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Abstract

The CMOS (Complementary Metal Oxide Semicon-
ductor) technology is expected to emerge as a very
important technology for VLSI (very Large Scale

Integration), because of several advantages it offers.

Therefore, testing large CMOS networks has become
very important.

A new fault model and a new testing technique
are presented here. The leakage current (static
supply current) which is normally very small, is
very susceptible to some important physical failure
modes in CMOS devices. In this paper, testing by
measuring the leakage current under different input
and state vectors is considered. Analysis of
experimental data on some complex devices is re-
ported.

Introduction

Some desirable properties of CMOS technology
have been well known [1,2]: low static power
dissipation, excellent noise immunity (typically
45% of the full logic swing), controlled rise and
fall times and wider temperature and supply voltage
ranges. Still in the past, bipolar and NMOS have
been the dominant integrated circuit technologies.
The situation has recently changed and CMOS has
emerged as a contender for the leading position [3].
The CMOS costs are approaching NMOS costs. Power
dissipation, a significant VLSI design problem, is
expected to give CMOS an edge over NMOS [4]. It is
estimated that in the 1985 semicustom market, CMOS
will have a 32% share, about equal to the 36% bipolar
share [5]. CMOS is also the most testable tech-
nology [6]. Therefore, testing of CMOS devices has
assumed considerable significance.

The classical stuck-at fault model has so far
been quite successful. It is simple to use and
works well for a large fraction of physical failure
modes [8]. Well-developed test generation methods
are available which assume stuck-at faults. How-
ever, it has recently been pointed out that the
stuck-at fault model does not represent some types
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of faults [10] (and sometimes non-existing faults
are modeled [7]). This is especially true for
MOS and CMOS [2,8,9,10]. A new fault-model is
introduced here which supplements the stuck-at
fault model.

The causes of physical failures in CMOS devices
‘:ave been extensively studied [21]. Some of the
significant physical failure mechanisms in CMOS
are [11]:

- Open circuits, within a transistor or
interconnection

- short circuits

- threshold dirft

~ surface contamination

Ideally, when a CMOS integrated circuit is not
switching, it should draw no supply current.
Practically, a very small current (of the order of
a few nanoampere), called leakage current, flows
through the circuit. This current is very suscepti-
ble to some physical failures. Short circuits[23]
(bridging faults) across transistors, threshold
drift and surface contamination can all cause
excessive leakage. Excessive leakage indicates
either an existing logical fault or a marginally
good device which is likely to fail early. A
device with excessive leakage will be referred to
as having a leakage fault. The process of testing
circuits based on measuring the leakage current is

called leakage testing.

A report [8] indicates the following possible
failure modes causing logical faults:

1. Open or short transistor.

2. An open input to a gate causing the input to
drift to a s-a-1 or s-a-0 condition (undefined).

3. An open gate transistor causing that device to
drift to a permanent open or short condition.
Electrically this is equivalent to mode 1.

4, Shorts between gate inputs or shorts from input
to output. [23-24]
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In this paper, a new fault-model called conduct-
tance fault model is introduced which can represent
modes 1, 2, and 3 mentioned above as well as leak-

age faults. It should be mentioned that mode 4
can be tested by a leakage-current testing setup.
This principle has been used by Blore [12] to
devise an efficient parallel testing procedure for
CMOS .

There are several motivations for investigating
a leakage-current based testing technique:

1. Extra testability generally requires extra
pins which is a significant overhead. Leakage
testing provides additional access by using
already existing VDD and VSS pins [6].

2. In conventional testing, the site of fault has
to be excited, and the effect of fault has to
be propagated to the output pins. In leakage
testing, propagation of the effect of the
fault is automatic [13].

3. Leakage testing can provide transistor-level
resolution as opposed to gate-level resolution
in conventional testing.

4. Several important types of faults can be
modelled as leakage faults. Some faults, like
those caused by threshold drift, can be detected
by leakage testing even before they start
affecting the logical operation.

5. In CMOS devices, a short between two lines
with opposite logic vaules will virtually

present a short between VDD and VSS' This is

because any logic 1(0) is connected through a
low resistance path to VDD (VSS).

6. As explained below, shorting of certain tran-
sistors may not be detectable by conventional
testing. They can be tested only by leakage
testing.

