
Estimating the Number of Defects:
A Simple and Intuitive Approach

Michael Naixin Li
Microsoft Corp.

One Microsoft Way
Redmond, WA 98052-6399

naixinli@microsoft.com

Yashwant K. Malaiya & Jason Denton
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

malaiya|denton@cs.colostate.edu

Abstract
The number of defects is an important measure of software quality which is widely used in industry. Unfor-

tunately, accurate estimation of defect density can be a difficult task. Sampling techniques generally assume that
the faults found are a representative sample of the all existing faults, which results in inaccurate estimates. Other
existing techniques provide little information in addition to the number of faults already found.

Software test coverage tools can easily and accurately measure the extent to which the software has been exer-
cised. Both testing time and test coverage can be used as measures to model the defect finding process. However
test coverage is a more direct measure of test effectiveness and can be expected to correlate better with the number
of defects found.

Here we describe a simple and intuitive procedure which can be used to estimate the total number of residual
defects, once a suitable coverage level has been achieved. The technique is consistent with common testing ap-
proaches used. The method will be illustrated using actual data and is compared with existing approaches. Our
results show that the method yields consistent estimates. An enhanced version of this approach is being imple-
mented in a GUI tool.

1 Introduction

The number of residual defects is among the most important measures of software reliability. Leading edge soft-
ware development organizations typically achieve a defect density of about 2.0 defects/KLOC [1] and some now
use a lower target. The NASA Space Shuttle Avionics software with an estimated defect density of 0.1 defects
/KLOC is regarded to be an example of what can be currently achieved by the best methods [5]. A low defect
density can be quite expensive to achieve, the Space Shuttle code has been reported to have cost about $1,000 per
line of code. The cost of fixing a defect later can be several orders of magnitude higher than during development,
yet a program must be shipped by some deadline dictated by market considerations. This makes the estimation
of the number of remaining defects a very important challenge. One conceivable way of knowing the exact de-
fect density of a program is to actually find all remaining defects. This is obviously infeasible for any commercial
product. Even if there are resources available, it will take a prohibitive amount of time to find all bugs in a large
program [2]. Sampling based methods have been suggested for estimating the number of remaining defects. They
assume that the faults found have the same testability as faults not found. However, in actual practice, the faults
not found represent faults that are harder to find [13]. Thus such methods are likely to yield an estimate of faults
that are relatively easier to find, which will be less than the true number.

It is possible to estimate the defect density based on past experience using empirical models like the Rome Lab
model [7] or the model proposed by Malaiya and Denton [9]. The estimates obtained by such models can be very
useful for initial planning, however these models are not expected to be accurate enough to compare with methods
involving actual test data.

Another possible way to estimate the number of faults is by using the Exponential SRGM. In this model the
parameter β0 represents the total number of defects that would eventually be found. We can estimate the number

of remaining defects by subtracting the number of defects found from the value of β0 obtained by fitting. We will
evaluate this approach by comparing it with a new approach presented here.

An SRGM relates the number of defects found to the testing time spent. In actual practice, the defect finding
rate will depend on the test effectiveness that can vary depending on the test input selection strategy. A software
test coverage measure (like block coverage, branch coverage, P-use coverage etc.) directly measures the extent to
which the software under test has been exercised. Thus we can expect that a suitably chosen test coverage measure
can correlate better with the number of defects encountered. The relationship between test coverage and the number
of defects found has been investigated by Piwowarski, Ohba and Caruso [15], Hutchins, Goradia and Ostrand [6],
Malaiya et al [12], Lyu, Horgan and London [8] and Chen, Lyu and Wong [3].

In the next section, a method for estimating the defect count using test coverage is introduced and its applicabil-
ity is demonstrated using test data. In section 3 we use the model to estimate the number of defects and compare
the results with those obtained using the exponential SRGM. Finally we present some observations on this new
approach.

