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Analysis of Detection Capability
of Parallel Signature Analyzers

Yinghua Min, Yashwant K. Malaiya, and Boping Jin

Abstract—All signature analyzers are prone to aliasing errors. Here a
rigorous mathematical analysis is presented to identify error conditions
under which aliasing can occur for several common types of serial
signature analyzers (SSA’s) and parallel signature analyzers (PSA’s). The
PSA’s are faster and require less hardware than the SSA’s; however, for
PSA’s some double errors are special cause of concern. Such aliasing
errors are analyzed and it is shown that PSA pairs can be identified
for which these errors are disjoint. New reconfigurable PSA designs are
presented which use a two-signature scheme to detect all double errors.

Index Terms—Built-in self-test, data compression, fault detection, linear
feedback shift registers, signature analysis.

1. INTRODUCTION

Although the serial signature analyzers (SSA’s) are often used to
illustrate signature analysis, the parallel signature analyzers (PSA’s)
offer superior performance. A 16 bit PSA will compress 15 times
more information than an SSA of the same size. The PSA’s are
widely used to compress the output vectors in BIST (built-in-self-
test) [1]-[3]. 32-bit microprocessors like 68020 and 80386 use PSA’s
in the control part to improve testability. The main disadvantage of
using a signature analyzer is the possible occurrence of an aliasing
error, which will cause the output response from a faulty circuit to
produce the same signature as a fault-free circuit.

A single bit error cannot cause an aliasing error in PSA’s. However
Hassan et al. [4] have pointed out that an error in a PSA input z;
at time t; followed by an error in the input Z;4, at time ;15 has
no effect on the signature. Errors of this type are examined in detail
here. A combination of two single errors during the formation of
a signature is termed a double error and if it causes aliasing, it is
called an aliasing double error. The two components of a double
error may occur during different clock periods. This type of aliasing
error cannot be avoided even if more bits are added in the PSA [5].
Hassan [6] has proposed a two-signature testing scheme that reduces
the frequency of aliasing from one in 2" (for single signature scheme)
to one in 22", for an 7-input PSA. The second signature is obtained
by reversing the order in the input sequence. However, even in this
scheme, aliasing double errors can occur. Also, it has been pointed out
by Raghemi-Azar and Maxwell [7] that depending on the polynomial
chosen, reversing the order of test vectors may or may not reduce
aliasing.

Probabilistic treatments of the aliasing problem are given by
Williams et al. [8], Gupta and Pradhan [9], and Ivanov and Agarwal
[16]. They have shown that the probability of aliasing is a function
of the probability of any bit being in error and the number of bits
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in the signature analyzer. This raises an important question. Is there
any structural approach that will significantly enhance the detection
capability without arbitrarily increasing the size of the signature
analyzer? If we assume that errors with higher multiplicity occur with
decreasing probability, then double errors become the most important
class of errors because single errors are always detected by PSA’s.
The double errors are of significance for SSA’s but they have to
be considered for PSA’s. Here we take a deterministic approach to
present a two-signature scheme which will provide complete coverage
of aliasing double errors.

II. ALIASING ERRORS IN SIGNATURE ANALYZERS
The structure of a signature analyzer is generally specified by a
characteristic polynomial P(x) of degree r.
P(z) = poz” +prz" ' +---+p, @
where po = pr = 1. P(z) is generally chosen to be primitive.
Binary vectors can also be represented as polynomials with binary
coefficients. The ith input sequence, nii, n2:,* -+, Nk, providing a
k-bit vector to the SA, can be described by the polynomial

Ni(z) = nz"  + gt i 4+ R(e—1)i + 2rie (2)

Two types of SSA’s are possible. The SSA with feedback XOR
gates in the middle, as shown in Fig. 1(a), is termed SSA-MF (serial
signature analyzer with middle feedback). The following theorem is
a well-known result {10].

