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Abstract Digital twins are virtual representations of their physical counterparts. 
Digital twins help us model, monitor, and predict physical things. The digital twin 
concept and implementations are frequently discussed on social media platforms. 
This chapter offers an analysis of the varying conversations of Digital Twins on 
social media, specifically the Twitter platform. Social media offers a platform for 
sharing information that can be analyzed to extract valuable information. Social 
media records can be analyzed to evaluate the velocity, volume, and variety of data 
related to a specific topic. Industry mentions, use cases, and sentiment of the asso-
ciated topics and network graphs are introduced as well as supporting background 
information. The analysis reviews over 24,000 tweets collected between September 
of 2019 and July of 2021. We have identified the most mentioned industries with 
interest in Digital Twins. Among identified trending topics, the top three include the 
Internet of Things, artificial intelligence, and industrial uses. A maturity model for 
digital twins is introduced, informed by the identified trends and their popularity. 
The significance of the findings is discussed. 

1 Defining Digital Twins 

The digital twin concept has many definitions and contributing authors. Jones et al. 
(2020) attribute Michael Grieves, along with John Vickers, with the origination of 
the concept. According to Rosen et al. (2015), the digital twin concept’s roots come 
from NASA’s Apollo program, twinning a spacecraft for training and mission support 
purposes. The term “digital twin” was coined by Shafto et al. in 2010 (Shafto et al. 
2010). Grieves describes a digital twin as consisting of a physical asset, its virtual 
representation, and a two-way connection (Grieves 2014). Grieves is a commonly 
cited author and includes in his definition of a digital twin the existence of a bi-
directional virtual to physical connection. The CIRP encyclopedia definition does 
not include a virtual to physical connection in its description. Tao et al. extend the
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original three-component model by Grieves, the physical, virtual, and bi-directional 
connection between them, to one having five dimensions: the physical environment 
(PE), virtual environment (VE), services of both, the data of the digital twin, and 
the connection (Tao et al. 2018). Eckhart & Ekelhart do not define digital twins as 
having control over their physical counterparts (Eckhart and Ekelhart 2019). Rather 
they focus the definition and capability of the digital twin toward monitoring, visual-
ization, and prediction. In their research of identifying definitions of the digital twin, 
Negria et al. (2017) found that the digital twin’s definition has varied and diverged 
away from solely modeling a physical system. Implementation definitions also range 
from digital twins being an augmented reality (AR) application to machine learning 
models (Schroeder et al. 2016). The amount and timeliness of integration that is 
required for a virtual instance to be considered as a digital twin have not been agreed 
upon. Eckhart & Ekelhart do not specify that a digital twin should secure the phys-
ical counterpart unless that is a part of the optimization. Digital twins can aid in 
the security of the physical counterpart using different access models and malicious 
activity identification techniques (Scheibmeir and Malaiya 2020). Eckhart & Ekelhart 
have suggested characterizing the digital twin concept based upon the level of data 
flow, integration, and autonomy. Other characterizations toward defining a digital 
twin include simulation, assisting with a physical system’s operational health, and 
optimizing a system process (Haag and Anderl 2018; Glaessgen and Stargel 2012; 
Uhlemann et al 2017). The common difference among digital twin definitions is 
whether the digital twin should control its physical counterpart. 

Digital twins increase the digital touchpoints of a cyber-physical system (CPS) 
and offer hackers knowledge of system integrations (Hearn and Rix 2019). Many 
digital twin integrations are with devices commonly referred to as the Internet of 
Things (IoT) technology. IoT has improved the management of homes, businesses, 
industries, and public sectors (Girma 2018). The information security concerns of IoT 
range from authorization, authentication, privacy, and access control of embedded 
systems. In general, IoT technology has produced a new cyber-attack surface (Atalay 
and Angin 2020). A study on consumer IoT, smart speakers, identified enjoyment 
(34.24%) as the most influential reason for the adoption of the devices (Arpnikanondt 
et al. 2020). While IoT consumer devices may offer enjoyment, they must also be 
secured. 

While enjoyment is a major contributing factor to IoT adoption among consumers, 
miniaturization, and technology price decline have attracted Industry 4.0. Industry 4.0 
is the convergence of modern manufacturing and modern computing. Smart factories 
are building smart devices. If, or when, a smart factory is exploited, the supply chain 
of smart devices may generate exponential security concerns. 

To mitigate new threat vectors, a multi-model of security access controls can help 
the digital twins secure their physical counterparts. Multiple security models within 
the digital twin act as filters that trap malicious behavior before the physical assets 
executing the instruction. Control instructions, current, and predicted future states 
can be compared across the physical and virtual systems. Discrepancies can imply 
an inaccurate digital twin or indicate malicious acts. However, codified rules and 
advanced analysis techniques within system operations will not be enough to deter
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and prevent all risks and exploits. Security must start with the organization’s culture 
in a bottom-up approach (people, processes, and system inception to retirement). 

Social and cultural issues and complexities exist in the implementation of digital 
twins. Frequently, this is related to the types of data being collected, stored, and 
exposed by the digital twin. Digital twins have been used by device producers to 
understand how product use differs across cultures and locations. Even a local sports 
team’s home game schedule can be a factor in modeling and predicting factory 
production. 