7. The excessive leakage current is generally a
few orders of magnitude greater than the normal
leakage current. Excessive leakage is there-
fore easily identifiable.

8. Leakage testing can ensure that opens are not
masked during opens test [6].

9. Since the excessive leakage currents are a few
orders of magnitude greater than normal
leakage currents, they can cause accelerated
aging of affected areas within the chips.

The Conductance Model

The conductance fault model introduced below
models switching and resistivity of the transistors.
Since the model represents static behaviour,
capacitances are not needed. As will be clear from
the following discussion, it is more convenient
to use conductance rather than resistance to
characterize transistors. The model is based on
these facts:
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- An ON transistor has very high conductance (very
low resistance) of about 10-1 ohm~1

- An OFF transistor can be represented by a leakage
conductance. Ideally its value is 0, (infinite
resistance), practically a normal transistor
has a leakage conductance of the order of 10-12
ohm™~, For an abknormal (leaky) transistor it
can assume a value of 10~9 or higher.

- The gate is well isclated from the channel.
Therefore, a-transistor presents only a single
path, from drain to source, for the leakage
current.

The model is represented in Figure 1. It has
an ideal switch which inserts either the ON con-
ductance or the OFF conductance in the supply
current path between VDD and VSS'

In the normal case, the ON conductance is very
high and the OFF conductance is very low. We can
now consider two possible situations for faulty
behavior.

1. The ON conductance can be too low.. This
corresponds to the situation when the path

between VDD and VSS is open. This correspends

to stuck-open faults.

2. The OFF conductance can be too high. This will
cause an excessive leakage current whenever
appropriate Vo (VDS=VDD—VSS) is present. We

term this a leakage fault. In the extreme

case, when the abnormal OFF conductance
approaches normal ON conductance, it corresponds
to the stuck-on faults.

The stuck-open and stuck-on faults can occur in
both MOS and CMOS devices. They were first identi-
fied by Wadsack [9]. Test generation for them has
been considered in [2,10,19], simulation in [9,20]
and testable design in [7].

Only leakage faults are considered here. They
may not affect the logical operatior of the circuit
for some time, but eventually they are likely to
turn into logical faults. Consider, for example,
threshold drift due to migration of alkali ions [2]
Threshold drift causes the threshold voltages of
P-type transistors to increase and N-type transis-
tors to decrease. This will initially cause in-
creased leakage, as the OFF conductance of N-type
transistors increases. When the drift has advanced
sufficiently, the OFF conductance of N-type
transistors becomes very high (stuck-on) and the
output to a gate essentially gets stuck at O.

Because of its simplicity, the conductance
model is suitable for simulation. If dynamic be-
haviour is also desired (for example, for handling
the sequential behaviour of stuck-open faults),
appropriate capacitances have to be added.

Testing by Measuring Leakage Current

The leakage current in CMOS is controlled by
the OFF transitors with appropriate voltage across




them. By applying different input vectors to com-
binational circuits (input and state vectors for
sequential circuits) different sets of transistors
can be made to control the overall supply current.
One can, therefore, measure the supply current
under different vectors and then extract some in-
formation about the transistors from the data.

Example 1: Consider the NAND gate shown in Fig. 2.
To keep the explanation simple, let us assume that
the integrated circuit chip does not contain any-
thing else. The overall conductance of the chip
under each vector can be measured by measuring

the supply current and dividing it by the supply
voltage. If the OFF conductances of transistcrs
NA, NB, PA, PB are represented by C(NA), C(NB),
C(PA), C(PB), and if the measured conductances
under input wvectors 00, Ol, 10, 11 are indicated

by CO’ Cl, C2, C3, respectively, then the following
conductance equations are obtained.
. Measured

Vector Unknowns Values

A B

0 o [caa) ™t +camy it - S,

0 1 C(NA) = Cl

1 0 C(NB) = C2

1 1 C(PA) + C(PB) = C3

We thus obtain a set of equations where con-
ductances of different transistors are unknowns.
In the above set, values of C(NA) and C(NB) is
given immediately. Since transistors PA and PB
are in parallel, there is no way to distinguish
between C(PA) and C(PB), and thus C(PA) + C(PB)
should be treated as a single variable. The
first equation is dependent on the rest and hence
provides only redundant information.

