
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978

Correspondence

A Continuous-Parameter Markov Model and
Detection Procedures for Intermittent Faults

STEPHEN Y. H. SU, ISRAEL KOREN,
AND YASHWANT K. MALAIYA

Abstract-A continuous-parameter Markov model for intermit-
tent faults in digital systems is presented. This continuous model is
more realistic than discrete-parameter models previously presented
by other authors. The results obtained using the proposed model can
be reduced to those obtained from the previous models, by using
appropriate approximations.
Two testing strategies are considered, continuous testing for

combinational networks and repetitive testing for both combina-
tional and sequential networks while only the latter strategy was
considered in earlier studies. Next, optimal detection experiments
for both testing strategies are developed and the optimization
problem is shown to be equivalent to a nonlinear programming
problem.

Index Terms-Continuous-parameter Markov model, continuous
testing, intermittent faults, fault detection, optimal testing experi-
ments, repetitive testing.

I. INTRODUCTION
Most of the faults occurring in digital systems are intermittent

faults [1], [2], yet very little theoretical work has been done on
modeling these faults and designing detection experiments for
them.
An intermittent fault is a fault which, when existing in the

system, may be active at one instant of time causing a malfunction
of the system or may be inactive at another instant allowing the
system to operate correctly. Thus, unlike permanent faults, for
intermittent faults we distinguish between the existence of an
intermittent fault and its being active. The system is said to be in
the Fault Active state (FA) if a fault existing in the system is active
and it is said to be in the Fault Not Active state (FN) if the fault is
existing but inactive.
We will restrict our attention to well-behaved and signal-

independent intermittent faults [3]. A fault is said to be well-
behaved if during the application of a test pattern, the system
behaves as if either it is fault-free or a permanent fault exists. A
fault is said to be signal-independent if its being active is indepen-
dent of the signal values present in the system.
Two probabilistic models for describing the behavior of inter-

mittent faults were presented in the literature. The first model is a
discrete parameter Markov model of the first order which was
introduced by Breuer [3]. The second one is a zero-order Markov
model introduced by Kamal and Page [6] and used later by Savir
[4] and by Koren and Kohavi [5].
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A more realistic model for intermittent faults is proposed here.
This model is a continuous-parameter Markov model which is
convenient to use and removes some of the restrictions faced when
using the discrete models. Using appropriate approximations, the
relations obtained from the continuous model are easily reduced
to those obtained from the previous discrete models.
While using the discrete models, only repetitive testing is con-

sidered, i.e., detection tests are applied repeatedly until a decision
criterion is satisfied. The continuous model enables us to consider
another testing strategy, besides repetitive testing the continuous
testing, in which a test is applied continuously until a given
confidence level is achieved. Both testing strategies are analyzed in
Section III.

In the last section optimal detection experiments for both
testing strategies are presented for the case where the system may
have one out of several possible intermittent faults.

II. THE CONTINUOUS PARAMETER MODEL
The continuous-parameter Markov model for intermittent

faults presented next is a generalization of the discrete-parameter
model introduced by Breuer [3]. In the discrete parameter model
shown in Fig. 1, r and s are the one time-step transition probabili-
ties, e.g., s is the probability of going to the FA state at time tq + 1
given that the system was in FN state at time tq, r is the probabi-
lity of remaining in FA state. Clearly, the estimated values for the
one-step transition probabilities depend upon the time-step
selected; and they have to be reestimated if this time-step is
changed. Since the time-step is not an attribute of the fault but
merely depends upon the clock rate of the testing device, it is
desirable to have a model whose parameters are independent of
the time-step.

In order to devise such a model, consider the transition probab-
ilities between the two states for an infinitesimal time-step At.
Clearly, these probabilities should increase as the time-step in-
creases. Hence, as a first approximation, we select transition prob-
abilities which depend linearly on the time-step At, i.e., the
probability for going from FN state at time t to FA state at time
t + At is 2 At, and the probability for going from FA state at time
t to FN state at time t + At is p At, as depicted in Fig. 2. This
model is a well-known continuous-parameter Markov model [7]
and expressions for the transition probabilities have been derived.
Let 0 and 1 denote the states FN and FA, respectively and let
Pi,j(t)-denote the probability for going from state i at time to to
state j at time to + t. The equations for these probabilities are [7]

P01(t') = AA (1 -e-(;++t)

P0.0(t) = 1 - P01(t) = A + A e

P1 0(t)= A (1 - e(A+JU)t)A+p

(1)

(2),

(3)
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Fig. 1. The discrete-parameter Markov model.

P5,1(t)= 1-Ps,o(t)= ,L + e -(i+g)t (4)

An important property of this model is that the time period
during which the system stays in state FA (FN) is exponentially
distributed with mean Ily(I).