Cybersecurity is not the only concern when implementing digital twins. Current 
standards and architectures for IoT, a technology that informs a digital twin, do not 
solve their interoperability problems (Novo O and Di Francesco 2020). Organizations 
contributing to IoT standards include the World Wide Web Consortium (W3C), the 
Internet Engineering Task Force (IETF), the Internet Research Task Force (IRTF), 
OneM2M, and the ETSI Industry Specification Group for cross-cutting Context Infor-
mation Management (ETSI ISG CIM). Progress in IoT standardization includes these 
example services and protocols: 

• A Thing Description is a file containing semantic metadata about an IoT thing 
including its properties and behaviors 

• Resource Directories are repositories of things and their network identification 
• Constrained Application Protocol (CoAP) offers device communication over UDP 

and other transports. A CoAP datagram is illustrated in Fig. 1. 

The first two bytes of a CoAP datagram indicate the version of the protocol. 
Version is followed by two bits indicating the type of the message. The type of 
message could include confirmable, which requires acknowledgment of receipt. 
Acknowledgment becomes another message type. The token length field indicates 
the length of the upcoming token field. The value of the token field is used to connect 
request messages to their responses. The message identification field can be used to 
identify duplicate messages as well as to match an acknowledgment to a confirmable 
message. After message options, a byte of all one’s indicates the start of the message 
payload. CoAP messages are asynchronous and use unreliable transports such as 
UDP but offer mitigating features such as retransmission of confirmable messages 
(Shelby et al. 2014).

Fig. 1 The message format of constrained application protocol 
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Standards and interoperability among devices are important because a digital twin 
may have a lifecycle many decades long. During such a span of operations, many 
IoT devices that are informing the digital twin may be swapped in and out due to 
failure, enhancement, or upgrade. The lifecycle of a digital twin requires affordable 
and feasible interoperability of IoT devices. IoT devices should be reusable, discov-
erable, and adaptable. These attributes of IoT devices help a digital twin to become 
maintainable. 

To evaluate performance and scalability, tools such as CoAPBench may be utilized 
to evaluate implementations. The CoAPBench employs virtual clients that simu-
late IoT device registrations. CoAPBench can scale many concurrent clients while 
measuring response times from the management layers of an IoT and digital twin 
system. For a digital twin to achieve the characteristic of fidelity, or sameness to its 
physical counterpart, many IoT devices will be integrated and informing the digital 
twin solution. Non-functional characteristics, such as the performance and maintain-
ability of the system will be critical in the management of the digital twin over an 
extended lifespan. Characteristics such as reuse and discoverability of IoT endpoints 
will help accelerate the maintenance and enhancements of digital twins over their 
lifespan. 

A development model and methodology for using APIs for digital twins have 
been put forward (Scheibmeir and Malaiya 2019). The development model begins 
with an objective tree and contextual diagram to cover the environment, relation-
ships, and operations of the physical entity. The development of a digital twin must 
encompass the functionality of the physical counterpart, supporting and foundational 
data sources and integrations, as well as the context of the operating environment 
and culture. Using context diagrams and objectives trees are methods to explore and 
define the needs of a digital twin. 

Test-driven development was suggested as a practice for implementing APIs in a 
test-first approach. Utilizing OpenAPI specification aids design and test documen-
tation and supports reuse. Traditional software development lifecycles place testing 
the system after its development. A better approach is to “shift left” and test during 
the design and development through practices such as Test-driven development and 
Behavior-driven development. These practices focus on the creation of unit tests and 
UI tests before any code being implemented. With these practices, testing comes 
before code development work and thus “shifts left” in a traditional development 
cycle. 

Performance engineering for digital twins must be done early, such as testing indi-
vidual parts or components of the API operations. Testing for performance concerns 
early in the development helps avoid expensive redesign efforts. Figure 2 is from the 
2019 work of Scheibmeir and Malaiya and illustrates the use of contextual diagrams, 
objective trees, TDD, and many more practices in the development of APIs for digital 
twins. The model suggests API mediation but fails to extend into concerns for the 
user interface. Augmented reality has been suggested as an interface modality for 
digital twins.
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Fig. 2 A framework for developing APIs for digital twins 

2 Use of Social Media Analytics in Research 

Social media data is common to many research investigations. Social media data 
is publicly available and offers velocity, variety, and volume of data. Researchers 
can extract valuable conclusions from social media due to its public nature and ease 
of access (Cruickshank and Carley 2020). Twitter data has enhanced biased survey 
populations and assisted in research by aiding in the latitude and longitude of where 
conversations take place (Martin et al. 2020). A study by Bougie et al. found that 23% 
of tweets by the software engineering groups they followed were toward software 
engineering topics (Bougie et al. 2011). Of that 23% of tweets, 62% were toward 
solving software engineering problems. Software engineering practitioners use social 
media platforms to learn about technology trends (Storey et al. 2010). They do not 
cite scientific research in their blogs (Williams 2018). Beyond trend identification, 
social media platforms offer links to web resources, networking people, and directing 
our attention (Büchi 2017). Searching for and accessing information are the leading 
factors among college students for accessing social media platforms (Gómez-García 
et al. 2020). 

2.1 Social Media Analytics Methodology 

Utilizing R programs and the Twitter API, we have collected (not exhaustively) 
24,275 tweets between August 2019 and July 2021. This is not a comprehensive



78 J. Scheibmeir and Y. Malaiya

collection of all tweets referring to digital twins. Our collection of tweets is limited 
by unpaid access to Twitter’s API and further constrained by daily limits and the 
R programs collecting tweets toward many different topics. While the analysis is 
limited, it informs on the public discourse about digital twins and our methodology 
will be discussed in enough detail to enable similar research for those who want to 
dig deeper in this area. 