After the conductances of different transistors
cr groups of transistcrs in parallel are obtained,
it can be checked if they are less than a specified
value. If the conductance of a transistor is
greater than the maximum allowed, it can be re-
garded as faulty. Because of restricted experi--
mental accuracy, the lower bound of acceptable
range can neither be defined nor used.

The above procedure, which can be called
equation-solving method, can easily be applied to
individual NAND, NOR and inverter gates, as well as
their fanout-free networks [14]. In general, how-
ever, several problems are encountered.

~ Nonlinear terms may be involved, these will make
solving the set of equations difficult to
automate.

- If all possible vectors are used, a large number
of equations are obtained. The equations are
not, in general, linearly independent. After
the redundant equations are removed, there might
be fewer equations than variables. It is still
possible to extract information from these
equations. The equations can be considered as

constraints and maximum and minimum values of
variables car be cbtained.

Transistors with minimum conductance values
more than allowable maximum, are definitely leaky.
Those with maximum conductance values, less than
allowable maximum, are definitely normal. . However,
all this would require large computation time. An
alternative way is to use set-thecoretic methods
based on probabilistic aspects of the problem [22].

Test Generation For Some Basic Structures

Like in conventional testing, test generation
for leakage testing recuire two considerations.
First is to sensitize the fault so that its affect
can be examined. In leakage testing, a transistor
is sensitized if it is OFF, and its terminals are

connected to VDD and VSS through low resistance

paths. If the transistor is leaky, it will present
a low resistance path between VDD and VSS and high

leakage current will flow. The second consideration
is to minimize the test set. We define a minimal
complete leakage test set (MCLTS) for a CMOS circuit
as a minimal set of tests capable of generating the
maximum possible information about transistor leak-
age conductances, i.e., capable of generating the
largest set of independent equations containing
conductances.

For very simple structures MCLTS can be gener-
ated in a simple way. Consider, for example,
individual inverter, NAND and NOR gates. The tran-
sistor level diagram of these gates and their
corresponding MCLTS's are given in Fig. 2. The
stuck-at faults tested by the same tests are also
included for comparison.

For individual complex cells, an algorithmic
way to generate MCLTS's is possible. A graph-
theoretic method is presented here [18]. Let us
consider the electrical lines, the nodes in a graph,
and let the transistors be the edges. A cut-set
is a set of transistors, removal of which will
divide the graph into two separate parts. For
example, in Fig. 3, {AP,CP} and {CN,DN,EN} are two
of the cut-sets. A set of independent cut-set
generates independent equations. We will view the
graphs as consisting of several subgraphs, called
serial groups, all connected in series. In Fig. 3,
there are four serial groups, consisting of the
{ap,BP,cP}, {GP,DP}, {EP} and {AN,BN,CN,GN,DN,EN}.
The test generation method consists of the follow-
ing steps:

1. Identify all serial groups.

2. For each serial group, find the largest set of
linearly-independent cut-set.

3. Generate a test vector for each cut-set such
that the transistors in the cut-set are OFF
and are connected to both VDD and VSS through

a low-resistance path.

Example 2: For Fig. 3, the independent cut-sets
are given below:
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{ap,cP}, {BP,CP}

{cp,DP}

{EP}

{AN,BN,GN,EN}, {CN,GN,EN}, {CN,DN,EN}.

Consequently, a minimal CLTS is (in terms of A,B,
C,D,E,G): 101000, 011000, 0001061, 000010, 001100,
110100, 110001,

An important result for complex cells (NAND
and NOR gates are special cases of it) is given
below:

Theorem 1: For any individual complex cell, a
MCLTS consists of n/2+1 tests, where n is the
number of transistors.

Proof: Consider first the structure of complex
cells. Starting from an inverter, any complex
cell can be formed by a number of modification
steps. In each step, two transistors (one P-type,
other N-type), are added, one in parallel with a
set of transistors (or a single transistor), and
the other in series with the complimentary set

of transistors in the complementary part. For a
complex cell with n tramsistors (n-2)/2 such
steps are needed. Q.E.D.

Each modification step adds only one additional
independent cut-set. The transistor which is added
in parallel to a set S of transistors, simply has
to be added to all independent cut-sets of S,

The transistor which is added in series to the
complementary set of tramsistors S', will require
an additional cut-set.