Equations (1)-(4) can be compared to the corresponding equa-
tions for the discrete-parameter Markov model. Let the transition
probabilities s and r for the latter model be defined for a time-step
At which is sufficiently small so that a meaningful comparison can
be made. In this case s = A At and r = ki At. Let n = t/At denote
the number of time-steps in the time period t. The n-step transi-
tion probability from state 0 to state 1 for the discrete-parameter
Markov model is [7]

Po, (n) = [1-(1- - s)"]. (5)

From (1) we have

P,(t= nAt)= (1 - exp [-(A + i)n At]

=- _ [1-exp [-(r+s)n]
s +?"

If the exponent e-"'+s) is approximated by (1- - s), then Po,1(t)
becomes the same as P0,s(n) for the discrete model. In a similar
way the other three probabilities can be compared. Consequently,
the results obtained by using the discrete model can be regarded
as approximation to those derived by using the continuous model.

Similarly, (1)-(4) can be compared to the probabilities for the
zero-order Markov model [6] as follows. From (1)-(4) the steady-
state transition probabilities for t oo are

PO,I(0)= PI,1(o) = A (6)

Poo(cx) = P1Ao(c)= A = 1-A (7)

These equations indicate that the probability of the system being
in a particular state is now independent of the previous state.
Thus, for a very large time-step, the continuous Markov model
reduces to the discrete zero-order Markov model for which
A/Q( + p) is the probability of the fault being active.

III. TESTING STRATEGIES

Faults in digital systems are detected by applying test patterns
to the system's input lines. If the possible fault in the system is
permanent, then a single application of a test pattern can deter-
mine the existence of the fault. If the possible fault is intermittent,
it may occur that the fault exists but is not active when the test is
applied. Hence, a wrong conclusion might be drawn regarding the
existence of the fault. One way to minimize such wrong conclu-
sions is to apply the test pattern repeatedly until either the fault is
detected or the number of test repetitions exceeds a precalculated
number k. The number k is determined so that the probability of a
wrong conclusion is smaller than some prespecified e. This testing
strategy is called repetitive testing. Another testing strategy is to

pAt

- xAt FN [A 1-At

FAt
Fig. 2. The continuous-parameter Markov model.

apply the test pattern continuously until either the fault is
detected or the testing time exceeds a precalculated time which is
determined similarly 'to the number k. This testing strategy
is called continuous testing and is clearly applicable only when
there is no synchronizing clock in the system. Both testing
strategies are analyzed below.

Continuous Testing

To increase our confidence in the results of the testing
procedure, we have to minimize the probability that an intermit-
tent fault exists and is not detected. The test pattern is applied to
the system continuously from time to to time to + s and the testing
is terminated prior to to + s if the fault is detected. The maximum
testing time s is determined so that the above probability is smal-
ler than some prespecified v, namely,

Pr {The fault exists and is not detected during the interval

[to, to + S]} < E. (8)

This probability equals Pr {A n B r) C} where A, B, and C are
the events

A = The fault exists.

B = The fault is inactive at time to.

C = The fault remains inactive from time to to to + s. (9)
To calculate the probability in (8) we use the relation

Pr {A r) Brr C} = Pr{C/A r- B} Pr{B/A} * Pr{A}. (10)

For our model the probability Pr {C/A rl B} equals e-"" [7]. To
determine the probability Pr {B/A} assume that the fault existed
for a long time prior to to so that the steady-state probability from
(7) can be used. Substituting these two probabilities into (8) and
denoting Pr {A}, the a priori probability, by p yields the following
inequality

A + pP
Consequently, the maximum testing time required is

s = ln PI-In .+p

(11)

(12)

Notice that such an expression for continuous testing cannot be
derived using discrete parameter models.

Repetitive Testing
Repetitive testing can be used for detecting intermittent faults in

both combinational and synchronous sequential networks. In the
case of combinational networks, only one test pattern is required
to detect the fault-and this test pattern is applied repeatedly by a

clocked tester. In the case of synchronous sequential networks, a

sequence of v test patterns (v > 1) is required to detect the fault
and propagate it to the output lines. One test pattern samples the
fault while the other patterns in the sequence either initialize the
network or propagate the fault to the output. Let t, be the time
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period between successive samples of the network. Clearly,
t,= v x clock period.
For repetitive testing we have to determine k, the maximum

number of test repetitions, as the minimum number satisfying
inequality (8). Using relation (10) and the fact that the network is
sampled k times with sampling period t, we obtain the following
inequality

[po,o(ts)]jkl p < c. (13)

The first -term is the probability Pr {C,/A rx~B} where C, is the
event the fault remains inactive at the time instants to + ts,
to + 2tS, , to + (k - 1)ts. Substituting Po,o(t,) from (2) and solv-
ing for the number of test repetitions we obtain