A content-based analysis is utilized within this research to determine themes 
among the tweets. Themes may include technology trends or industries where digital 
twin technology is frequently discussed. Time series analysis indicates ebbs and 
flows of the discussions and helps identify when peaks or lulls in the discussions 
are occurring. Sentiment analysis provides a numerical approach to how positive or 
negative the meaning of a tweet’s language may be. Network graphs help identify 
relationships. This chapter will utilize network graphs to detect relationships between 
the industry discussions of digital twins and which technology trends are included 
and omitted from the discussion. When confronted with large amounts of free-form 
text, it may be useful to utilize clustering techniques to determine the distinct topics 
and conversations occurring. The cluster sizes are determined by the within-cluster 
sum of squares (WSS) and the average silhouette methods. A dendrogram is a data 
visualization object and a type of tree graphic. Dendrograms depict the closeness or 
sameness of objects after they have been clustered. These methods are useful when 
analyzing social media and other data sources and will be utilized throughout this 
chapter. 

2.2 Time Series Analysis of Tweets About Digital Twins 

Twitter supplies a created date field that identifies when Twitter users posted their 
communication. The earliest tweet within our collection was posted on August 29th, 
2019. The last tweet in our collection is dated July 31st, 2021. Figure 3 is a time 
series chart identifying the date the tweets from our data set were posted to the Twitter 
platform and the number of tweets per day. A smoothed line is positioned along the 
time series to indicate the overall trend in the volume of tweets.

The chart identifies a peak in the discussions of collected tweets during January 
2020. To determine the trends driving up this peak, we isolate by the posted date 
and identify tweets having the highest retweet counts. Retweets are a feature and 
behavior among Twitter users who can repost a tweet to propagate the message 
through their network. Within the January 2020 peak period of digital twin tweets, 
a tweet by Stephane Nappo was the most retweeted with eighty retweets (Nappo 
2020). The tweet’s message is like many of the definitions reviewed earlier in this 
chapter and describes a digital twin as a virtual model that can bridge the physical 
and digital worlds. The image represents a virtual replication of a city. Smart cities 
are a popular form of digital twins. The tweet utilizes many hashtags, such as #AR
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Fig. 3 Time series chart of our collection of tweets referring to digital twins with a peak in January 
of 2020

(augmented reality), #IoT (Internet of Things), and #AI (artificial intelligence), that 
draw Twitter users’ attention and help gain more attention to the tweet based upon 
platform algorithms. 

2.3 Unsupervised Clustering of the Digital Twin Tweets 

We utilize a document term matrix as input into an unsupervised cluster analysis. 
The document term matrix is a large object that contains an identifier of each tweet, 
the words used within the tweet’s text, and the frequency of the words. The clustering 
algorithm searches through the document term matrix and groups the tweets based 
upon patterns in the utilized words and their frequencies. To determine an appropriate 
number of groups, or clusters, to be created, we utilize the within-cluster sum of 
squares (WSS) and silhouette methods. There are other methods that can help with 
clustering and determining cluster sizes, such as DBSCAN, HDBSCAN, or gap 
statistic methods (Burkov 2019). 

The WSS method will iterate through generations of clustering incrementing 
the number of individual groups with each generation. During each iteration, the 
squared distance between all the observations within the cluster and its center are 
summed. This is done for all clusters and the total WSS is then compared with the 
other generations each having an increasing number of clusters. The ideal number 
of clusters is frequently determined visually, known as the “elbow method.” The
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Fig. 4 Within-cluster sum of squares indicates that the proper number of clusters, identified as 
“elbows” in the line, maybe two, four, or six groups 

“elbow” is visually identified when the WSS decreases rapidly in initial generations 
of smaller n number of clusters and the decrease flattens as n increases. The WSS 
output is plotted in Fig. 4 with a few potential “elbows” in the line occurring at two, 
four, and six clusters generated. 

The silhouette method also strives to find the proper number of clusters in a 
collection of data. The method is like the WSS method in that it will iterate through 
generations of cluster creation and compare each generation. The comparison is 
performed across the distance between observations in a cluster and observations in 
the neighboring cluster. If many clusters exist within a small dimension, observations 
will be near neighboring observations, and this may indicate that too many clusters 
have been generated for the dataset. We utilize R libraries of nbclust and factoextra 
to quickly implement the WSS and silhouette methods. The output of the silhouette 
method is found in Fig. 5 and identifies four clusters as the appropriate amount for 
our collection of digital twin tweets.

Another helpful data visualization graphic when performing text analysis and hier-
archical clustering is the dendrogram. Dendrograms are tree-based graphics that indi-
cate relationships. Dendrograms are frequently created when observing the distance 
between observations in document term matrices and help visualize cluster distribu-
tion. The problem with dendrograms is that they do not scale well when the number 
of observations approaches many thousands. In these cases, the graphics become 
either quite large or very densely populated making discernment difficult. Because 
dendrogram diagrams do not scale well with large observations, we have cast only a
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Fig. 5 Average silhouette method indicates four clusters as the appropriate grouping size for our 
collection of tweets

sample of 1% of our 24,000 tweets. Dendrograms can be customized with specific 
visual formats such as the typical tree diagram and circular and in our case, we are 
utilizing the phylogenic shape. Phylogeny is the development of traits or taxonomic 
grouping. It can help discuss biology and the evolution of species. Here, we utilize 
a phylogenic dendrogram to illustrate the evolution of the conversations within the 
digital twin tweets, illustrated in Fig. 6.

