
430

A Framework for Software Security Risk Evaluation using the Vulnerability

Lifecycle and CVSS Metrics

HyunChul Joh and Yashwant K. Malaiya

Computer Science Department

Colorado State University

Fort Collins, CO, USA

{dean2026, malaiya}@cs.colostate.edu

Abstract— A vulnerability that has been discovered but is

unpatched represents a security risk to a system. During the

lifetime of a software system, new vulnerabilities are

discovered over time. There are two opposing actors, the patch

developers and the potential exploiters. An exploit can happen

immediately after a disclosure, perhaps even before the

disclosure if the discovery is made by a black-hat finder. Here,

a framework for software risk evaluation with respect to the

vulnerability lifecycle is proposed. Risk can be evaluated using

the likelihood of a security breach and the impact of that

adverse event on the system. The proposed approach models

the vulnerability lifecycle as a stochastic process. Some of the

CVSS metrics can be used to evaluate the impact of the breach.

The model uses the information about the transition rates with

the related distributions and can lead to simplified as well as

detailed modeling methods. It allows a comparison of software

systems in terms of the risk and potential approaches for

optimization of remediation.

Keywords- Security vulnerabilities; Vulnerability Risk Index

(VRI); CVSS; Vulnerability lifecycle

I. INTRODUCTION

Quantitative measures are now commonly used to
measure some attributes of computing such as performance,
availability and reliability. While quantitative risk evaluation
is common in some fields such as finance [1], attempts to
quantitatively assess security are relatively new. There has
been some criticism of the quantitative attempts [2] due to
the lack of data for validating quantitative methods, but still
such methods have been used for comparing alternative
software systems including comparisons of the number of
vulnerabilities found. However, it can be argued that
vulnerabilities that have been found and remedied using
patches do not represent a risk, while the vulnerabilities that
are likely to be found or to remain unpatched for some
period represent risk. Considering that today banking, stock
market trading, travelling, dating, critically depends on the
Internet based computing, the risk to the society due to
exploitation of vulnerabilities is massive. Yet the society is
willing to take the risk, since the Internet has made the
markets and the transactions much more efficient [3].

In spite of recent advances in secure coding, it is unlikely
that completely secure systems will become possible anytime
soon [4]. Thus, it is necessary to take risk and take
precautionary measures that are commensurate. To keep the
overall risk within acceptable limits, people need to measure

risks in their system. As Lord Calvin stated “If you cannot
measure it, you cannot improve it. [3]”

Informally, risk is sometimes stated as the probability
that an asset will suffer an event of a given negative impact
[5] or the possibility of a harm to occur [6]. Formally, risk
has to be a weighted measure depending on the consequence.
A widely used expression for risk can be stated as [7]:

 Risk = Likelihood of an adverse event (1)

 Impact of the adverse event

This presumes a specific time period for the evaluated
likelihood such as a year for annual loss expectancy.
Equation (1) evaluates risk due to a single specific cause,
when statistically independent multiple causes are
considered, the individual risks need to be added to obtain
the overall risk. A risk-level matrix is often constructed that
divides both likelihood and impact values into discrete
ranges that can be used to classify applicable causes [8].
Sometimes both the likelihood and the impact are measured
using scores that use a logarithmic scale. In case of a security
vulnerability, a successful breach due to a vulnerability
constitutes an adverse event [9] which can impact one or
more of the security attributes. Recently, Cox [8] has pointed
out the need for a careful interpretation of the terms and
possible need for refining the computational approaches
when traditional risk equations are used. However, there are
no clear alternatives to the widely accepted fundamental
formulations for risk such as Equations (1).

In this paper, risk is defined from the point of view of the
software vulnerability lifecycle, considering both the
probability that a software vulnerability in a system will be
exploited and the impact of exploitation. A vulnerability is
defined as software defect or weakness in the security system
which might be exploited by a malicious user causing loss or
harm [6]. With respect to the Equation (1), a stochastic
model of the vulnerability lifecycle is used for calculating
the Likelihood of an adverse event while impact related
metrics from the Common Vulnerability Scoring System
(CVSS) [10] are utilized for estimating Impact of the adverse
event. When the risk analysis uses only qualitative
measurement, it is likely that the analysis may turn out to be
very subjective in the end. Here we propose a framework for
risk analysis that can be used for either detailed modeling or
for arriving at reasonable approximations.