An inverter requires two cut-sets. The rest
of n-2 transistors will add (n-2)/2 cut-sets.
Thus the maximal number of independent cut-sets
as well as the number of tests required, is
2+(n-2)/2 = n/2+1.

A MCLTS for a circuit consisting of a number
of gates, complex cells, etc., will contain a
MCLTS for each elemert. For such circuits, MCLTS
can be obtained by considering all available test
patterns, and then removing those which provide
only redundant information. If an incomplete
set of tests is available (for example, those
generated for stuck-at testing), the set of
undetected faults can be obtained by simulation.
Additional tests for these undetected faults can
be generated and added.

NAND, NOR and inverter-gates and complex cells
provide a circuit that connects VDD and VSS'

Conductances of these elements appear in parallel
across VDD—VSS lines. The overall conductance

is then simply the sum of conductances of all
elements.

The transmission-gates can complicate the
situation by creating cross-paths. A common
transmission gate configuration is shown in Fig. 4.
The transmission gate T(T)presents a low resistance
path when CL=0(1) for either direction, otherwise,
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both transistors are OFF, and it presents a high

resistance path. The voltage across T in Fig. 4(a)
is always zero in a static situation, hence it will
never contribute to overall conductance. The tran-
sistors in T cannot be tested for leakage faults.
The leakage in the transistors in T can be tested

if it is OFF, and outputs of 1. and I, (since T is
ON) are of opposite logical values. The conductance
of transistors in T will appear across VDD and VSS’
in parallel with other elements.

Relationship Between Logical Testing
and Leakage Testing

It is important to consider the relationship
between logical and leakage testing. Let us first
consider only networks consisting of inverter, NAND
and NOR gates.

Each gate consists of a set of several elements
(s.e.) which are transistors or a parallel combi-
nation of transistors. As no distinction can be
made among a set of parallel transistors, they are
regarded as a single s.e. Each s.e. allows a small
leakage current when it is OFF.

Theorem 2: For an independent NOT, NOR or NAND gate,
the minimum stuck-at fault test-set is the complete
leakage test-set (test-set which enables the

leakage current of each s.e. to be determined).

From this set each test pattern tests one s.e. for
leakage current as well as one stuck-at fault set
containing at least one unique fault not tested by
other vectors.

Proof: The proof is apparent when one considers
the tebles in Fig. 2. For example, A stuck-at-1
is only testable by AB=C1 for the NAND gate.

Corollary 1: For a NOT, NOR or NAND gate, whenever
the leakage current is determined by a single serial
element, the corresponding stuck-at fault-set is
tested and vice-versa.

Now let us consider a leakage test experiment.
Each gate constitutes a parallel path for the total
leakage current. For any jth vector the total
measured leakage conductance includes the contri-
bution from each gate:

% (contribution from gate i under vector j) = Cj
il

Contribution from each gate would either be
controlled by a single s.e. or by a series combi-
nation of s.e. For a gate, let the leakage con-
ductance due to the kth s.e. or unique series
combination of serial elements be denoted by Ck'

Then a v by s matrix M, consisting of 1's and 0's
can be written such that

M - = C, (1)
Ck g
where v is the number of input vectors and s is
the total number of serial elements and unique
series combinations of all gates. An element of
M, m .=l whenever kth element contributes con-
J

ductance when jth vector is applied, 0 otherwise,



k =1,2,...,s and j = 1,2,...,v.

Example 1 shows the set of equations for v = 4,
s = 4. The first equation contains a series combi-
nation of serial elements. The last equation deals
with the contribution from a serial elemernt con-
sisting of PA and PB in parallel.

Eq (D)is a system of linear equations in Ck's.

Now we will show that for a minimal stuck-at fault
test-set, the resulting system of equations is
linearly independent. We will do so by considering
only those columns of M which correspond to a single
s.e. If the rows of M are linearly independent
when some of the columns are not considered, then
they are also linearly independent with all the
columns. Let us form a matrix M* which has only
those columns of M which correspond to the s.e.'s of
all gates. For instance, in Example 1, the M*
contains columns corresponding to elements NA, NB,
and the parallel combination of PA and PB.