Theorem 1: If an SSA-MF with characteristic polynomial P(x)
and with input sequence N (x) generates the output sequence Q(z),
and if the final contents of the shift register are R(x), then

N(z) = Q(z)P(z) + R(e). &)

Thus, R(z) is the remainder of the polynomial division.

An SSA with feedback XOR gates on the side, as shown in Fig. 1(b),
will be called SSA-SF (serial signature analyzer with side feedback).
Smith [10] has shown that the content of the LFSR after the division is
not the remainder. Shen and Su [11] and Maxwell [13] have briefly
discussed its significance.

Theorem 2: If an SSA-SF with the characteristic polynomial P(x)
and with the input sequence N(z) generate the output sequence
Q(z), and if S(z) is the final contents of the shift register, then

" N(z) = (2" Q(x) + S(z))P(z) + T(x). @

Here S(x) may be termed forward quotient, since no matter what
input sequence follows N(z), the next r-bit quotient is S(z), while
T(z) is the remainder of 2" * N(z) divided by P(z).

Similarly, in the PSA’s also the feedback XOR gates can be in
the middle or on the side. In addition, the input XOR gates can
also be either in the middle, or on the side. The four possible PSA
configurations are shown in Fig. 2 These are, respectively, termed
PSA-MF-MI (parallel signature analyzer with middle feedback and
middle inputs), PSA-MF-SI (with middle feedback, side inputs), PSA-
SF-MI (with side feedback, middle inputs), and PSA-SF-SI (with side
feedback, side inputs). The PSA-MF-SI and PSA-SF-SI structures
can take the advantage of a parity check tree which may be already
present for other purposes.

0018-9340/91/0900-1075$01.00 © 1991 IEEE
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Fig. 1. The two types of serial signature analyzers. (a) SSA-MF. (b) SSA-SF.

N

Fig. 2. The four types of parallel signature analyzers. (a) PSA-MF-MI. (b) PSA-MF-SL (c) PSA-SF-MLI. (d) PSA-SF-SL

For an SSA, if two input sequences N, (z) and N2 (x) produce the
same signature, then the input sequence

E(z) = Ni(z) + Nao(z) #0

will cause the LFSR to return to 00...0 from the initial state 00...0.
Thus, E(z) represents an aliasing error. The next theorem follows
from the Theorems 1 and 2 [10].

Theorem 3: For an SSA-MF or an SSA-SF, E(z) is an aliasing

error iff
E(z) = 0 (mod P(z)).

Definition 1: Consider an r-bit PSA and an r-bit SSA with the same
characteristic polynomial and initial state 00...0. An input sequence
N(x) to an SSA is called an equivalent input sequence [12], [13] to
input sequences Ni(z), N2(x),---, N-(z) to a PSA, if the outputs
of the highest bit, S, as well as the signatures for the two signature
analyzers are identical.
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Theorem 4 [14]: If inputs Ni(z), N2(z),---, N-(z) are inputs to
a PSA-MF-MI, and the input N (z) is the equivalent input sequence
to the SSA with the same characteristic polynomial and initial state
00...0, then

N(z) =3 2"~ Ny(@). ®)
=1

The proof of Theorem 4 is given by Sridhar et al. [14]. The proofs
of all the following theorems, except Theorems 8 and 12, have been
omitted. They can be found in [12]. The proofs of Theorems 8 and
12 are given in the Appendix.

Theorem 5: Inputs Ni(z), Na(z),- -+, N.(z) to a PSA-MF-SI are
equivalent to the input N (z), shown in (6), to the SSA with the same
characteristic polynomial and the initial state 00...0.

N@) =3 ) " "'pilj(a). ©

j=1i=j

Theorem 6: Inputs Ny (z), N2(z),---, N.(x) to a PSA-SF-MI are
equivalent to the input N(z), shown in (7), to the SSA with the same
characteristic polynomial and the initial state 00...0.

