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T h e  reliability models o f t en  as sume  random test ing 
and statistical independence of f a u l t s  t o  keep the  analysis  
tractable. In practice, these as sumpt ions  d o  n o t  hold. T h i s  
paper presents  a reliability model ing approach that  consid- 
ers nonrandom test ing.  T h i s  approach i s  used t o  calcu- 
late  the  f a u l t  exposure ratio, which characterizes the  test- 
ingprocess .  T h e  analysis  of the  experimental  data suggests 
tha t  the fau l t  exposure ratio varies  differently in the  early 
and the later  stages of tes t ing.  T h e  analysis  here presents  
a n  explanat ion of this  behavior. 

1 Introduction 

Software reliability is defined to be the probability of 
failure-free operation of a computer program in a specified 
environment for a specified time. One quantity used to 
measure software reliability is the fault exposure ratio [I - 
31. The fault exposure ratio h- is defined to be the ratio 
of the rate of change of the number of the faults and the 
number of the faults in a program. In the simplest case 
that there is one fault in a program and the testing is 
random, the fault exposure ratio is a constant. Therefore, 
the behavior of the fault exposure ratio as the function of 
time t tells us how far the number of the faults in a program 
deviates from an exponential function or the behavior of a 
single fault in a program. On the other hand, the value of 
the fault exposure ratio also gives us an idea about if the 
faults in a program is easy or difficult to be located. 

From an extensive data analysis by Malaiya, et.al. [ 3 ] ,  
the fault exposure ratio indeed varies with the testing time. 
From the data  analysis, Malaiya, et.al. also proposed that 
there are two distinguishable phases in testing process. 
They are the early stage of debugging and the later stage 
of debugging. In the early stage of debugging, the fault 
exposure ratio decreases against time t .  In the later stage 
of debugging, the fault exposure ratio increases with time 
t .  In this paper, we proposed a reliability modeling ap- 
proach that considers deterministic testing. We used this 
approach to calculate the fault exposure ratio. The exper- 
imental data  is compared with our results. 

This paper is organized as follows: In Section 2, we will 
introduce a single fault model and an independent faults 
model. In Section 3 ,  we will introduce a correlated faults 
model and obtain the exposure ratio for this model. We 
will compare our numerical results with the experimental 
data. We will present our conclusions in Section 4. 

2 Independent Faults Model 

In this section, we will introduce the independent faults 
model to model the random testing. We will start  with the 
simplest case in which there is only one fault in a program. 
Then we will discuss the case in which there are multiple 
faults in a program. Finally, we will calculate the fault 
exposure ratio for the independent faults model. 

2.1 Single Fault Model 

In this section, we will deal with the case in which there 
is only one fault in a program. We will make some assump- 
tions on locating the fault. Later we will use these assump- 
tions for the case in which there are multiple faults in a 
program. Throughout the paper, we assume that when 
the failure appears, the fault is located. 

Now let us start  to explain our single faults model. In 
our single fault model, there are N identical testing teams, 
where N >> 1. The term “identical teams’lhere means 
that they have the same efficiency and use the same testing 
strategy in the testing. In the other words, if two teams 
are identical, the probability that one team locates a fault 
in a program a t  time t is the same as the probability that 
another team locates the same fault in the same program 
at time t .  

Suppose that we have a program in which there is only 
one fault. In general, a testing strategy is chosen before 
the pogram is tested. Test engineers use their knowledge 
about the program to decide which strategy is going to 
be used in the testing. After a testing strategy is chosen, 
there is no guarantee on how many inputs are used before 
the fault causes a failure. The quantity for evaluating a 
testing strategy is the average time 5 that  we spend before 
the failure appears. 

To calculate the average time 5, we consider the fol- 
lowing experiment: Each of the N identical teams has a 
copy of the program. They perform the testing indepen- 
dently. To simplify the calculation, we assume that in this 
experiment, the times a t  which the failure appears can 
only be t l , t 2 , . . . ,  t,, where t l  < t 2  < ... < 1,. They 
are discretized and fixed. Notice that this assumption is 
just for simplifying the calculation. I t  will not affect the 
generaliarity of the following calculation because we do 
not make any assumption on the value of t,+l - t , .  Later 
we will show how the results for the continuous time can 
be obtained from the results for the discretised time. We 
call this experiment Experiment I. If we let the N iden- 
tical testing teams start  the testing, finally, we will find 
that there are 6% teams locating the fault at time t , ,  where 
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z = 1 , 2 , .  . . , m. Considering the fact 
m xiil = N ,  

i=l  

we cdculate the average time t using 
m 

i = l  

Because for a testing strategy, it may be easy to locate 
one fault but hard to locate another fault, the average time 
5 depends on the following three parameters: the efficiency 
of the testing team, the testing strategy, and the feature 
of the fault. These three parameters are fixed in our single 
fault model. Therefore, the average time i is a constant in 
the single fault model. 