2 Coverage and Defect Count

Software Reliability Growth Models (SRGMs) are well known and are used in many organizations. The SRGMs
assume that there is a relationship between the total number of defects found and the time spent on testing. The
SRGMs generally assume that testing is uniform and thus µ(t), the number of faults found increases smoothly. In
actual practice testing can be uneven resulting in the behavior shown in Figure 1a. For a single test suite applied
during time (0; t1) µ(t) starts showing saturation because the new tests are not effective in exercising untested parts
of the code. When testing switches to a new test suite at time t1, there is a jump in the number of defects being
found, because the new suite tends to exercise some sections of code better than the first suite. Thus the actual
behavior would vary with test effectiveness.

If we plot a coverage measure like branch coverage against time, then we would see a similar pattern. When
testing is not very efficient, fewer new branches are covered. Again when a different test suite is applied starting
at time t1, we see a jump in new branches being covered as shown in Figure 1b.

Coverage is a more direct measure of the extent to which software has been exercised than the testing time. If
we plot the number of defects against coverage, than we should expect to see a behavior that does not depend on
test effectiveness, because this dependence is removed by directly considering actual coverage. Using coverage
solves another practical problem, the measurement of testing time t. Because of holidays, multiple projects etc. it
is not trivial to convert calendar time to actual testing time.

What would a plot of defects found against test coverage look like? Let us consider branch coverage as an
example. Let us assume that there is some association of branches and defects such that when a specific branch is
exercised, the related defects are likely to become exposed. If we assume a uniform distribution of defects among
branches, then we should get a linear plot between defects found and branch coverage. However at any point in the
test phase, the software has already been tested to some extent. It is likely that the defects associated with branches
that are more reachable have already been found and removed. Thus at the beginning, even though coverage in-
creases with time, very few defects would be found. At higher coverage, we will start finding defects resulting in
the curve given in Figure 1c.

It is clear that for software with a lower defect density, the onset of defect finding will occur at higher coverage
levels. That means that for lower defect densities, the curve in Figure 1c, will sink lower, leaving behind a smaller
part of the curve to be encountered.

There is mathematical justification for this behavior. It has been found in some studies that the Logarithmic
Poisson SRGM often has good predictive capabilities. If we assume that the model that is applicable for defects
found is also applicable for the branches covered, then it can be shown [10] that we will see the behavior shown
in Figure 1c. The value around which the curve exhibits a knee, has a significance as we will see below.

Applicability of this model is illustrated by the plots in figures 2, 3, and 4. This data was collected experimen-
tally by Pasquini et al [14]. They tested a 6100 line C program by applying 20,000 test cases. The test coverage
data was collected using the ATAC tool. Figure 2 shows a screen in ROBUST, an integrated software reliability
evaluation tool suite [4] that has been developed at CSU. Further development of this tool suite is underway to
include additional capabilities.

2

µ

1t t

µ

C
0.95

in some programs

0.5

approximately
linear here

may not be observed

1

a. Defects vs. Time c. Defects vs. Coverage
C

100%

t t1

b. Coverage vs. Time

Figure 1: Defects found and Coverage relationship

For the 20,000 tests, these were the coverage values obtained: block coverage : 82.31% of 2970 blocks, deci-
sion coverage : 70.71% of 1171 decisions, and p-use coverage 61.51% of 2546 p-uses. This is to be expected since
p-use coverage is the most rigorous coverage measure and block coverage is the least. Complete branch coverage
guarantees complete block coverage, and complete p-use coverage guarantees complete decision coverage.

Also we note that the fitted model becomes very linear after the knee in the curve. Let us define Cknee as the
knee, where the linear part intersects the x-axis. For block, branch and p-use coverage it occurs at about 40%, 25%
and 25% respectively. Below we see the significance of this value.

The linear coverage model provides us a new way to estimate the total number of defects. As we can see in
Figures 2, 3 and 4, which use the data obtained by Pasquini et al., the data points follow the linear part of the model
rather closely. If we assume that all of the code is reachable, then the total number of defects would be given by the
point in the curve where coverage equals unity. Because of linearity of the model, the projected number of total
defects can be very stable. For example, the plot in Fig. 2 suggest that 100% block coverage would uncover 40
defects. If all of the code is reachable, we can expect that the actual total number of faults to be more than 40. In
actual practice we need to take into account the existance of unreachable code as discussed below.

