = E(T) = \int_0^\infty t \cdot f(t) \, dt
= \int_0^\infty \frac{dR(t)}{dt} \, dt
= \left[-tR(t) \right]_0^\infty + \int_0^\infty R(t) \, dt
\]

Thus, \(MTTF = \int_0^\infty R(t) \, dt \)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(t))</td>
<td>Probability of failure in ((0, t))</td>
</tr>
<tr>
<td>(E(T))</td>
<td>Expected time to failure</td>
</tr>
<tr>
<td>(f(t))</td>
<td>Failure density</td>
</tr>
<tr>
<td>(dR(t)/dt)</td>
<td>Rate of change of reliability</td>
</tr>
</tbody>
</table>

Mean time to ...

- **Mean Time to Failure (MTTF)**: expected time the unit will work without a failure.
- **Mean time between failures (MTBF)**: expected time between two successive failures
 - Applicable when faults are temporary.
 - The time between two successive failures includes repair time and then the time to next failure.
 - Approximately equal to
- **Mean time to repair (MTTR)**: expected time during which the unit is non-operational.

Mean Time to Repair (MTTR)

- MTBF = MTTF + MTTR
- MTBF, MTTF are same same when MTTR = 0
- Steady state availability = MTTF / (MTTF + MTTR)

Failures with Repair

- Time between failures: time to repair + time to next failure
- MTBF = MTTF + MTTR
- MTBF, MTTF are same same when MTTR = 0
- Steady state availability = MTTF / (MTTF + MTTR)
Mission Time (High-Reliability Systems)

- Reliability throughout the mission must remain above a threshold reliability \(R_{th} \).
- **Mission time** \(T_{M} \): defined as the duration in which \(R(t) \geq R_{th} \).
- \(R_{th} \) may be chosen to be perhaps 0.95.
- Mission time is a strict measure, used only for very high reliability missions.

Two Basic cases

- We next consider two very important basic cases that serve as the basis for time-dependent analysis.
 1. **Single unit subject to permanent failure**
 - We will assume a constant failure rate to evaluate reliability and MTTF.
 2. **Single unit with temporary failures**
 - System has two states Good and Bad, and transitions among them are defined by transition rates.
 - Both of these are example of Markov processes.

Constant Failure Rate Assumption

- We will always assume a constant failure rate.
 - It keeps analysis simple.
 - During operating life, the failure rate is approximately constant.
- **The Bath-Tub curve**:
 - In the beginning the failure rate is high because the weaker devices fail due to “infant mortality”. Near the end the failure rate is again high due to “aging” or wear-out of devices.

Basic Cases: Single Unit with Permanent Failure

- Failure rate is the probability of failure/unit time
- **Assumption**: constant failure-rate \(\lambda \)

\[
\frac{dp_0(t)}{dt} = -\lambda \ p_0(t) \quad \text{since the rate of leaving state 0 depends on probability of being in state 0}
\]

\[
p_0(0) = 1 \quad \text{initial condition}
\]
Single Unit with Permanent Failure (2)

\[\frac{dp_0(t)}{dt} = -\lambda p_0(t) \]
\[p_0(0) = 1 \]

Solution: \(p_0(t) = e^{-\lambda t} \)

Since \(R(t) = p_0(t) \)

\[R(t) = e^{-\lambda t} \]

"The Exponential reliability law"

At \(t = \frac{1}{\lambda} \), \(R(t) = e^{-1} = 0.368 \)

Single Unit: Permanent Failure (3)

\[R(t) = e^{-\lambda t} \]

\(A(t) \) is same as \(R(t) \) in this case.

\[MTTF = \int_0^\infty R(t) dt = \int_0^\infty e^{-\lambda t} dt = \left[-\frac{e^{-\lambda t}}{\lambda} \right]_0^\infty = \frac{1}{\lambda} \]

\[\text{Ex 1:} \text{ a unit has MTTF = 30,000 hrs. Find failure rate.} \]
\[\lambda = 1/30,000 = 3.3 \times 10^{-5} / hr \]

\[\text{Ex 2: Compute mission time} \ T_M \]
\[\text{if} \ R_M = 0.95 \]
\[e^{-\lambda T_M} = 0.95 \]
\[T_M = -\ln(0.95)/\lambda = 0.051/\lambda \]

\[\text{Ex 3: Assume} \ \lambda = 3.33 \times 10^{-5} \text{ and} \]
\[R_M = 0.95 \text{ find} \ T_M \]
\[\text{Ans:} \ T_M = 1538.8 \text{ hrs (compare with MTTF = 30,000)} \]

Single Unit: Temporary Failures(1)

- Temporary: intermittent, transient, permanent with repair

\[\text{Good} 0 \]
\[\lambda \]
\[\text{Bad} 1 \]

\[\frac{dp_0(t)}{dt} = -\lambda p_0(t) + \mu p_1(t) \]
\[\frac{dp_1(t)}{dt} = +\lambda p_0(t) - \mu p_1(t) \]

Note state diagram & Differential equations for Markov modeling

\[p_0(t) = p_0(0)e^{-\lambda t} + \frac{\mu}{\lambda + \mu}(1 - e^{-\lambda t} + \mu t) \]

Similarly we can get an expression for \(p_1(t) \), however it is not needed since \(p_1(t) = 1 - p_0(t) \).