[1 i. 4-fllnI14'T- I
+ 1. (14)

>n ["8 + i e-+

The resulting testing time is k t,.
Example: A digital system has an intermittent fault with a priori

probability p = 0.1 and parameters ,u = 102/ms, A= 1/ms. We
want to calculate the testing time needed for e = 10-6 (i.e., the
probability that a fault exists but is undetected should be less than
10-6). If the unit can be tested continuously, then from (12) we
have

s In P = 1.49 ms.
E(A + H

If repetitive testing is to be used, then assuming that the unit is a

combinational network and the clock period is 10'2 ms, we have
ts= 10-2 mis. Substituting in (14) we obtain k > 1822.6, thus,
k = 1823 and the testing time is k t, = 18.23 ms. Assuming that
the unit-under-test is a synchronous sequential network and the
testing sequence cons', ts of v = tO test patterns, the sampling time

is ts = 10-1 ms. By (14) the number of repetitions is k > 1157.1,
hence, k = 1158 and the testing time is k t, = 115.8 ms.

IV. OPTIMAL FAULT DETECTION EXPERIMENTS

A digital system may have, in general, several possible intermit-
tent faults, f, f2,f3, * *,ft,. Each of these intermittent faults, when
active, is equivalent to a permanent fault which may be a single or

multiple stuck-at type fault. We assume that at most one intermit-
tent fault exists in the system at any instant of time and that for
these n possible faults we are given a fault matrix R = (rij). The
fault matrix consists of n rows corresponding to n different faults
and m columns corresponding to m possible test patterns T1, T2,
T3, --, Tm (or test sequences in the case of synchronous sequential
networks). The elements of matrix R are defined as follows:

_ if f, when active, is detected by Tj,
-j O, otherwise.

With every fault.f,, we associate an a priori probability of existence

in the system, denoted by pi, and the parameters Ai and /,u. Con-
sequently, for every faultfi we have a set of transition probabilities
P9)0(t), P2)1(t), P(1)1(t), and P(1)o(t) given by (1)-(4).
A detection experiment is an experiment in which the test pat-

terns T1, T2, , Tm are applied sequentially to the system, so that

Tj is applied repeatedly kj times or continuously for the time sj
and the probability of a wrong conclusion (fault exists but is not

detected) is smaller than some prespecified e. An optimal detec-

tion experiment is a detection experiment minimizing the total

testing time. In the following paragraphs, optimal detection experi-
ments for continuous testing and repetitive testing are designed.

Continuous Testing

To design an optimal experiment for continuous testing we
have to determine the testing periods S1, S2, , Sso that inequal-
ity (8) is satisfied and the total testing time EZ= 1 Sj is minimized.
Since only one fault, at most, is assumed to exist in the system, we
can rewrite inequality (8) in the following way:
n

E {Pr The faultf exists and
w=c

was not detected by the experiment} < E

or
n

E Pr {The fault f was not detected by

TI, T2, , Tm/fi exists} x Pr {tfi exists} < v. (15)

The first probability in (15) can be written as a product of condi-
tional probabilities while the second probability is the a priori
probability pi, thus yielding
n m

E Pi f Pr {f was not detected by Tj1/f was not
i=l j=l

detected by the previously applied tests

T1, T2, -, Tj_ r1 fi exists} < c. (16)

The conditional probabilities in (16) are evaluated as follows:

Pr {fj was not detected by Tj/fi was not detected by

T1, T2, , r-1) fi exists} - [pWi) exp (- Ai)sj)]rij (17)

where p(i) is the probability that the fault fi was inactive when Tj
was first applied, given thatfi exists. To prove (17) we note that if
Tj does not test forfi (i.e., rij = 0) the probability in (17) is equal to
1. If Tj tests for fi (i.e., rij = 1) then the same reasoning as for the
probability in (11) results in the expression Pk/)e-2isj.

Substituting (17) in (16), we obtain

(18)
n m

, Pi fn [Pj" exp (is)
i=l j=l

PO depends upon the time t* elapsed from the application of the
most recent test which tests forft until the first application of Tj.
More explicitly, p( = P(W)o(t*). If Tj> tests forfi then t* = 0 and
p(i) = p(i)o(0) = 1; if Tj is the first test that tests forfi then t* oo

and p(j) = p()0(cn) = pi/(pi + Ai). Since PWO(t) is monotonic, we
have

Pi < p(-< 1
pi + Ai

(19)

In practice pi > i,, otherwise the intermittent fault can be con-
sidered as a permanent fault during the relatively short testing
period. Hence, the upper and lower bounds in (19) are nearly
equal and we may, for simplicity, replace (18) by the following
inequality

(20)
n m

E Pi Hl exp (-Aisjrj) <.
i=l j=1

or

(21)
n m

E pi ex - Ai sj rij < E.
i = 1 j = 1
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Inequality (21), the conditions sj 2 0 (j= 1, 2,', m) and the
total testing time to be minimized EJ= s j form a nonlinear pro-
gramming problem.