N@)y=3 ( w“"‘"pi) Nj(). Y

=0

Theorem 7: Inputs N1(z), Na(z),- -+, N-(z) to a PSA-SF-SI are

equivalent to the input N (z) shown in (8), to the SSA with the same
characteristic polynomial and the initial state 00...0.

N(@) =3 N;(@). ®

Definition 2: Let the following polynomials represent the input
sequences.

Ni(zj a‘ll-’Ek71 +02]$k72+~--+ak1
Ne(z) = a1 2" +agea* 4+ ke
The input matrix is defined as follows:
ap - - G1r
Aer =
P2k 0 0t Gkr

For two input matrices, Axx, and A}, the matrix
Biexr = [eij]in, = Akxr + Akxr 0 ©

is called an error matrix. E; represents its jth column. Any diagonal
in Eyx, parallel to the diagonal {ex1, e(k_1y2, -, €(k-r)r } is called
a subdiagonal. An error is an aliasing error, if nonzero Fjx, causes
the initial state 00...0 to return after the input matrix has been
applied. The double errors considered in the next section represent
an error matrix with two nonzero entries.

Example 1: For a PSA-MF-MI with the characteristic polynomial
P(z) = z® 4+ 2% 4 1, an error matrix and the corresponding states
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of the PSA are shown below:

Eixs Initial State 00000
01000 State 1 01000
10110 2 00110
00101 3 01001
10010 4 00000

After the four steps, the PSA returns to the initial state, which
means Agqxs and A}, s will produce the same signature if their error
pattern is given by Fy4xs. Thus, E4xs is an aliasing error.

Theorem 8: For PSA-MF-MI, Ej . is an aliasing error iff

ET:IT_JE]'((E) = 0(mo ! P(x))

i=1

(10)

The proof is given in the Appendix.

Corollary: If the parity of any subdiagonal of Ejx; is even, then
Ex, is an aliasing error.

It is clear that in this case the error matrix satisfies (10). Eyxs in
Example 1 is an example of this type of error matrix. For r k-step
inputs, there are 2¥” —1 possible errors. It is easy to see from (10) that
there are 2"~ — 1 aliasing errors. The corollary is a special case of
Theorem 8, but includes a very special case considered in [10], that
iff e;; = 1,ei—n,j+n = 1, Exxr is an aliasing error. Theorem 8 is
very general and it describes all possible aliasing errors for PSA-MF-
MI. For other types of PSA’s, the following three theorems present
the necessary and sufficient conditions.

Theorem 9: For PSA-MF-SI, Ejx. is an aliasing errcs iff

> 2" 'piEj(x) = 0 (mod P(x)). 11)
j=11=j
Theorem 10: For PSA-SF-MI, E; x. is an aliasing error iff
r re—j
Z(Z x"*f“pi)Ej(r) = 0 (mod P(z)). (12)
Jj=1 =0
Theorem 11: For PSA-SF-SI, Ej.x, is an aliasing error iff
3" Ej(x) = 0(mod P(x)). 13)

=1

III. ALIASING DOUBLE ERRORS

This section presents an analysis of aliasing double error patterns
for the four types of PSA’s with primitive characteristic polynomial
P(z). In what follows, it is assumed that the only two nonzero
elements in E . are e;,;, and e, ;,. Without loss of any generality,
it can be assumed that j; < ja.

Theorem 12: For PSA-MF-MI. Ej . is an aliasing double error
iff

i1 —i2 = j2 — ji(mod (2" — 1)). 14

The proof is given in the Appendix. This theorem specifies that for
two errors to be an aliasing double error they must occur on opposite
vertices of a square in the input matrix. The sides of the square are
eqt:: in the mod (2" — 1) sense.
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Using the lemma below a similar theorem can be obtained for
PSA-MF-SI.