Trends were extracted from the four clusters by the frequency of mention. The 
largest cluster in the volume of tweets is the first group, magenta in the phylogenic 
dendrogram (only a sample of 1% of tweets were used to generate the graphic), and 
the top seven trends by mention come from this first cluster: 

• the Internet of Things 
• Artificial Intelligence 
• industry use 
• collaboration 
• the virtual world 
• novelty 
• data. 

The remaining three clusters then provide three other trends to round out the 
top ten: machine learning, blockchain, and augmented reality. The largest cluster 
of tweets is displayed by word cloud in Fig. 7, further illustrating many of the top 
trending concepts.
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Fig. 6 Phylogenic dendrograms can be created using distance calculations from document term 
matrices but dendrograms do not scale well with large numbers of observations

Fig. 7 Word cloud graphic of the most frequent terms from cluster one
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Tweets can be retweeted by users to further promote the message content. The 
most retweeted post from the first cluster of tweets references technology predictions 
by Global NTT (Rai 2019). Digital twins are one of the emerging technologies that the 
predictions include. The tweet’s embedded link is to an online article that summarizes 
the predictions and mentions that digital twins can collect data from instrumented 
assets, model behavior, identify patterns, and create more accurate conclusions (BW 
Online Bureau 2021). 

From the second cluster, the most retweeted post references the 44th episode of 
IoT Coffee Talk, an online webinar by Tiffany (2021). This tweet merges business 
concerns such as the conversion of manual, human-driven, or paper processes into 
optimized and automated processes via digital transformation. These technologies 
may improve the efficiency of industry and consumer behaviors to also solve sustain-
ability concerns. Some of the hashtags in the tweet by Tiffany are like those within 
the most retweeted tweet of the first cluster, #AI, #AR, and #DigitalTwins (Rai 2019). 
However, Tiffany introduces additional trends in his tweet including 5G, edge, cloud, 
sustainability, and digital transformation (Tiffany 2021). 

The most retweeted post from the third cluster is again a reference to trends and 
predictions, this time the trends listed were identified by the research and advisory 
organization, Gartner. The tweet links to an article that identifies eight trends in three 
categories with two additional cross-cutting trends. The three categories include 
Intelligent, Digital, and Mesh. Digital twins are identified as the fourth 2019 tech-
nology trend by Gartner (Panetta 2021). The article by Panetta further states that 
digital twins have: 

• robustness in their modeling profile to support business outcomes 
• link to physical assets to potentially model and control 
• drive new business opportunities when big data analytics and AI are applied 
• interaction to help evaluate future states such as modeling and simulation. 

The most retweeted post in the fourth cluster offers some distinction from the 
previous three (RolSOuLi 2021). This tweet references an open-source distributed 
ledger system that is like standard blockchain but utilizes a different algorithm 
requiring less energy (Ullah et al. 2021). Because IOTA can run on devices having less 
computational power and bandwidth, it enables the value and security of distributed 
ledger in the realm of IoT devices. The tweet mentions the tangle algorithm, which 
is used by the IOTA distributed ledger and could be utilized to secure digital twins 
by creating more trust in the IoT ecosystem. 

2.4 Twitter Analysis by Industry 

Content-based analysis of the tweets has identified the mentions of specific indus-
tries. The International Labor Organization maintains a curated list of industries and 
descriptions (International Labor Organization 2021). This curated list can be utilized 
in a labeling algorithm to identify industry mentions within the tweets. The health
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Fig. 8 The health industry had the most mention within the collection of digital twin-related tweets 

industry is the most mentioned within this collection of tweets, followed by enter-
tainment and utilities. The textile industry was not mentioned within our collection 
of tweets, illustrated in Fig. 8. 

Considering the sentiment and emotions that are prevalent in the tweets is an inter-
esting research angle. Sentiment analysis typically reviews content on a continuum 
of negative to positive. Our sentiment analysis will review the tweets by industry and 
for specific emotions that may be felt or influenced by the message of the tweets, 
including sentiments such as anticipation or fear among others. This analysis will 
utilize the NRC lexicon to label the tweet’s sentiment. 

The labels having the most tweets were the health and entertainment industries 
(shown in Fig. 8). It is more probable that a tweet using words that convey anticipation 
will reference the health industry (31.0%) compared to the entertainment industry 
(8.7%). The naïve Bayes algorithm was utilized to determine these probabilities. The 
formula for naïve Bayes is explained for our classification problem and data set in 
Eq. 1. 

The naive Bayes equation explained 

P(A|B) = 
P(B|A) × P(A) 

P(B) 
(1) 

where 

P( A|B) Probability of industry mention given a specific sentiment 
P(B|A) Probability of sentiment given a specific industry in mentioned
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P( A) Count of industry observations divided by total number of observations 
P(B) Number of instances of a sentiment, divided by all observations. 

To calculate these probabilities, we may start with the numerator, which is the 
product of the probability of positive sentiment given a specific industry and the 
probability of a tweet having a relationship to the same specific industry. This example 
will focus on the sentiment of anticipation (it has many observations) and the health 
industry as it was identified as having the most labeled tweets. Table 1 identifies the 
sentiment factors across all industry classes and will inform our formulas for the 
health industry.