While a preliminary examination of some of the
vulnerability lifecycle transitions has recently been done by

431

researchers [11][12], risk evaluation based on them have
been received little attention. The proposed quantitative
approach for evaluating the risk associated with software
systems will allow comparison of alternative software
systems and optimization of risk mitigation strategies.

The paper is organized as follows. Section 2 reviews
recent related work involving CVSS metrics. Section 3
introduces the software vulnerability lifecycle. Section 4
gives the mathematical formulations for risk including their
illustration. Section 5 analyzes a simplified model. Finally,
discussion is presented followed by conclusion identifying
the future research needs.

II. CVSS METRICS AND RELATED WORK

A few researchers have started to use CVSS scores for
analyzing their security risk models. The CVSS score system
provides vendor independent framework for communicating
the characteristics and impacts of known vulnerabilities [10].

CVSS defines a number of metrics that can be used to
characterize a vulnerability. For each metric, a few
qualitative levels are defined and a numerical index is
associated with each level. CVSS is composed of three
metric groups: Base, Temporal and Environmental. The base
metrics represent the intrinsic characteristics of a
vulnerability, and are the only mandatory metrics. The
optional environmental and temporal metrics are used to
augment the base metrics and depend on the target system
and changing circumstances. The base metrics include two
sub-groups, exploitability and impact metrics. Formulas for
CVSS scores, calculated using the metrics, are chosen and
adjusted such that a score is a decimal number in the range
[0.0, 10.0]. In the proposed approach, we use the impact
metrics which measure how a vulnerability will directly
affect an IT asset in terms of the degree of losses in
confidentiality, integrity, and availability. The impact
attributes are all assessed in terms of None, Partial, or
Complete. The base metrics can be easily found from the
publically available vulnerability databases.

Stango et al. [13] have proposed a general method for
threat analysis, and have pointed out that it is hard to
prioritize threats due to the lack of effective metrics and the
complex and sensitive nature of security. They combine the
Bruce Schneier's attack trees [14] and the CVSS scoring
system. CVSS scores are assigned to the attack tree nodes to
evaluate security. Mkpong-Ruffin et al. [15] use empirical
data about the security attributes of each vulnerability to
calculate the loss expectancy. The average CVSS scores are
calculated with the average growth rate for each month for
the selected functional groups of vulnerabilities. Then, using
the growth rate with the average CVSS score, the predicted
impact value is calculated for each functional group.

Wang et al. [16] propose an ontology-based approach for
analyzing the security for software products. They first
create an ontology for vulnerability management which has
all the information about vulnerabilities based on widely
accepted standards such as CVSS, CVE, CWE, CPE, and
CAPEC

1
2. Then they calculate overall environmental score

2http://measurablesecurity.mitre.org/

for given product according to the proposed algorithm.
Houmb et al. [17][18] have discussed a model for the
quantitative estimation of the security risk level of a system
called CVSS risk level estimation model by utilizing
Bayesian Belief Network topology. They estimate frequency
and impact of vulnerabilities using reorganized original
CVSS metrics. And, finally, the two estimated measures are
combined to calculate risk levels.

This paper explicitly considers a vulnerability lifecycle
for evaluating risk levels which has not been done before.

III. SOFTWARE VULNERABILITY LIFECYCLE

A vulnerability is created accidently from the careless
coding mistake. After the birth, the first event could be the
discovery. Sometimes a vulnerability can be patched
unnoticeably when other vulnerabilities are patched. The
discovery rate can be described by vulnerability discovery
models (VDM) [19]. It has been shown that VDMs are also
applicable when the vulnerabilities are partitioned according
to underlying cause or severity levels [20]. In some cases it
has been found that a linear VDM holds [21] for a
sufficiently long period suggesting a stable discovery rate for
that duration. Some of the CVSS base and temporal metrics
assess the ease of exploiting a vulnerability [10].