3 Estimation of Defect Count

The linear part of the curve for the number of defects found can be given as

µ(C) = A0 +A1C; C >Cknee (1)

where A0 and A0 are parameters. Using the interpretation of the parameters through the Logarithmic model, it
can be shown that [10, 11],

3

Figure 2: ROBUST: Block Coverage data (Pasquini et al.)

Cknee = 1� (
Emin

DminE0
)D0 (2)

Where Emin, Dmin, E0 are parameters and D0 is the initial defect density. Thus for lower defect densities, the
knee occurs at higher test coverage. This has a simple physical interpretation. If a program has been previously
tested resulting in a lower defect density, it is likely that the enumerables with higher testability have already been
exercised. This means that testing will start finding a significant number of additonal defects only after higher test
coverage values are achieved. The problem of estimation of the parameters A0 and A1 is considered in detail in
[10, 11].

In large programs, some small parts of the code are ofen unreachable. A DEC study suggests that in C programs
it can be about 5% of the total code [16]. If we take the view that the dead code can be ignored, complete coverage
of the reachable code corresponds to 95% coverage of the overall code in such a case. For accurate estimates, the
dead code should be eliminated or the fraction of such code should be carefully estimated.

Let us consider the data reported by Pasquini [14]. Here for the purpose of illustration, let us assume that the
software contains 5% unreachable code. Both the experimental data and the model suggest that the 95% coverage
eventually achieved should uncover the number of faults as given in Table 1 below. The numbers in the last column
have been rounded to nearest integer.

Table 1: Projected number of total defects with 95% coversage

Coverage measure Total defects Coverage achieved Defects expected
found with 95% coverage

Block Coverage 28 82% 36
Branch Coverage 28 70% 44
P-uses Coverage 28 67% 48

It should be noted that for this project 1240 tests revealed 28 faults. Another 18,760 tests did not find any
additional faults, even though the presence of at least 5 more faults were known. The data suggests that the enu-
merables (blocks, branches etc.) not covered by the first 1240 tests were very hard to reach. They perhaps belong
to sections of the code intended for handling special situations.

There is no coverage measure such that 100% coverage will assure detection of all the defects. Thus in the
above table, the entry in the last column is a low estimate of the total number of defects actually present. Using a

4

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

D
e

f
e
c

t
s

Branch Coverage

Data Set: Pasquini

Coverage Data

Model

Figure 3: Defects vs. % Branch Coverage

more strict coverage measure raises the low estimate closer to the actual value. Since among the three measures
the P-use coverage measure is most strict, the estimate of 48 faults using P-use coverage should be closer to the
actual number than the estimates provided by block coverage.

4 Evaluation of Predictive Capability

As mentioned before, it is possible to obtain an estimate of defect density from the exponential SRGM. The pa-
rameter β0 of this model represents the total number of faults in the system, and can be determined by fitting the
available data to the model. Figure 5 shows the fitted value of β0 for Pasquini et al’s P-use data as testing pro-
gresses, assuming there is no unreachable code.

First, towards the end of testing the exponential model consistently predicts that the total defects present is the
same as the number of defects found. As figure 5 shows, defects are still being found after the point where the
model predicts zero residual defects. This means that in the later stages of testing, the exponential model provides
no useful information about the remaining defects. Second, the predictions made by the exponential model never
stabilize. If the estimates produced by the exponential model where accurate, then they should eventually begin
to converge to some value, but this does not seem to be the case.

Figure 6 shows the estimates for total defects made by our model as testing progresses, based on Pasquini et
al’s data. The extended model [10] is used to handle the early points. Like the exponential model, the predictions
initially made by our model rise quickly. After about 20 test cases however, they begin to take on stable values,
maintaining consistent estimates of the total defects as more data comes in. We see similar results with other data,
as shown in [10]. This stability is quite remarkable considering that the defect finding rate fluctuates considerably.

5 Conclusions and Observations

We have presented a new method for estimating the number defects based on coverage. At sufficiently high cov-
erage, the linear model provides a very good description of actual data. Our method provides stable projections
early in the development processes. The choice of coverage measure has an effect on the projections made. Results
show that a strict coverage measure such as P-uses gives the most accurate results.