In this training data set of the classification model, 780 tweets reference health 
and within those tweets, 157 have the sentiment of anticipation. The conditional 
probability of anticipation sentiment (B in Eq. 1) given an agricultural tweet (A in 
Eq. 1) is presented in Eq. 2: 

Conditional probability of positive sentiment given a tweet references the 
agriculture industry: 

P(Anticipation|Health) = 157 ÷ 780 
P(Anticipation|Health) = 0.201 (2) 

The conditional probability of anticipation sentiment given a tweet referencing 
health is 20.1%. To complete the numerator, we need the product of the P(B|A) and 
the a priori, or the number of health-related instances divided by the total number of 
size in the data set. Equation 3 determines the a priori. 

The a priori is the probability of a tweet referencing health and is found by dividing 
the count of health instances by the total training data set count. 

P(Health) = 780 ÷ 3411 
P(Health) = 0.229 (3) 

The numerator is divided by the probability of a tweet having the sentiment of 
anticipation. This is determined by dividing the number of anticipation instances for 
all classes (507) by the total amount of training data instances (3411). Probability of 
a tweet having the sentiment of anticipation is determined in Eq. 4. 

The probability of the sentiment anticipation occurring in the data set 

P(Anticipation) = 507 ÷ 3411 
P(Anticipation) = 0.149 (4) 

The posterior or the probability of a tweet referencing the health industry if we 
know that the message contains the sentiment of anticipation can be determined using 
Eq. 5. 

The probability a tweet’s message is referring to the health industry given the 
sentiment includes anticipation
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P(Health|Anticipation) = 0.310 = 
0.201 ∗ 0.229 

0.149 
(5) 

These equations could be performed a second time with the numerator updated for 
the entertainment industry to prove the statement, given a tweet has the sentiment of 
anticipation, there is a greater probability that the tweet references the health industry 
(31.0%) compared to the entertainment industry (8.7%). 

Given a tweet references the food industry, there is an 8.0% probability that 
the sentiment of the tweet will be anger. The probability of the sentiment of trust 
occurring is highest for the industry of automotive; however, automotive referencing 
tweets only convey trust with a probability of 40.0%. The sentiment of disgust is 
rarely found in the tweet messages, and the highest probability of disgust was found 
in messages labeled toward the industry of forestry (1.4%). 

The R library e1071 offers a naïve Bayes function that eases the implementation 
of the algorithm. Unfortunately, given the quantity of data we have, and the factors 
supplied to the model, we only achieve an accuracy of 25.5%. To increase the accuracy 
of this model, first, increase the number of tweets in the collection and, second, 
improve the factor selection beyond only utilizing the factor of sentiment. 

Network graphs visually identify relationships. Within the analyzed conversa-
tions, not all industry-related tweets reference the top trends. Tweets that reference 
the food or hotel industries have very little relationship to trends. This is visible in 
Fig. 9, a network graph where the industry nodes are yellow, the trend nodes are 
green, and the relationships between these labels are red lines. The construction 
industry tweets are the most inclusive to top trends.

3 Background on Maturity Models 

While we have noted the many definitions of the digital twin, determined popular 
industries in the public discussion, and uncovered the sentiment in the conversations, 
we have not uncovered what a good digital twin is. To help organizations determine 
the level of value, and to further improve and enhance their development process, 
we suggest a digital twin maturity model. 

Maturity models help organizations achieve capability and capacity within a disci-
pline or process (Mittal et al. 2018). To increase the capability or capacity, an organi-
zation first places itself along a trajectory that is determined by current performance 
(De Jesus and Lima 2020). Achieving a state of greater capability along the same 
course becomes the goal. A maturity model establishes the milestones of capability 
and the distance between current and goal states. 

Assessments of maturity inform organizations and their leadership teams about 
their current capability and readiness. Organizations frequently utilize a question-
naire to place their competencies or system capabilities along the path of the maturity 
model. These can be self-assessments or utilize consultants. The questions and the
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Fig. 9 This network graph illustrates the relationships found in tweets between industries and 
trends

maturity model assessment effort evaluate Key Performance Indicators (KPIs) to 
position the organization and system capabilities. 

Organizations have two options when requiring a maturity model. The first option 
is to apply a generic model, and the second option is to build a specific and contextual 
model to a problem domain. To build a specific model, five factors must be considered: 
context, conceptual characteristics, interaction with experts, the use of surveys, and 
qualitative research. 

4 The Digital Twin Maturity Model 

The creation of a maturity model for digital twins requires defining the benefit that 
would come from using the model. Kluth et al. describe a maturity model as a 
representation to evaluate business processes (Kluth et al. 2014). Kohlegger et al.
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describe a maturity model as one that represents distinct stages of increasing capa-
bility (Kohlegger et al. 2009). A maturity model for digital twins is a tool and asso-
ciated process to measure increasing and distinct milestones of value derived from a 
digital twin by its capabilities. 

After defining the benefit, the next step in creating a maturity model is to deter-
mine the characteristics and parameters of digital twins for distinction along a path of 
increasing system capability or capacity. Some foundational and general parameters 
have been established; governance, supportive technology, connectivity, value gener-
ation, and competence of the organization (Colli et al. 2018). Dimensions of maturity 
models frequently include high-level concerns of people/culture which includes the 
skills, organizational structures, and processes, as well as technology (Cognet et al. 
2020). 