Lemma: Let P(x) be a primitive polynomial of degree r, and let
F(z) and R(z) be arbitrary nonzero unequal polynomials of degrees
less than 7. Then, there exists a unique integer mo,0 < mo < 2" -1,
satisfying the following equation:

™ F(z) + R(z) = O(mod P(z)).

Theorem 13: For PSA-MF-SI, E} ., is an aliasing double error iff
it is one of the following cases:

Case 1: j; = jo, and i; — i2 = 0 (mod (2" — 1)).

Case 2: j1 < jz2, and pj;,Pjy+1,°- 1 Pjp—1 = 0, and 43 — iz =
0 (mod (27 — 1)).

Case 3: j; < jo, and py = 1,51 < ! < jo, and there exists
a unique mo which is not equal to jo — 51,0 < mg < 2" — 1,
and ¢{; — iz = mo(mod (2" — 1)), where my satisfies the following
equation:

Z pjz" ™ Z p;z" " =0(mod P(z)). (15)

i=n j=i2

Theorem 14: For PSA-MF-MI, E} ., is an aliasing double error
iff it is one of the following cases:

Case 1: j; = j2, and i3 — iz = 0 (mod (2" — 1)).

Case 2: j1 < j2, and for any j; < ! < ja,pr—t = 0, and
iy —i2 = jo — j1 (mod (2"~ 1)).

Case 3: j1 < jo2, and there exists an [ such that p,_; = 1,j5; <
! < j2, and then there exists a unique mo which is not equal to
j2—j1,0 < mo < 2" —1, and i1 —i2 = mo(mod (2" — 1)), where
mo satisfies the following equation:

r—j1 r—j2
Z pix’ T 4 g™ Z pj" 7?77 =0(mod P(z)). (16)
j=0 Jj=0

Theorem 15: For PSA-SF-SI, Ey x is an aliasing double error iff

i1 — iz = 0 (mod (2" — 1)). an

Example 2: Let us consider a PSA-MF-MI, a PSA-MF-SI, a PSA-
SF-MI, and a PSA-SF-SI, all with the characteristic polynomial
P(z) = 2°+ % +1. Suppose a double error in N; and N4, namely,
j1 = 1, and jo = 4. It can be an aliasing error for PSA-MF-MI,
if iy —is = 3 (mod 31) For instance, {64,],61,4} or {8511,824}
are aliasing errors. For PSA-MF-SI, it corresponds to the case 3 of
Theorem 13. Equation (15) becomes

22 + 14 2™ = 0(modP(z)).

Obviously, mo = 5. Therefore, the PSA-MF-SI has aliasing errors
whenever i; — i = 5 (mod 31), such as {es,1,€1,4},{€7,1,€2,4}
For PSA-SF-ML, it is in the case of Theorem 14, (16) becomes

z® 41+ 2™ = 0 (mod P(z)).

The solution is mo = 29. Therefore, the error is an aliasing error
whenever i; —i> = 29 (mod 31), such as {e30,1,e1,4},{€31,1,€2,4}-
For PSA-SF-SI, the error can be an aliasing error as long as i; — iz
(mod 31), such as {ei,1,€1,4},{e2,1,€2,4}, and so on.
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PSA-MPF-MI

PSA-SF-MI

PSA-MF-SI

PSA-SF-SI

Fig. 3. The overlap among the four aliasing error pattern sets.

It is interesting to examine the aliasing double error pattern sets
of the four types of PSA’s. An aliasing error for one type of PSA
may not be an aliasing error for another. Using Theorems 12-15, the
following propositions follow.

1) The aliasing double error pattern sets of PSA-MF-MI and PSA-
ME-SI with the same primitive characteristic polynomial are disjoint
when k¥ < 2" — 1.

This follows from the fact that any double error satisfying (14)
cannot satisfy the conditions for Theorem 13.

2) The aliasing double error pattern sets of PSA-MF-MI and
PSA-SF-SI are disjoint.

3) The aliasing double error pattern sets of PSA-SF-MI and PSA-
SF-SI are disjoint.