Further data collection and analysis is needed to evaluate accuracy of this approach at very low defect densi-
ties. There are no strong reasons to think that a deviation from the linear behavior would occur. It is unlikely that

5

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

D
e

f
e
c

t
s

P-use Coverage

Data Set: Pasquini

Coverage Data

Model

Figure 4: Defects vs. % P-use Coverage

the hardest to reach branches would have fewer faults associated with them, thus we should not expect to see a
saturation of the linear plot.

The data sets used in this paper are for programs that are not evolving and thus no new defects are being added.
The variation in the estimate of the total number of faults arise due to use of additional test data. For evolving
programs, the method presented here would need to be extended to take into account the introduction of additional
defects.

6 Acknowledgement

This work was supported in part by a BMDO funded project monitored by ONR, and in part by an AASERT funded
project. We would like to thank Mladen Vouk for providing us some of the data used in this study.

References

[1] R. V. Binder. Six sigma: Hardware si, software no! http://www.rbsc.com/pages/sixsig.html, 1997.

[2] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-critical real-time software.
IEEE Transactions on Software Engineering, 19(1):3–12, January 1993.

[3] M. Chen, M. R. Lyu, and W. E. Wong. An empirical study of the correlation between coverage and reliability
estimation. In Proc. IEEE International Symposium on Software Metrics, Berlin, Germany, March 1996.

[4] J. A. Denton. ROBUST, An Integrated Software Reliability Tool. Colorado State University, 1997.

[5] L. Hatton. N-version design versus one good design. IEEE Software, pages 71–76, Nov./Dec. 1997.

[6] M. Hutchings, T. Goradia, and T. Ostrand. Experiments on the effectiveness of data-flow and control-flow
based test data adequacy criteria. In Proc. International Conference on Software Engineering, pages 191–
200, 1994.

[7] P. Lakey and A. Neufelder. System and Software Reliability Assurance Notebook. Rome Laboratory, Rome,
New York, 1997.

6

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

D
e

f
e
c

t
s

Test Cases

Data Set: Pasquini

β0
b

b

bb
b
b
b

b

b

b

b

b

b
b

b

b

b

b b
b

b
b

b

b

b

Defects Found s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 5: Estimated total defects using exponential model (Pasquini data)

10

15

20

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400

D
e

f
e
c

t
s

Test Cases

Estimated Defects
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
bb b

b

b
b b b b

Figure 6: Estimated total defects with new approach (Pasquini data)

7

[8] M. R. Lyu, J. R. Horgan, and S. London. A coverage analysis tool for the effectiveness of software testing.
In Proc. IEEE International Symposium on Software Reliability Engineering, pages 25–34, 1993.

[9] Y. K. Malaiya and J. A. Denton. What do software reliability parameters represent? In Proc. International
Symposium on Software Reliability Engineering, pages 124–135, Albuquerque, NM, November 1997.

[10] Y. K. Malaiya and J. A. Denton. Estimating defect density using test coverage. Technical Report 98-104,
Colorado State University, Ft. Collins, CO, 1998.

[11] Y. K. Malaiya and J. A. Denton. Estimating the number of residual defects. To appear in Proc. IEEE High
Assurance Systems Engineering Symposium, Nov. 1998.

[12] Y. K .Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe. The relationship between test coverage and
reliability. In Proc. International Symposium on Software Reliability Engineering, pages 186–195, November
1994.

[13] Y. K. Malaiya and S. Yang. The coverage problem for random testing. In Proc. IEEE International Test
Conference, pages 237–245, October 1984.

[14] A. Pasquini, A. N. Crespo, and P. Matrella. Sensitivity of reliability growth models to operational profile
errors. IEEE Transactions on Reliability, pages 531–540, December 1996.

[15] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experince during function test. In Proc. 15th
International Conference on Software Engineering, pages 287–300, May 1993.

[16] A. Srivastava. Unreachable procedures in object-oriented programming. LOPLAS, Vol. 1, No. 4, pages 355–
364, 1992.

8