A digital twin maturity model can be informed by existing models for Industry 
4.0. Industry 4.0 describes the integration of people, objects, and equipment to allow 
flexibility and autonomous decision-making in manufacturing (Agostini and Filip-
pini 2019). Industry 4.0 can be described as a transformation from predominantly 
mechanical to predominantly digital manufacturing (Oztemel and Gursev 2018). 
Given a digital twin is of a factory, it would be integral to Industry 4.0. Digital 
manufacturing is aided by these technologies and principles (Bakkari and Khatory 
2017): 

• Changeability—The manufacturing equipment and product will evolve, requiring 
a capacity for change. 

• Decentralized Decisions—Smart factory systems are composed of smart 
machines. Smart describes the optimal condition of equipment making deci-
sions autonomously. Although autonomous, smart systems may be informed by 
centralized data sources, control units, or human workers. 

• Interoperability—When such change to the system or environment occurs, compo-
nents will require updating and enhancement to support the adaptation. Thus, 
interoperability of equipment will be a necessity. 

• Real-time Reaction—Based upon the capacity for decentralized decisions and 
guided by IoT such as sensors and actuators, smart components can make 
corrections in real time. 

• Simulation—IoT devices such as sensors and actuators can be emulated so that 
entire behaviors of smart systems become virtualized. 

Other technology trends and principles that are key to Industry 4.0 include big data, 
cloud, additive manufacturing, AR, robotics, and machine–machine–human integra-
tion (Crnjac et al. 2017). The IoT technology is foundational for these mechanisms. 
IoT provides big data, may include additive manufacturing and robotic instrumen-
tation, and can inform both machines and humans in the loop. A digital twin of 
an Industry 4.0 plant is the composition of these mechanisms for modeling, moni-
toring, simulating, and securing the physical plant relative to its environment. One 
successful digital twin implementation will not simply be copied by other organiza-
tions. However, a maturity model can help guide the capabilities and improvements 
of a digital twin along a path to implement these mechanisms.
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There are many different maturity models. Some of the models are well known 
and not specific to digital twins, such as the CMMi model. Other models have a 
higher correlation to digital twins based upon their focus on digitalization, such as 
the SMSRA and M2DDM. Further models have been created by technology and 
consulting companies that offer solutions or expertise. Those models include exam-
ples such as Rockwell Automation, Price Waterhouse Coopers, and Siemens. Data 
is a core component of many models, including the Maturity Model for Data-Driven 
Manufacturing (M2DDM). These models and others are listed in Table 2.

A good maturity model removes confusion by isolating the factors and priorities 
that will help an organization achieve the next level of capability. Parente and Federo 
suggest removing conjunction, equifinality, and asymmetry for causality in models to 
be clear to organizations (Parente and Federo 2019). Asymmetry is a characteristic 
of causality that may explain one result and then fails to explain another result. 
Asymmetry can create doubt in the accuracy of a model. Equifinality implies that 
similar benefits and capabilities may be the outcome of more than one level of 
maturity. When equifinality exists in models, organizations will cease to increase 
the risk or cost in implementation as the value may not increase. A conjunction 
is a relationship between technologies, processes, or culture that holds back value 
creation until all related tenets increase in maturity together. If such related conditions 
are spread across maturity levels, intermediary benefits offered at lower levels would 
not become actual value until much higher levels of maturity are achieved. Maturity 
models should not suffer conjunction, equifinality, or asymmetry. 

The ERP 4.0 maturity model by Basl and Novakova (2019) has six levels across 
dimensions of business model, technology, data, and processes. To construct the 
model, Basl et al. analyzed trends from survey data and layered the trends into the 
maturity model levels based upon their frequency found from the survey. The survey 
was completed by 26 ERP system suppliers (Novakova 2019). Trends having the 
most frequency of being acknowledged by the system suppliers were positioned 
higher into the levels of the maturity model. The trends were identified through the 
survey included cloud, IoT, blockchain, digital twins, edge computing, AI, big data, 
social networks, and AR/VR. These trends are very similar to those identified through 
social media analytics and are illustrated as green network nodes in Fig. 9. The  most  
frequent trends include cloud, IoT, and AR. Trends with lesser frequency include 
extending asset life, optimizing performance, and implementing blockchain. Other 
trends included big data, mobile ERP apps, and in-memory computing (IMC). A 
segment of Basl et al. ERP 4.0 maturity model is illustrated in Table 3.

The digital twin maturity model has been informed according to the guidance 
by de Jesus and Lima of using context, characteristics, expertise, survey (social 
media analysis), and qualitative research. Academic research, commercial solution 
and providers’ models, and social media analytics were input factors for the creation 
of the digital twin maturity model. Basl’s method utilized in the ERP 4.0 maturity 
model creation uses trend popularity to determine the maturity levels. While not the 
final version of our model, the approach by Basl does offer insight into public opinion 
and the volume of driving trends (as illustrated in Fig. 10).
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Table 2 Example maturity models and descriptions 

Example models Short description 

Maturity model for data-driven 
manufacturing (M2DDM) 

The Maturity Model for Data-Driven 
Manufacturing (M2DDM) contains six levels of 
maturity (begins at level 0). The 4th level is 
digital twin and characterized by smart systems, 
decentralized decisions, and centralized 
intelligence to keep humans in the loop. The 5th, 
and highest level, is the self-optimizing factory 
(Weber et al. 2017) 