Theorem 3: If M* is obtained for a minimal stuck-
at fault-test set, then all its rows are linearly
independent.

Proof: Consider a vector p (corresponding to a
row), it must test at least one stuck-at fault fl

The fault f1

corresponds to the leakage conductance controlled
by a specific s.e., and hence the corresponding
row of M* has a 1 in the corresponding place. No
other row can have a 1 in this column, because it
would mean that another test-vector, say q, would
cause contribution of this s.e. to its total
leakage conductance, which in turn would mean that
q also tests fl.

which is not tested by any other.

Since each row of M*¥ has a 1 in a columr, where
no other row has a 1, all the rows are linearly
independent . Q.E.D.

If a stuck-at test set is available which is
minimal and complete, then by Theorem 3, all
equations generated will be linearly independent,
and by Corollary 1, all s.e. will be tested (i.e.,
their conductance will appear in the total conduct-
ance measured). This leads us to the following
important result:

Theorem 4: For a network consisting of only
inverter, NAND and NOR gates, a minimal complete
stuck-at test-set will generate a set of equations
in which (i) all equations are linearly independent
and (ii) each variable will appear at least once.

This suggests that for such networks, a
minimal stuck-at test-set can be used as a starting
point for generating a MCLTS. This also indicates
that leakage testing and logical testing based on
stuck-at fault-model can be done at the same time
since a large fraction of vectors are good for
both.

Correspondence between logical and leakage
testing is even better if stuck-open and stuck-on
fault model is used (which is perhaps more appro-

priate for MOS and CMOS because:

- A logical test, which tests for a stuck-open
transistor, will turn its complimentary transistor

OFF, with about VDD—VSS potential across it.

It is, therefore, a leskage test for the compli-
mentary transistor. .

- The stuck-on faults are not always testable by
logical testing. In order to excite a stuck-ON
transistor, a vector is necessary to turn the
transistor-under-test OFF, and tc connect its

terminals to VDD and VSS through low resistance

paths. If the transistor is indeed stuck-ON,
the output of the gate or complex cell containing

this transistor, will be connected to both VDD

and VSS

logical output can then be either the same as

or different from the normal output depending on
the resistances involved. Generally, stuck-ON
faults in the load part cannot be detected by
logical testing [20]. Leakage testing is very
effective in this case. Any stuck-ON fault will
be automatically tested when the complimentary
transistor is tested for stuck-open faults.

thrcugh low resistance paths. The

Therefore, leakage testing can be effectively
and naturally combined with logical testing for
stuck-oper: faults.

Analysis of Experimental Data

In order to evaluate the effectiveness of leak-
age testing, a probabilistic analysis of the problem
is required. This requires analysis of experimental
data. Some data is available from '"Digital Micro-
circuit Characterization and Specification" [17].

It includes device description and supply current
data for five CMOS devices. Several samples of
each device were examined for logical integrity
and leakage current under different vectors. All
had logically correct performance but the leakage
current was excessive in some cases. We analyzed
the data to seek the following information.

1. Identify possible leaky transistors.

2. Calculate the average normal leakage con-
ductance and its variance.

3. Find the distribution of abnormal leakage con-
ductance.

The average normal conductance per-transistor
for a chip can be determined by using either
Procedure A or Procedure B given below. It is
assumed that all normal transistors within a chip
have about equal conductance, as is suggested by
the experimental data. Scme transistors may have
dimensions different from the rest, their con-
ductance will be different from others. This fact
can be taken into account if desired, but can be
ignored without significantly affecting the
accuracy. For simplicity, the effect of protection
diddes is also ignored here.
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Procedure A:

1. Assume each transistor has a unit conductance
of G ohm_l

2, For any specific input vector Vi’ the transistor

level diagram can be used to cempute the total
conductance. Let it be equal to NiG where Nj

is not necessarily an integer.

3. For this same vector Vi’ let the measured

conductance be Ci' Then for Vi the average

conductance per transistor is given by
G = ci/Ni

4, Steps 2 and 3 are repeated for all vectors, and
the resulting values are averaged.