4) The aliasing double error pattern sets of PSA-MF-MI and
PSA-SF-MI intersect.

This is because there are some double errors, which cannot
be detected by both PSA-MF-MI and PSA-SF-ML {ei12,e2.1} in
Example 2 is an example.

5) The aliasing double error pattern sets of PSA-MF-SI and PSA-
SF-SI intersect. {e1,1,€e1,2} in Example 2 is an example.

6) The aliasing double error pattern sets of PSA-SF-MI and PSA-
MF-SI intersect.

The overlapping among the four aliasing error pattern sets is
depicted in Fig. 3. From the above observations we can see that
if two types of PSA’s are properly selected in a system, then any
double error that cannot be detected by one PSA, can be detected
by the other.

IV. A PSA DESIGN CAPABLE OF DETECTING
ALL DOUBLE ERRORS

It is. well-known that using two PSA’s, instead of one, decreases
the probability of aliasing errors from 27" to 2727 [6]. If the two are
of the same type or have nonempty intersection of their error pattern
sets, aliasing double errors will still exist, regardless of the number of
bits used. However, as the discussion in the previous section suggests,
if the two PSA’s are with empty intersection of their aliasing error
pattern sets, there will be no aliasing double errors.

Doubling the number of bits can be feasible in some cases.
However, when only limited hardware overhead is allowed, a recon-
figurable scheme presented here can be used [12]. The same 7-bit PSA
can be of one type in one period, and of another type in next period.
In this case, twice the test time is required to reduce the hardware
overhead. The two signatures can be obtained at different times. This
will reduce the continuous duration required for the self-test, which
may be desired for real time applications etc.
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Consider the expanded XOR gate shown in Fig. 4. It has an extra
control line C. When C is 1, it is just an XOR gate. When C is 0, the
output is equal to one of the inputs. By using this expanded XOR gate,
the PSA shown in Fig. 5 can be configured either as a PSA-MF-MI
or as a PSA-MI-SI. Two separate phases are used. In phase 1, test
response is compressed by the PSA-MF-SI to produce the signature
S1. In phase 2, the same test response is used by the PSA-MF-MI,
and signature S2 is obtained. The combination of signatures S1 and
S2 will definitely detect all double errors.

In other design environments, an alternative design of Fig. 6 can
be used. The PSA-SF-SI in the upper part can be used as a normal
register when the self-test is not being done. The parity-tree may also
be present in many systems for other purposes. Then the PSA-SF-SI
would be the only significant overhead. The PSA’s may be used in
parallel or at separate times. Compared to an LFSR of double length,
this design has lower hardware overhead. It is capable of detecting
all double errors, which cannot be obtained by using an LFSR of
double length.

Another technique for avoiding aliasing double errors has re-
cently been presented by Iwasaki et al. {15] which however uses
Reed—Solomon codes. This scheme also requires two signatures.

V. CONCLUSIONS

A mathematical analysis of aliasing errors in the four types of
PSA’s is presented. Necessary and sufficient conditions are presented
for each of the four PSA’s, under which an error pattern causes
aliasing. Double errors are examined which are of special significance
for PSA’s. The disjointness of aliasing double errors for the PSA’s is
discussed. This observation is used to present a reconfigurable design
capable of detecting all possible double errors.

APPENDIX

Proofs of two key theorems in the paper are included here. For the
other proofs please see [12].
Theorem 8: For PSA-MF-MI, Ej . is an aliasing error iff

T

> 2" Ej(z) = 0 (mod P(z)).

=1

(10)

Proof: 1f (10) is satisfied, then
Y " E,(2) = Qu(x)Pla).
j=1
By (5) the input matrix Axx, produces the signature R(x) satisfying
32" N;(2) = Q2(2)P(a) + R(z)
=1

The input matrix A},, = Akxr + Ekx, produces the signature
R'(x) satisfying

3o (N (2) + E;(2)) = Q' (@) P(z) + B (a).