Smart manufacturing systems readiness 
assessment (SMSRA) 

The Smart Manufacturing Systems Readiness 
Assessment (SMSRA) provides manufacturing 
organizations with an indication of their current 
factory state compared against a reference model 
of capabilities. The last stage is transformed 
implying the business has executed a change to its 
business model (Jung et al. 2016) 

Complexity management maturity The first level of the Complexity Management 
Maturity is initial and represents that an 
organization has not yet quantified the amount of 
complexity at hand 

C3M The C3M model presents five levels of maturity 
for IT-based case management systems (CSM) 
across three phases of CSM adoption; pre-CSM, 
CSM, post-CSM. C3M is novel as it presents 
levels of capabilities and the risks that may be 
associated with the levels of benefits (Koehler 
et al. 2012) 

Capability maturity model integration 
(CMMI) 

Capability Maturity Model (CMM) was 
constructed in 1986 and updated in 2006 to 
include tech and process as the CMMI model. 
CMMI includes the phases of initial, repeatable, 
defined, managed, and optimizing 

Test Maturity Model Integration (TMMi) TMMi utilizes the same structure as CMMi and 
helps organization gauge and improve their 
software testing practices (TMMi Foundation 
2020) 

Industry 4.0/digital operations 
self-assessment 

PWC’s self-assessment places an organization’s 
Industry 4.0 capability concerning their target 
state and offers them a benchmark to the positions 
of industry competition. Cognet et al. compared 
the PwC and IMPULS models and found that the 
IMPULS model has 84% coverage of the PwC 
digital maturity model’s KPIs 

The connected enterprise maturity model Created by Rockwell Automation, this five-stage 
maturity model offers best practices for 
modernizing culture and technologies when 
networking operational technology (OT) and 
information technology (Parkinson 2015)

(continued)
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Table 2 (continued)

Example models Short description

Digitization roadmap The digitization roadmap by Siemens is 
constructed to help organizations transform their 
business. Six areas, such as process, security, and 
collaboration, are reviewed and benchmarked and 
an associated ROI study is completed to evaluate 
financial consequences of improvement 
activities (Siemens 2020)

Table 3 A subset of Basl’s ERP 4.0 maturity model 

Level Description and inclusion 

0 Traditional RDBMS system, with basic ERP process automation, and no cloud 
adoption 

1 Mobility, additional automation, and digitization of processes 

2 The complexity, digital capabilities, and analysis all increasing 

3 Initial migration to cloud services, business intelligence efforts underway, continued 
increase in process automation 

4 As-a-service implementations, IoT integration, digital twin capabilities 

5 AI, RPA, all cloud deployment, all business processes automated

Trends identified from the Industry 4.0 models and academic research, such 
as decentralized and interoperability, have little mention within our collection of 
tweets. Collaboration has many more references compared to the two least mentioned 
topics. Another jump exists between the trends of changeability and predictability; 
however, the topics of fidelity and autonomy retain the most conversation found in 
the collection of tweets. 

The digital twin maturity model has been constructed based upon the character-
istics found in literature review, social media analytics, and based upon input from 
existing maturity models. The digital twin maturity model is composed of six levels: 
initial, managed, integrated, immersive, autonomous, and ubiquitous (illustrated in 
Fig. 11).

The lowest maturity level is the initial digital twin. The initial digital twin is 
limited in scope, such as only instrumenting a few parts and components. The initial 
digital twin offers limited insight and is far from being complete, integrated, or even 
secured. The second level of maturity is the managed level. At the managed level, the 
twin has a prioritized roadmap and coverage beyond ad hoc parts and includes parity 
with system components. The third level of maturity increases the digital twin’s 
capability via integration and interoperability. At this third level of integration, the 
digital twin can model, monitor, and predict many of the physical subsystems. The 
fourth level of maturity, immersive, is mostly defined by its human interface. At the 
fourth level of maturity, the digital twin is assessable using immersive interfaces, 
such as augmented or virtual reality. The autonomous level of the digital twin has
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Fig. 10 Amount of maturity level/trend mention in our social media analysis

Fig. 11 The six levels of the digital twin maturity model
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the cybersecurity, integration, and authority, among other characteristics, to self-
optimize its physical counterpart. Finally, the sixth level of maturity of a digital twin 
is when it consumes the context of its environment. This is the ubiquitous level. 
This level requires investment and technology that will be beyond the scope of most 
organizations. Achieving the ubiquitous level requires instrumenting the physical 
world, beyond the immediate assets, to understand global weather patterns, political, 
social, and economic phenomena, as well as other growing concerns. Table 4 provides 
the capabilities and their descriptions. 

Referring to Parente and Federo’s guidance for models to be effective for orga-
nizations, we test our digital twin maturity model for conjunction, equifinality, and 
asymmetry. Conjunction in a maturity model exists when the benefit promised by 
achieving a lower level, such as the integrated digital twin, cannot be reaped until the 
digital twin reaches an advanced level, such as immersive. In our model, for example, 
value is delivered to an organization at the integrated digital twin level, as that level 
of maturity allows the twin to grow from modeling individual parts or components 
into modeling entire subsystems. Furthermore, value is achieved at the integrated 
level through engaging with users with wearable technology, such as understanding 
the physical location of system operators for safety reasons. It is clear then that value 
arrives at the integrated level without requiring the immersive level to have been met.