Because the details of the fault is unknown before we 
find it, we do not know which inputs can let the fault cause 
a failure. We call the input which lets the fault cause a 
failure the correct input for the fault. In the testing, be- 
fore we choose a correct input for the fault, a number of 
inputs are chosen. The number of inputs that  we use be- 
fore a correct input is chosen will never be known before 
the fault is located. Thus the testing is random in the 
sense that there is no deterministic way to find the correct 
input for the fault. On the other hand, the probability 
that the correct input for the fault is chosen largely de- 
pends on the strategy we use in the testing. Therefore, 
the testing is not purely random. The testing is random 
under the “constrain”of the strategy used in the testing. 
For example, we suppose that the total number of inputs 
for a program is 4 and they are input1  , i n p u t n ,  i n p u t s  , and 
ir ipuf4.  For a purely random testing, all the four inputs are 
chosen with the same probability. Assume that the test- 
ing strategy s t r a t e g y l ,  in which input4  is excluded in the 
testing, is applied in the testing. Then, in the testing, any 
of the inputs from input1  to i n p u t s  will be chosen with the 
same probability while input4  will never be chosen. There- 
fore, for inputs from input1  to i n p u t s ,  the testing is purely 
random, but for all the possible inputs, the testing is not 
purely random. In our single fault model, Eq. (2) is the 
constrain due to the fact that  the efficiency of the team, 
the strategy in the testing, and the feature of the fault are 
fixed. 

Before we continue our discussion on the random test- 
ing, let us first introduce the notion of configurations. In 
Experiment I, we label the N teams using the numbers 
from 1 to N. We repeat Experiment I W times. To do 
this, we let each team has W copies of the program and 
use one of the W copies of the program in each experi- 
ment. Here we assume that there is not any correlation 
among the W experiments. This means that after each 
team locates the fault on one of the copies, it forgets all 
the information about the program and the fault so that 
in the testing on the other copies of the program, they 
will not take any advantage of the previous testings of the 
program. 

To explain the configuration, let us first define the nota- 
tions that we are going to use. We let i i ; [ j ]  be the number 
of teams which locate the fault a t  time t i  in the j t h  exper- 
iment. We use ui[E] to  denote the assigned number of the 
team which locates the fault a t  time t ,  in the j t h  experi- 
ment, where k = 1 , 2 , .  . . , i i i [ j ] .  According to the way we 

label the N teams, for a fixed value of j ,  all the values of 
u i [ k ] ’ s  are different and from 1 to N. 

We 
define G ( j )  to be 

Now we are ready to  explain the configuration. 

I 

The configuration for the j t h  experiment is defined to be 
G(j). We need to  remind the readers that in G(j) ,  the 
sequence of u{[k]’s  in { u i [ l ] ,  + .  . , u i [ 6 ; [ j ] ] }  is arbitary and 
d.ifferent sequence of it will not give us a new configuration. 
The meaning of the configuration G(j)  is the information 
about which team locates the fault a t  time t i ,  where i = 
1 , .  . . , m. Therefore, we can see that the configuration G 
is the most detail information about the experiment. 

The probability that a configuration appears is related 
to the way in which the inputs are chosen. If all the pos- 
sible inputs are chosen with the same probability, all the 
possible configurations will appear with the same proba- 
bility. In the pure random testing, every possible input 
can be chosen with the same probability. Therefore, the 
probability of locating the fault at time t i l  is the same as 
the probability of locating it a t  time t , z .  It is apparently 
tihat in this case, every possible configurations appear with 
tlhe same probability. For the nonpure random testing, the 
inputs are chosen randomly with the same probability but 
under the constrain of Eq. (2). Therefore, the possible 
configurations which are subject to Eq. (2)  appear with 
tlhe same probability. However, the probability of locat- 
ing the fault a t  time t;l is different than the probability of 
locating it at time t i 2 .  