When a white hat researcher discovers a vulnerability,
the next transition is likely to be the internal disclosure
leading to patch development. On the other hand, if a black
hat hacker discovers a vulnerability, the next transition could
be an exploit or internal disclosure to his underground
community. Some active black hats might develop scripts
that exploit the vulnerability.

After being noticed by white hat researcher, software
vendors are given a few days to release the patch. Typically,
vendors are given 30 or 45 days for to develop patches [22].
On the other hand, if the disclosure event occurred within a
black hat community, the next possible transition may be the
exploit or script. Informally, practitioners use the term zero
day vulnerability to refer to unpublished vulnerability that
are actively exploited in the wild [23]. Studies show that the
time gap between the public disclosure and the exploit is

getting smaller [24]. Norwegian Honeynet Project

 found

that from the public disclosure to the exploit event takes a
median of 5 days (data is highly asymmetric).

When a script is available, it enhances the probability of
an exploitation. It could be disclosed to a small group of
people or to the public. Alternatively, the vulnerability could
be patched. Usually, public disclosure is the next transition
right after the patch availability. When the patch is flawless,
applying it causes the death of the vulnerability. Sometimes a
patch can inject a new vulnerability. Beattie et al. [25] have
examined 136 CVE entries, and they found that 92 patches
were good patches, 20 were revised or pulled patches, and 24
had no patches.

Frei has [11] found that 78% of the examined
exploitations occur within a day, and 94% by 30 days from
the public disclosure day. He also found that a vulnerability
could be exploited before a script is available. Sometimes

 http://www.honeynor.no/research/time2exploit/

432

exploitation occurs before releasing the patch. In addition, he
analyzed the distribution of discovery, exploit, and patch
time of vulnerabilities with respect to the public disclosure
date based on very large datasets from the major
vulnerability databases and security information advisories.
He reports that the time from public disclosure to the
exploitation fits a Pareto distribution. The time from public
disclosure to patch availability follows Pareto distribution for
negative values and Weibull distribution for positive values.

IV. EVALUATING THE RISK LEVEL

We first consider evaluation of the risk on account of a
single vulnerability. Later the result is generalized to include
all potential vulnerabilities in a software system. Fig. 1
models the lifecycle of a single vulnerability defined by the
six distinct states. Initially, the vulnerability starts in State 0
where it has not been found yet. When the discovery leading
to State 1 is made by white hats, there is no immediate risk,
whereas if it is found by black hats, there is a chance it will
be soon exploited. State 2 represents the situation when the
vulnerability is disclosed along with the patch release and
the patch is applied to software right away. Hence, the state
is safe state and is an absorbing state. In State 5, the
vulnerability is disclosed with patch but the patch has not
been applied, whereas State 4 represents the situation when
the vulnerability is disclosed without a patch. Both State 4
and State 5 expose the system to an exploitation which leads
to State 3. The two dashed arrows are backward transitions
representing a recovery which might be considered when
multiple exploitations within the period of interest need to be
considered. In the discussion below we assume that State 3 is
an absorbing state.

In Fig. 1, for a single vulnerability, risk in a specific
system at time t can be expressed as probability of the
vulnerability being in State 3 at time t multiplied by the
consequence of the vulnerability exploitation.