Table 4 The six levels of capability and a short description of their enablement 

Capability Description of enablement 

Initial At this level of maturity, the digital twin can model a selection of parts or a few 
components of the system. The digital twin can inform human operators and 
offers a viewpoint toward collaboration. It is far from a smart or autonomous 
capability 

Managed Digital twins increase the cybersecurity risk footprint by increasing integration 
touchpoints and consuming data in transit, storage, and processing. A managed 
digital twin is measured for its ability to secure itself and the physical asset. The 
managed digital twin has moved beyond ad hoc instrumentation of parts into a 
prioritized roadmap that incorporates cybersecurity concerns 

Integrated A complex system is composed of many systems and subsystems. At this level, 
the digital twin incorporates all targeted data sources into a unified virtual 
instance of the physical counterpart 

Immersive A digital twin at this level offers a modern and immersive interface with AR or 
VR capabilities. Beyond monitoring the components, the immersive interface 
may offer simulated experiences of the components 

Autonomous Once the digital twin is integrated, informed, and secured, it may become smart 
or optimize without decisions from a human control interface 

Ubiquitous Complex systems operate within the context of their environment. A ubiquitous 
digital twin of a physical asset would integrate with a digital twin of the physical 
world, such as climate models. This level of maturity requires investment and 
integrations that organizations will scope out of their implementation for years 
to come 
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Similarly, asymmetry would damage the trust in the digital twin model when 
a characteristic fails to explain its importance in each of its succeeded levels. For 
example, the integrated digital provides an API that can be consumed by a headset 
offering an immersive experience. The integrated digital twin also provides interfaces 
to the sensors and actuators that will be utilized to digitally annotate the physical 
world through augmented reality. Furthermore, an integrated digital twin is required 
for the autonomous digital twin to exist. The autonomous digital twin requires inte-
grations to the many parts, components, and subsystems to control and optimize the 
physical asset. Even the autonomous digital twin requires integration to the digital 
twin of the physical world. If we moved a step down in maturity, down from the 
integrated digital twin to the managed, all the previous features and benefits would 
exist in a product roadmap but not in the implementation. The managed digital twin 
is more than a simple roadmap and vision, it offers an implementation whose limited 
existence is now counted (managed and measured) so that vulnerabilities, risk, and 
remediation are a part of the planning and implementation. Without applying cyber-
security early into the maturity model, future benefits would have a greater risk. Any 
future maturity state beyond the initial digital twin will always offer the original 
benefit of the digital point of view into a limited part or component. 

The last area to defend the digital twin maturity model includes the characteristic 
of equifinality. Equifinality implies that similar benefits and capabilities may be the 
outcome of more than one level of maturity. If a digital twin were at the maturity 
level of initial, we would not want to allow the twin to become autonomous nor 
would the benefits of an autonomous system be reached at the initial level. The small 
scoped system could likely ruin many integrated parts and components, as it is not yet 
informed of the entire system’s states, such as whether dependencies are operating, 
within appropriate thresholds, failed, or shutdown. The initial twin would need to 
reach the integrated phase to have this knowledge and should not have widespread 
integrations with other systems without first safely being counted, measured, and 
secured in the managed level. The benefit at each phase of our model can be reached 
at that level, without delaying the benefit until future phases. It is important to note 
that while cybersecurity is a component of the managed level, cybersecurity must be 
addressed throughout later phases. 

5 Conclusion and Future Work 

This chapter introduced findings from social media analytics on digital twins as 
well as a new maturity model. From the social media analytics, the top three trends 
identified included the IoT, AI, and industrial uses. An analysis into the industrial 
uses found the health industry as the most mentioned, followed by entertainment and 
utilities. The textile industry was not mentioned within the collection of tweets used 
in this research. 

Sentiment analysis was performed on the messages within the tweets and a 
comparative analysis was offered across industries. Given a tweet references the
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food industry, there is an 8.0% probability that the sentiment of the tweet will be 
anger. The probability of the sentiment of trust occurring is highest for the industry of 
automotive; however, automotive referencing tweets only convey trust with a prob-
ability of 40.0%. The sentiment of disgust is rarely found in the tweet messages, the 
highest probability of disgust was found in messages labeled toward the industry of 
forestry (1.4%). Given a tweet has the sentiment of anticipation, there is a greater 
probability that the tweet references the health industry (31.0%) compared to the 
entertainment industry (8.7%). 

Network graphs were utilized to visually identify relationships. Within the 
analyzed conversations, not all industry-related tweets referenced the top trends. 
Tweets that reference the food or hotel industries had very little relationship to top 
trends. 

The collection of tweets identifies a peak in the discussions during January 2020. 
The tweet having the most retweets was retweeted eighty times. That popular tweet’s 
message was like many of the academic definitions reviewed in this chapter, as a 
virtual model that can bridge the physical and digital worlds. 

To help organizations determine the level of value, to further improve, and to 
enhance their development process, we suggest a digital twin maturity model. The 
digital twin maturity model is composed of six levels: initial, managed, integrated, 
immersive, autonomous, and ubiquitous. The maturity model was discussed in terms 
of conjunction, equifinality, and asymmetry. These three characteristics should not 
exist in maturity models as they reduce trust in the accuracy and the value that 
maturity models offer. Future research should focus on case studies, implementing the 
maturity model, and further evaluating it for accurate causality of benefits achieved 
in the various phases. 
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