Single Unit: Temporary Failures(2)

- \(p_0(t) = p_0(0)e^{-\lambda t} + \frac{\mu}{\lambda + \mu}(1 - e^{-\lambda t} + \mu t) \)

\(\text{Availability} \ A(t) = p_0(t) \)

Thus \(A(t) = p_0(0)e^{-\lambda t} + \frac{\mu}{\lambda + \mu}(1 - e^{-\lambda t} + \mu t) \)

- Note that steady state probabilities exist:

\[t \to \infty, \ p_0(t) = \frac{\mu}{\lambda + \mu} \]
\[p_1(t) = \frac{\lambda}{\lambda + \mu} \]

- Steady state availability is \(\frac{\mu}{\lambda + \mu} \)
Single Unit: Temporary Failures (3)

- Reliability (durational)
 \[R(t) = P\{\text{no failures in } (0, t)\} \]
 \[= P\{\text{in Good0 at } t\} \]
 \[= e^{-\lambda t} \]

 same as permanent failure

- Thus MTTF \(= \frac{1}{\lambda} \)

- Mission time: also same

Note that when we say no failures in (0,t), even a brief failure is a failure. Thus R(t) may be too strict a measure when brief failures may be acceptable.

Combinatorial Reliability

This is a part of classic reliability theory.

Objective is: Given a
- systems structure in terms of its units
- reliability attributes of the units
- some simplifying assumptions

We need to evaluate the overall reliability measure.

There are two extreme cases we will examine first:
- Series configuration
- Parallel configuration
- Other cases involve combinations and other configurations.

Note that conceptual modeling is applicable to \(R(t), A(t), R_t(t) \). A system is either good or bad.

Series configuration

Series configuration: all units are essential. System fails if one of them fails.

Assumption: statistically independent failures in units.

\[R_s = P[U_1 \text{ good } \cap U_2 \text{ good } \cap U_3 \text{ good }] \]
\[= P[U_1 \text{ good }] P[U_2 \text{ good }] P[U_3 \text{ good }] \]
\[= R_1 R_2 R_3 \]

In general \(R_s = \prod_{i=1}^{n} R_i \)

If \(R_s(t) = e^{-\lambda t} \)
then \(R_s(t) = e^{-\sum \lambda_i t} = e^{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n) t} \)

i.e. system failure rate is the sum of individual failure rates:
\[\lambda_s = \lambda_1 + \lambda_2 + \cdots + \lambda_n \]

This gives us a nice way to estimate the overall failure rate, when all the individual units are essential. This is the basis of the approach used in the popular “Military Handbook” MIL-HDBK-217 approach for estimating the failure rates for different systems.

The failure rates of individual units are estimated using empirical formulas. For example the failure rate of a VLSI chip is related to its complexity etc.
"A chain is as strong as it's weakest link"

Let us see for a 4-unit series system

- Assume \(R_1 = R_2 = R_3 = 0.95, \) \(R_4 = 0.75 \)
- \(R_S = 0.643 \)
- Thus a chain is slightly weaker than its weakest link!

The plot gives reliability of a 10-unit system vs a single system. Each of the 10 units are identical.
- More units, less reliability.

Combinatorial: Series

Combinatorial: Parallel

- Parallel configuration: System is good when least one of the several replicated units is good. A parallel configuration represents an ideal redundant system, ignoring any overhead.

\[
R_s = 1 - P(\text{all units bad}) = 1 - P(U_1 \text{ bad} \cap U_2 \text{ bad} \cap U_3 \text{ bad})
\]

\[
= 1 - P(U_1 \text{ bad})P(U_2 \text{ bad})P(U_3 \text{ bad})
\]

\[
= 1 - (1 - R_s)(1 - R_s)(1 - R_s)
\]

In general \(R_s = 1 - \prod_{i=1}^{n} (1 - R_i) \)

i.e. \(\bar{R}_s = \prod_{i=1}^{n} \bar{R}_i \)

Where \(\bar{R} \) represents \(1-R, \) i.e. "unreliability"

Parallel Configuration: Example

Problem: Need system reliability \(R_s = 1 - \epsilon \)

How many parallel units are needed

if \(R_1 = R_2 = \cdots = R_m = R_n < R_s ? \)

Solution: \(1 - R_s = (1 - R_n)^x \)

\[
\epsilon = (1 - R_n)^x
\]

\[
x = \frac{\ln \epsilon}{\ln (1 - R_n)}
\]

Assume \(R_n = 0.99999 (\epsilon = 0.00001), \)

\(R_n = 0.9 \)

gives \(x = 4. \)

Sometimes it is more convenient to talk in terms of "unreliability"

Remember, we're consider an ideal system