The disadvantage of Procedure A is that a lot
of work is required because the entire circuit has
to be analyzed for each input vector. An approx-
imate procedure can be found which requires
significantly less work because only one element
of each kind has to be analyzed for all input
vectors of that element. This, called Procedure
B here, is based on the following observations:

1. Experimental data shows that the total
normal conductance is about equal for
all vectors [17].

2. The transistor level diagrams for several
circuits such as BCD-to-Decimal decoder,
a section of ALU, were analyzed for all
input vectors. For each circuit, assuming
all transistors have equal conductance,
the total conductance was found to be
about equal for all vectors.

We can, therefore, reasonably assume that in
general , for devices with more than just a few
gates, all Ni are about equal. The assumption

should be even better for larger devices, since
the sample size is greater, and the average should
be closer to the expected value. Exceptions to
this may be possible for devices with very regular
structure and regular signal values. Such cases
can be handled by Procedure A.

Procedure B:

1. Identify basic elements such as gates, complex
cells, etc. The total conductance of the
device is equal to the sum of the conductances
of the individual elements.

2. For each element, find conductances for all
Vi and average them to find average con-

ductance. This, of course, assumes that the
occurence of all vectors are equally likely.

3. The approximate average conductance for a chip
is given by the sum of average conductance of
all its elements. Let this be equal to MG,
where M is a positive number, not necessarily
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an integer.

4. The average conductance per transistor is then
given by
g = &verage of measured conductances
M

Steps 1 and 2 have been carried out for a
number of commonly used elements. Analysis for
inverter, NAND and NOR gates is presented here.
For the elements shown in Fig. 5 [18], only the
results are presented here.

Inverter: For an inverter only two input vectors,
0, and 1, are possible. The conductance in both
cases is G, hence the average conductance is G.

NAND and NOR gates with n inputs: One input vector
will turn all parallel transistors OFF giving

conductance equal to nG. There will be an input
vectors which will turn k series transistors off,
providing conductance of G/k, where k=1,2,...,n.

The average conductance is then

{n+

n '
g = L

n 1 KE(o-k)? k

2 k

For example, for 2,3, and 4-input NAND or NOR
gates, the average conductance is 1.125G, 0.979G
and 0.786G respectively.

Transmission-gate groups: Four common configura-
tions involving complimentary pairs, shown in
Fig. 5 a,b,c,d have average conductance of G, 2G,
0.66G and 0.8G respectively. Fig. 5e shows a
group in which only one is ON at a time. The
average conductance is (N-1)G, where N is the
number of transmission gates. If it is allowed
for all N transmission gates to be OFF, then the
average conductance is NG.

Complex cells: In general, each complex cell has
to be analyzed separately. For the complex cell
of Fig. 5f, the average conductance is 1.75G.

Connected-AND and connected-OR: These structures,
shown in Fig. 5g and h have average conductance of
0.5G.

Example 3: We will use the data for 4028 BCD-to-
Decimal decoder as an example. Fig. 6 shows the
circuit diagram and the experimental data. The
table shows the leakage current (in nanoamperes)
for the five 4028 chips used for a supply voltage
of 15 volts.

Average conductance (Procedure B)

26 inverters 26 x 1

4 2-input gates 4 x 1.125

6 3-input gates 6 x 0.979

12 4-input gates 2 x 0.786
M = 37.94

It can be seen by inspection that the chips #1,
#2 and #3 show only normal leakage currents.
Chip #3 shows normal leakage of 1.13 nA and ab-
normal leakage of about 1.73x10° nA. Since the




abnormal leakage values are about the same (allowing
for limited measuring accuracy), it is likely that
they are caused by a single transistor. Chip #4
shows normal leakage of about 0.462 nA (average)

and abnormal leakage of 2.9x105.

The normal conductance per-transistor carn be
obtained by dividing the average normal leakage
current by 15 volts x 37.94. The values are
3.19x10718, 8.78x10712,
3 8.12x10_13, 3, 58510,

obtained as (in ohm—l):

1.98x10'12

As the abnormal leakage current is assumedly
caused by a single transistor in both cases, the
abnormal transistor conductances for Chips #3 and
#4 are obtained, respectively, by dividing the
abnormal leakage current values (l.75x105 nA and

2.9xlOSnA) by 15 volts: l.lelO_S, 1.93x10_5.