 { }

If the system behavior can be approximated using a
Markov process, the probability that a system is in State 3 at
t could be obtained by using Markov modeling.
Computational methods for semi-Markov [26] and non-

Markov [27] processes exist. However, since they are more
complex, we illustrate the approach using the Markov
assumption. Since the process in Fig. 1 starts at State 0, the
vector giving the initial probabilities is α = (P0(0) P1(0) P2(0)
P3(0) P4(0) P5(0)) = (1 0 0 0 0 0) where Pi(t) represents the
probability that a system is in State i at time t. Let be as
the state transition matrix for Fig. 1 where t is elapsed
discrete time point. Hence, at the 1

st
 time step, the transition

matrix is , at the 2
nd

 time step, the transition matrix is
 and the n

th
 time step transition matrix is

 ∏
 . Let the x

th
 element

in a row vector of v as vx , then the probability that a system
is in State 3 at time n is ∏

 . Therefore,
according to the Equation (1), the risk for a vulnerability i at
time t is given as:

 ∏

 (2)

The exploitation impact may be estimated from the
CVSS scores for Confidentiality Impact (IC), Integrity
Impact (II) and Availability Impact (IA) of the specific
vulnerability, along with the weighting factors specific to
the system being compromised. It can be expressed as:

 (3)

where is a suitably chosen function. CVSS defines
environmental metrics termed Confidentiality Requirement,
Integrity Requirement and Availability Requirement that can
used for RC, RI and RA. The function may be chosen to be
additive or multiplicative (if it is felt that the scale used for
scores is effectively logarithmic). CVSS also defines a
somewhat complex measure termed AdjustedImpact,
although no justification is explicitly provided. It will result
in an additive effect when the impact scores are small.
Further, CVSS specifies a measure Impact_Score that does
not use environmental metrics. Houmb and Franqueira [18]
define a Misuse Impact score as a three element vector based
on base and environmental metrics. A suitable choice of the
impact function needs further research.

In some cases, the risk is measured as the weighted
impact of possible exploitations within a specific time
window , for example, a year. We can compute this period
risk for duration as:

 ∫ { } { }

 (4)

where {A} and {B} are {vulnerabilityi is in an exposed state
at t + τ} and {exploitation from the exposed state occurs in
dτ} respectively. Note that this allows taking multiple
exploitations into account within the same time window. The
risk to specific organizations with many systems or to the
community of users of that software would depend on the
number of systems affected.

We now generalize the above discussion to the realistic
case when there should be multiple potential vulnerabilities
in a software system. If we assume statistical independence
of the vulnerabilities (occurrence of an event for one
vulnerability is not influenced by the state of another
vulnerability), the total risk in a software system can be
obtained by the risk due to each single vulnerability given by

λ1

λ9

λ7

λ4

λ2

λ5

State 2

Disclosure

with Patch

Applied

λ6

λ3

λ8

1 - λ1

State 0

Vuln. Not

discovered

1-λ7-λ8-λ9

1-λ6-λ9

1-λ2-λ3-λ4-λ5

State 1

Discovery

Patch not applied

State 5

Disclosure

with Patch

Not Applied

State 4

Disclosure

without

Patchλ10

State 3

Exploitation

λ11

Figure 1. Stochastic model for a single vulnerability

433

Equation (2). We can define a measure Vulnerability Risk
Index (VRI) as given below to represent the risk level at time
t for a single software system.

 ∑ ∏

 (5)

In some cases, an exploitation requires presence of two
or more vulnerabilities. That can be taken into account by
using the probability of the two specific vulnerabilities being
in the exposed state at the same time in Equation (4).

The developed framework could be utilized to measure
risks in various of scales from a single software vulnerability
risk to an organization wide software related risk. Estimating
the organization wide risk could be achieved based on
measuring the vulnerability risk indices for software systems
installed in the organizations. Finally, the projected risk
values could be speculated for optimization of remediation.

V. ANALYZING A SIMPLIFIED MODEL

Fig. 2 shows a simplified single vulnerability lifecycle
which is used to quantitatively illustrate the software risk
analysis using continuous time Markov modeling. In State 0
the vulnerability is not yet discovered. Discovery of the
vulnerability causes the process to go to State 1. State 2
represents the situation when the vulnerability has been
patched. In State 4 the vulnerability has been disclosed, but a
patch is not available or has not been applied. State 3 is
entered when a successful exploitation occurs.