If the computation time is to be reduced, the above problem can
be reformulated by dividing £ into n parts thus enabling the de-
composition of inequality (21) into n inequalities.

pi exp (-ii sirii).; i= 1, 2, ,n (22,

or

E s Arijl>-nj=l Ai £

Hence, the nonlinear programming problem reduces to a linear
programming problem whose solution is not necessarily minimal
but for which the required computation time is considerably
shorter.

Repetitive Testing
To design an optimal detection experiment for repetitive

testing, we have to determine the numbers of applications kl,
k2, -, km of the tests T1, T2, T.,7r,, respectively, so that inequal-
ity (16) is satisfied and the total testing time ZT=, kj t(j) is min-
imized, where t(i) is the time between two successive samplings of
the network when Tj is applied. Reasoning on the same lines as for
continuous testing results in

(24)
n m

Z Pi H (P()[P(o(tVA))]kj -)ij < e.
i=I j=1

Using the upper bound of PA) from (19), as for continuous
testing, we replace (24) by the following inequality

n m

,Pi n1 [P(o)o(t(j) )](kj-1 )rij <£(2)
i=l j=l

Defining Uij = -ln [P&0(t,(1)] and substituting in (25) results in
n

E pi exp E Uij(kj- )rij < S. (26)
i =1 j= 1

Inequality (26), the condition: all k,'s are nonnegative integers and
the total testing time to be minimized form an integer program-
ming problem whose solution is the optimal detection experiment.
If the computation time is to be reduced, the problem can be
reformulated by decomposing inequality (26) into n inequalities,
yielding

S Uij(kj- )rij In (flP); i = 1, 2, ., n. (27)

Example: A unit may have one out of three intermittent faults
fs, f2, and 13 with a priori probabilities Pl = P2 = p3 = 0.1; and
parameters I=u12 = Y3 = 102/ms and Al = A2 = 23 = 1/ms.
The fault matrix for this unit is

fi -1
R =f2 °

A3 I

T,

0 K1
1 1 .

1 0
T2 T3

If the unit can be tested continuously, from (23) we have the
following set of inequalities, for E = 10-6:

S1 + S3 . 12.6,

S2 + S3 2 12.6,

SI + s2 2 12.6.

'rhe total testing time i Si is minimal if sl = S2 = s3 = 6.3 ms.
Hence, i Si = 18.9 ms. If, instead of using the three tests T1,
T2, and T3, the minimal detection set for permanent faults consist-
ing of only T5 and T2 is used, we obtain the inequalities s1 > 12.6
and S2 > 12.6. Consequently, the total testing time is s1 + S2 =
25.2 ms.

If the unit-under-test is a synchronous sequential circuit with
T5, T2, and T3 consisting of 10, 17, and 5 test patterns, respectively,
a clock period of 10-2 ms, then from (27) we have

9.950 x 10-3k1 + 9.886 x 10-3k3 > 12.6,

9.950 x 103k2 + 9.886 x 103k3 . 12.6,

9.950 x 10-3ki + 9.950 x 10-3k2 . 12.6,

and the objective function to be minimized is

10 x 10-5k1 + 17 x 10-5k2 + 5 x 10-5k3.

The optimal solution is k5 = 1270, k2 = 0, and k3 = 1278. The
total testing time required is Z'1= 1 ttj'kj = 190.90 ms.

Using the minimal detection set for permanent faults, {T1, T2}
results in the following solution k1 = 1269, k2 = 1269 and the
total testing time is 342.63 ms. From these results we can see that
for both testing strategies, the optimal detection experiment for
intermittent faults may be different from the optimal experiment
for permanent faults as was observed by Savir [4].

V. CONCLUSIONS
A continuous-parameter Markov model for intermittent faults

has been proposed. This model, which is more realistic than ear-
lier discrete models, enables us to consider continuous testing of
combinational systems in addition to the repetitive testing
strategy. Both testing strategies have been analyzed and optimal
detection experiments for them have been developed.
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A Totally Self-Checking 1-Out-of-3 Checker

RENE DAVID

Abstract-Totally self-checking 1-out-of-m checkers are known
for all m except for m = 3. The principle of the 1-out-of-3 checker
presented is the following: the 1-out-of-3 code is transcoded in a
1-out-of-4 code by a sequential circuit which is totally self-checking.
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