Test Coverage Measures

- Statement or Block coverage
- Branch or decision coverage
- P-use coverage: p-use pair: variable defined/modified - use as predicate
- C-use coverage: similar -use for computation
- Subsumption hierarchy:
 - Covering all branches cover all statements
 - Covering all p-uses cover all branches
Coverage Based Defect Estimation

- Coverage is an objective measure of testing
 - Directly related to test effectiveness
 - Independent of processor speed and testing efficiency
- Lower defect density requires higher coverage to find more faults
- Once we start finding faults, expect coverage vs. defect growth to be linear

Malaiya, Li, Bieman, Karcich, Skibbe, 1994
Li, Malaiya, Denton, 1998
Logarithmic-Exponential Coverage Model

- Hypothesis 1: defect coverage growth follows logarithmic model
 \[C_0(t) = \frac{\beta_0^0}{N_0^0} \ln(1 + \beta_0^0 t), \quad C_0^0(t) \leq 1 \]

- Hypothesis 2: test coverage growth follows logarithmic model
 \[C_i(t) = \frac{\beta_0^i}{N_i^i} \ln(1 + \beta_i^i t), \quad C_i^i(t) \leq 1 \]

Log-Expo Coverage Model (2)

- Eliminating \(t \) and rearranging,
 \[C^0 = a_i^0 \ln[1 + a_i^1(\exp(a_i^2 C^0) - 1)], \quad C^0 \leq 1 \]
 where \(C^0 \): defect coverage, \(C^i \): test coverage
 \(a_0^i, a_i^1, a_i^2 \): parameters; \(i \): branch cov, p - use cov etc.

- For “large” \(C_i \), we can approximate
 \[C^0 = -A^i + B^i C^i \]
Coverage Model, Estimated Defects

\[
\mu(C^i) = -A^i + B^iC^i, \quad C^i > C_{knee}^i
\]

- Only applicable after the knee
- Assumptions: Stable Software

Location of the knee

\[
C_{knee} = 1 - \left(\frac{E_{\min}}{D_{\min}E_0} \right) D_0
\]

- Based on interpretation through logarithmic model
- Location of knee based on initial defect density
- Lower defect densities cause knee to occur at higher coverage
- Parameter estimation: Malaiya and Denton (HASE ‘98)
Data Sets Used
Vouk and Pasquini

- Vouk data
 - from N version programming project to create a flight controller
 - Three data sets, 6 to 9 errors each
- Pasquini data
 - Data from European Space Agency
 - C Program with 100,000 source lines
 - 29 of 33 known faults uncovered

Defects vs. Branch Coverage

[Graph showing branch coverage and defects expected for Pasquini data set]
Estimation of Defect Density

- Estimated defects at 95% coverage, for Pasquini data (assume 5% dead code)
- 28 faults found, and 33 known to exist

<table>
<thead>
<tr>
<th>Measure</th>
<th>Coverage Achieved</th>
<th>Expected Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>82%</td>
<td>36</td>
</tr>
<tr>
<td>Branch</td>
<td>70%</td>
<td>44</td>
</tr>
<tr>
<td>P-uses</td>
<td>67%</td>
<td>48</td>
</tr>
</tbody>
</table>
Defects vs. P-Use Coverage

Data Set: Vouk 3

Coverage Based Estimation

Data Set: Pasquini et al

Estimates are stable
Current Methods

- Development process based models allow for *a priori* estimates
 - Not as accurate as methods based on test data
- Sampling methods often assume faults found as easy to find as faults not found
 - Underestimates faults
- Exponential model
 - Assume applicability of exponential model
 - We present results of a comparison

The Exponential Model

Data Set: Pasquini et al

- Estimate rises as new defects found
- Estimates very close to actual faults
Related articles

- Frankl & Iakouneno, Proc. SIGSOFT ‘98
 - 8 versions of European Space Agency program, 10K LOC, Single fault reinsertion
- Tom Williams, manuscript 1999
 - analysis from first principles
- Peter G Bishop, SAFECOMP 2002
 - A related model, unreachable code

Observations and Conclusions

- Estimates with new method are very stable
 - Visual confirmation of earlier projections
- Which coverage measure to use?
 - Stricter measure will yield closer estimate
- Some code may be dead or unreachable
 - Found with compile or link time tools
 - May need to be taken into account