7=
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On the other hand,

SN+ Eya) = N @) + 32 B
= =1 J=1

= Q2(2)P(x) + R(z) + Q: () P(2)

= (Qi(z) + Q2(2))P(z) + R(=).

Thus, R'(z) = R(x). Conversely, suppose the signatures of the two
input matrices are the same, then

Y 2" Nj(z) = Q(z)P(x) + R(x)

3o (N (x) + Ej(z)) = Q'(2) P(x) + R (@)
j=1
and R(z) = R'(z). Adding these two equations results in
(10). Q.E.D.
Theorem 12: For PSA-MF-MI, E}«, is an aliasing double error
iff

il - iz = j2 hnd j1 (mod (2T e 1)) (14)

Proof: In the case of a double error, the sufficient and necessary
condition (10) becomes

.’Ek_”+r_“ + xk—i2+7‘*j2 = O(mod P(l‘))
That is,

ph—iitr—a 1+ pirT2tn —jz) = 0(mod P(x))
142172+ 1732 = 0 (mod P(z)).

Since P(z) is primitive, therefore,
i1 — iz + J1 — j2 = 0(mod (2" — 1))
That is,
i1 — g = j2 — j1 (mod (27 — 1))

Q.E.D.
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Coping with Erroneous Information while Sorting

K.B. Lakshmanan, B. Ravikumar, and K. Ganesan

Abstract— In this correspondence, we study the problem of sorting n
distinct elements in ascending sequence according to a total order, using
comparison queries which receive “yes” or “no” answers, but as many as
e of which may be erroneous. In a half-lie version, all “yes” answers are
guaranteed to be correct and the errors are confined to “no” answers. We
show that the comparison query complexity of the sorting problem for this
case is (n log n + €) and then demonstrate an asymptotically optimal
algorithm. In a full-lie version, however, both “yes” and “no” answers can
be false. We show that the comparison query complexity of the sorting
problem for this case is Q(n log n + en) and then demonstrate an
algorithm which generalizes the familiar binary insertion sort technique.
This algorithm is asymptotically optimal if e = O(n).

Index Terms—Adversary strategy, analysis of algorithms, binary inser-
tion sort, comparisons, errors, fault tolerance, intermittent failure, lies,
misinformation, noise, sorting, sorting networks

I. INTRODUCTION

The problem of sorting we are interested in can be stated as
follows. Given-a set X = {z1,x2, -,z } of n distinct elements,
arrange them in ascending sequence according to a specified total
order. The elementary operation we will focus on for complexity
analysis is the binary comparison of the form “Is z; < x;?” for i, j
€ {1,2,---,n}, with two possible outcomes “yes” and “no.” It is
well-known that any sorting algorithm requires at least [logn!] =
Q(nlogn) comparisons in the worst case.! In this correspondence,
we consider a situation where we may receive erroneous information
in response to some comparisons, due to hardware intermittent
failure, noise in communication channel, deliberate misinformation,
etc. [1]. By an erroneous response we mean that the outcome of the
comparison is “no” when factually it should be “yes,” and vice versa.

In order to present the adversary-based lower bound arguments we
will use later, it is convenient to restate the problem in the form
of a two-person game between a questioner and a responder. The
questioner has a set X = {z;,z2, -, &} of n arbitrary elements
from a universal set U on which a total order exists, but is known
only to the responder. The questioner is required to sort the elements
of the set X according to this total order with the help of the
responder, seeking responses to binary comparison queries of the
form “Is z; < z;?” for some i,j € {1,2,---,n}. Now, erroneous
responses to comparison queries arise if the responder is allowed to
lie. i

It is intuitively clear that the questioner can make no progress in
sorting if the responder is allowed to lie in an unconstrained way.
Hence, we assume that the responder can lie at most e times, where
e can be a function of n but is known to both the questioner and the
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