For both Chips #3 and #4, it is possible to
identify a small set of transistors which
includes the leaky transistor. For Chip #3, it
can be seen that excessive leakage of about

l.7x105nA occurs whenever Ouptut line 0 is
logically O. When output line O is logically 1,
excessive leakage does not occur. Assuming that

a few transistors are more likely to be faulty
than a large number, we can suspect that there is
leaky transistor in the three gates associated
with the output 0. As the faulty transistor is
sensitized, when the output 0 is logically 0, the
leaky transistor is sensitized (i.e., normally OFF)
when input vector 0000 is applied. The suspected
transistor set (STS), then, can be narrowed down
to {N-type in inverter G4, P-type in inverter G5}.
The NOR gate in series with G4 and G5 would pro-
duce the effect only if all three series transistors
are leaky. The faults in the STS are equivalent,
no distinction can be made between them.

Similarly for Chip #4, the STS is {N-type
transistors in NOR Gl, P-type in inverter G2,
N-type in inverter G3}.

By analyzing the data for the five devices,
distributions for normal and abnormal transistors
were obtained, which are shown in Fig. 7. The
Y axis for normal conductances per transistor is
the number of chips, for abnormal transistor
conductances, it is the number of transistors. It
should be noted that the distribution for normal
transistors represent more than 4500 transistors
whereas the distribution for the abnormal tran-
sistors represents only 16 transistors.

Some important features of the distributiors
in Fig. 7 should te noted. The distribution of
normal transistors is very asymetrical (notice
the logarithmic scale). A Gaussian distribution
cannot be used here, perhaps a fit with Weibull
or Gamma distribution can be obtained. The
distribution for abnormal transistors is not
smooth because of insufficient data. Still it
can be noted that the distribution is very wide
and it is also asymetric. Between the normal
and abnormal distributions, there is a very
significant gap, about three orders of magnitude

wide. This distinction between normal and abnormal
leakage values provides resclution for the leakage
testing method. The parameter values would obvious-
ly depend on the manufacturing technology used.

Summary

A new fault model, called conductance-fault
model for CMOS integrated circuit is introduced.
The significance of testing by measuring leakage
current is pointed out. Relationship between the
fault model and stuck-cper, stuck-on and leakage
faults is given. Information extraction by solving
a set of equations is introduced and associated
problems are considered. Testing basic structures
like NAND, NOR, inverter gates, complex cells and
transmission gates is examined. Relationship be-
tween leakage and logical testing is considered.
Results of aralysis of some experimental data
are reported.
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(a)

Input Stuck-at Leakage
A Fault Set Determined By
0 A-1,X-0 NA
i A-0,X-1 PA
Voo
A
“"—****—————1 PA
B
{ Crs
X
— —-{ NB
NA
Vss
(b)
Inputs Stuck-at Leakage
A B Fault Set Determined By
0 0 A-1,B-1,X-0 P(NA,NB)
0 1 B-0,X-1 PB
1 0 A-0,X-1 PA
1 1 X-1 S(PA,PE)
A
’_—‘V—|
B
(c)
Inputs Stuck-at Leakage
A B Fault Set Determined By
0 0 X0 S(NA,NB)
0 1 A-1,X- NA
1 0 B-1 NB
1 1 A-0

-0,X-1 P(PA,PB)

Figure 2: Examination of (a) inverter (b) NOR

(c) NAND gates.
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Figure 3: A Complex cell
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Figure 4: A common transmission-gate structure
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Figure 5: Common CMOS elements
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BCD to Decimal Decoder

Leakage Current for Different Chips

Vector Chip Chip Chip Chip Chip
DCBA 1 #2 #3 # #s
0 0 0% iouBREeTEY" 1.13 0.44  0.20
6001 0.8 5.1 1.75x10° 0.46  0.20
0010 018 45 1.75x10° 042  0.19
0011 018 4.8 1.75x10° 0.45 0.21
6100 018 4.9 1.75x10° 0.45  0.21
0 1 0. ul e 1.75%10° 2.9x10° 0.22
0110 .Sl 1.7x10°  0.46 0.20
0111 0.195 6.0 1.7x10° 0.55  0.21
1600 - Ol bt 07 045 0.20
La01 0.8 e SHmao’ [ 0.48 0.20
Fig. 6: Experimental data (in nanoamperes) for
2 CD4028A chips.
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Figure7 : Distributions of Normal and Abnormal conductances