The process of Fig. 2 can be represented by a system of
differential equations for the system probabilities. The
system of differential equations can be solved by assuming
that initial state is State 0 or P0(0) = 1. While in general the
solutions may have to be obtained using numerical
computation, the system of equations for Fig. 2 is actually
simple enough for a closed-form solution. Fig. 3 gives plots
of the state probabilities using some assumed transition
values for illustration. In general, we can expect that
 and when we consider that
majority of the vulnerabilities is not suffering from possible
major exploitations. Fig. 3 shows the computed probabilities
with some reasonable values of along with the time line.
The probability P0(t) of staying in State 0 drops as time goes
by. P4(t), the probability of being in the exposed state rises
sharply and then peaks, as a transition to either State 2 or
State 3 occurs, which are both absorbing states. Eventually
about 93% of the time, the process ends up in the safe State
2, and about 7% of the time exploitation occurs when State 3
is entered. The long term risk is given by the product of P3(t)

and the corresponding impact. The period risk for a given
duration can be calculated by using equation (5).

VI. DISCUSSION

Risk evaluation considering the software vulnerability
lifecycle has been established very little attention while a
preliminary examination of some of the software lifecycle
transitions has recently been done by some researchers
[11][12]. In this paper, an approach for software risk
evaluation is presented which uses a stochastic model for the
vulnerability lifecycle, along with the CVSS impact metrics.

The stochastic model is used to calculate the probabilities
of the process being in a specific state while CVSS metrics
are used to estimate the impact of an exploitation. If we can
assume that the transitions at Fig. 1 and Fig. 2 are governed
by an exponential distribution, Markov modeling can be
used. If not, the stochastic process can be modeled as a semi-
Markov process [26] for computing the state probabilities.

VII. CONCLUSION

 The proposed method can provide a systematic approach
for software risk evaluation and for comparing the risk levels
for alternative systems. Furthermore, the software risk
evaluation method can be incorporated into a methodology
for allocating resources optimally by both software
developers and end users.

While some data has started to become available,
research is needed to develop methods for estimating the
applicable transition rates [11][18][28]. In general, the
computational approaches need to consider the governing
probability distributions for the state sojourn times. Since the
impact related scores may reflect a specific non-linear scale,
formulation of the impact function also needs further
research.

REFERENCES

[1] C. Alexander, Market Risk Analysis: Quantitative Methods in
Finance, Wiley, 2008.

State 1

Discovered

State 2

Patched

State 3

Exploitedλ42

State 4

Disclosed

Not patched λ43

λ14 λ13λ12

State 0

Not

discovered

λ01

Figure 2. A simplified model of the vulnerability lifecycle

Figure 3. Computed probabilities; P0, P2, P3 and P4 for Fig. 3.
[x-axis represents time t]

P
3
(t

)

P
4
(t

)

P
0
(t

)

P
2
(t

)

434

[2] V. Verendel, Quantified security is a weak hypothesis: a
critical survey of results and assumptions, Proc. 2009
workshop on New security paradigms workshop, Sept.08-11,
2009, Oxford, UK. pp. 37-49.

[3] R. L. V. Scoy, Software development risk: Opportunity, not
problem (cmu/sei-92-tr-030), Software Engineering Institute
at Carnegie Mellon University, Pittsburgh, Pennsylvania,
Tech. Rep., 1992.

[4] S. Farrell, Why Didn't We Spot That?, IEEE Internet
Computing, 14(1), 2010, pp. 84-87.

[5] D. Verdon and G. McGraw. Risk analysis in software design.
IEEE Security and Privacy, 2(4), 2004, pp. 79–84.

[6] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 3rd
ed. Prentice Hall PTR, 2003.

[7] National Institute of Standards and Technology (NIST), Risk
management guide for information technology systems, 2001.
Special Publication 800-30.

[8] L. A. (Tony) Cox, Jr, Some Limitations of Risk = Threat ×
Vulnerability × nsequence for Risk Analysis of Terrorist
Attacks, Risk Analysis, 28(6), 2008, pp. 1749-1761.

