Reliability of Multi-component Systems

- Software system: number of modules.
- Individual modules developed and tested differently: different defect densities and failure rates.
 - Sequential execution
 - Concurrent execution
 - N-version systems

Sequential execution

- Assume one module executed at a time.
- f_i: fraction of time module i under execution; λ_i its failure rate
- Mean system failure rate:

$$\lambda_{sys} = \sum_{i=1}^{n} f_i \lambda_i$$
Sequential Execution (cont.)

- **T**: mean duration of a single transaction
- Module i is called \(e_i \) times during T, each time executed for duration \(d_i \)

\[
f_i = \frac{e_i d_i}{T}
\]

Sequential Execution (cont.)

- System reliability \(R_{sys} = \exp(-\lambda_{sys} T) \)

\[
R_{sys} = \exp\left(-\sum_{i=1}^{n} e_i d_i \lambda_i \right)
\]

- Since \(\exp(-d_i \lambda_i) \) is \(R_i \),

\[
R_{sys} = \prod_{i=1}^{n} (R_i)^{e_i} \]
Concurrent execution

- Concurrently executing modules: all run without failures for system to run
- j concurrently executing modules

$$\lambda_{sys} = \sum_{j=1}^{m} \lambda_j$$

N-version systems

- Critical applications, like defense or avionics
- Each version is implemented and tested independently
- Common implementation uses triplication and voting on the result
N-version Systems (Cont.)

\[
R_{\text{sys}} = 1 - (1-R)^3 - 3R(1-R)^2
\]

- \(R = 0.9 \Rightarrow R_{\text{sys}} = 0.972 \)
- \(\bar{R} = 0.1 \Rightarrow \bar{R}_{\text{sys}} = 0.028 \)

N-version systems: Correlation

- Correlation significantly degrades fault tolerance
- Significant correlation common in N-version (Knight-Leveson)
- Is it cost effective?
N-version systems: Correlation

- 3-version system
- q_3: probability of all three versions failing for the same input.
- q_2: probability that any two versions will fail together.
- Probability P_{sys} of the system failing

$$P_{sys} = q_3 + 3q_2$$

N-version systems: Correlation

- Example: data collected by Knight-Leveson; computations by Hatton
- 3-version system, probability of a version failing for a transaction 0.0004
- in the absence of any correlated failures

$$P_{sys} = (0.0004)^3 + 3(1 - 0.0004)(0.0004)^2$$
$$= 4.8 \times 10^{-7}$$
N-version systems: Correlation

• Uncorrelated improvement factor of 0.0004/4.8 x 10^{-7} = 833.3
• Correlated: q_3 = 2.5\times10^{-7} and q_2 = 2.5\times10^{-6}
• P_{sys} = 2.5\times10^{-7} + 3.2.5\times10^{-6} = 7.75\times10^{-6}
• improvement factor: 0.0004/7.75\times10^{-6} = 51.6
• state-of-the-art techniques can reduce defect density only by a factor of 10!