[9] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page,
D. Wright, J. Dobson, J. Mcdermid, and D. Gollmann,
Towards Operational Measures of Computer Security,
Journal of Computer Security, Vol. 2, 1993, pp. 211-229.

[10] P. Mell, K. Scarfone, and S. Romanosky, CVSS: A complete
Guide to the Common Vulnerability Scoring System Version
2.0, Forum of Incident Response and Security Teams
(FIRST), 2007.

[11] S. Frei, Security Econometrics: The Dynamics of (IN)Security,
Ph.D. dissertation at ETH Zurich, 2009.

[12] W. A. Arbaugh, W. L. Fithen, and J. McHugh, Windows of
vulnerability: A case study analysis, Computer, 33(12), 2000,
pp. 52–59.

[13] A. Stango, N. R. Prasad, and D. M. Kyriazanos, A threat
analysis methodology for security evaluation and
enhancement planning, Third International Conference on
Emerging Security Information, Systems and Technologies,
2009, pp. 262–267.

[14] B. Schneier, Attack trees, Dr. Dobb’s Journal of Software
Tools, 24(12), 1999, pp. 21–29.

[15] I. Mkpong-Ruffin, D. Umphress, J. Hamilton, and J. Gilbert,
Quantitative software security risk assessment model, ACM
workshop on Quality of protection, 2007, pp. 31–33.

[16] J. A. Wang, M. Guo, H. Wang, M. Xia, and L. Zhou,
Environmental metrics for software security based on a

vulnerability ontology, in Secure Software Integration and
Reliability Improvement, 2009, pp. 159 –168.

[17] S. H. Houmb, V. N. Franqueira, and E. A. Engum,
Quantifying security risk level from cvss estimates of
frequency and impact, Journal of Systems and Software,
83(9), 2010, pp. 1622-1634.

[18] S. H. Houmb and V. N. L. Franqueira, Estimating ToE Risk
Level Using CVSS, International Conference on Availability,
Reliability and Security, 2009, pp.718-725.

[19] O. H. Alhazmi and Y. K. Malaiya, Application of
vulnerability discovery models to major operating systems,
Reliability, IEEE Transactions on, 57(1), 2008, pp. 14–22.

[20] S-W. Woo, O. H. Alhazmi and Y. K. Malaiya, An Analysis of
the Vulnerability Discovery Process in Web Browsers, Proc.
10th IASTED Int. Conf. on Software Engineering and
Applications, Nov. 2006, pp. 172-177.

[21] O. H. Alhazmi, Y. K. Malaiya and I. Ray, Measuring,
Analyzing and Predicting Security Vulnerabilities in Software
Systems, Computers & Security Journal, 26(3), May 2007,
pp. 219-228.

[22] A. Arora, R. Krishnan, R. Telang, and Y. Yang, An Empirical
Analysis of Software Vendors’ Patch Release Behavior:
Impact of Vulnerability Disclosure, Information Systems
Research, 21(1), 2010, pp. 115-132.

[23] E. Levy, Approaching Zero, IEEE Security and Privacy, 2(4),
2004, pp. 65-66.

[24] R. Ayoub. An analysis of vulnerability discovery and
disclosure: Keeping one step ahead of the enemy, Tech.
Report, Frost & Sullivan, 2007.

[25] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright,
Timing the application of security patches for optimal uptime,
Proceedings of the 16th USENIX conference on System
administration, Berkeley, CA, 2002, pp. 233-242.

[26] V. S. Barbu, and N. Limnios, Semi-Markov Chains and
Hidden Semi-Markov Models Toward Applications: Their Use
in Reliability and DNS Analysis, Springer, New York, NY,
2008.

[27] Y. K. Malaiya and S. Y. H. Su, Analysis of an Important
Class of Non-Markov Systems, IEEE Transactions on
Reliability, R-31(1), April 1982, pp. 64 - 68.

[28] M.D. Penta, L. Cerulo, and L. Aversano, The life and death of
statically detected vulnerabilities: An empirical study,
Information and Software Technology, 51(10), 2009, pp. 1469
-1484.