Now let us summarize our single fault model. In our 
single fault model, we make the following assumptions: 

e N identical teams independently test a program in 
which there is only one fault, where N >> 1. 

e The testing is random. 
e The average time of locating the fault is a constant. 
In our single fault mode, we need to know the prob- 

ability of locating the fault a t  time t,,p,. Let i i ;  be the 
average number of teams which locate the fault a t  time t; 
aind defined to be 

W I 

According to the definition of i i ; ,  we obtain 

i i; 

p i  = F’ 

(3) 

( 4 )  

Thus if 6, is calculated, pr can be obtained using Eq. (4). 
Now we are going to take another approach to calculate It, 
instead of using Eq. (3). 

To obtain it,, we first calculate the set of 6” ’s  which has 
the highest probability to appear, i.e. the most likelyhood 
set of 6,’s. Then we take the limit N + 00. The most 
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likelyhood set of 6,’s in the limit N -+ CO is equal to the set 
of i i , ’s. We know that all the possible configuration appear 
with the same probability. The most likelyhood set of tr’s 
is such set that has the most number of configurations 
which are subject to Eqs. (1) and (2) 

Now we are ready to calculate f i t ’ s .  Before doing this, 
we first calculate the number of configurations T ( { i i , } )  for 
a given set of 6;’s. Suppose that we first arrange the N 
teams in such a way that the number held by the left team 
is less the the number held by the right team. Then we 
exchange the position of any two of the N teams. There 
will be N !  configurations. All the configurations we are 
going to find are in the N !  configurations. Now let us find 
out which configurations in the N !  configurations should 
not be counted. For those teams which locate the fault 
at  time t , ,  if we exchange any two of the i i, teams, it will 
not give us a new configuration which we are interested in. 
There are i i,! number of such exchanges for these teams. 
We should consider these ii,! exchanges in the N !  configu- 
rations as one configuration. Doing the same consideration 
for all the other teams, we obtain 

i= l  

Considering that the value of N is sufficiently large and 
using Sterling formula In X !  M X In X - X ,  we obtain 

m 

(5) 
i = l  

To calculate ai’s, we need to calculate the maximum of 
the function In r({ii,}) in Eq. (5) under the constrains in 
Eqs. (1) and (2). Using Lagrangian multiplier method, we 
obtain 

iii  exp[-k(ti - f)] 
P . = - -  : -  f i r -  m 

I *  exp[-k(ti - f)I 
i = l  

Here k is the Lagrangian multiplier for Eq. ( 2 )  and can be 
determined using Eqs. (2) and (6) in principle. Because 
the equation for k cannot be solved in general, we just 
consider k as a constant at  this moment. 

So far, the result we obtained is for the discretized time. 
Now we are going to obtain the result for the continuous 
time from Eq. (6). We assume tl = At and t i + l -  t ,  = At ,  
namely t ,  = nAt. Thus Eq. (6) becomes 

exp[-k(nAt - f)]At 
(7 )  Pn = m 

i s 1  
exp[-k(iAt - f)]At 

We let t G nAt, and p ( t ) A t  E p,. As we take the limit 
At -+ 0 and keep mAt to be a constant, qo,  the summation 
in Eq. (7) becomes an integral. The meaning of qo is the 
maximum time needed to locate the fault. If we assume 
that the time spent to locate the fault can range from 0 to 
infinity, using Eq. (2) to determine k ,  we obtain 

The meaning of p ( t ) d t  is the probability of locating the 
fault in the time interval from time t to time t + d t .  As we 

have seen that, to obtain the results for continuous time 
from the results for discretized time, we can just simply 
write the summation over time ti into the integral on time 
t .  

Now let P ( t )  be the probability of locating the fault 
from time 0 to  time t ,  then 

P ( t )  = p ( r ) d r  = 1 - exp(-t/f). 1‘ 
We can see that for a fixed time t ,  P ( t )  is an increasing 
function o f t .  Therefore we use the value of 5 to measure 
the hardness of locating the fault. 

2.2 Multiple Faults Model 

Now let us consider the case in which there are multiple 
faults in a program. We will use all the assumptions in 
Section 2.1 and will not repeat those assumptions in this 
section. We assume that all the faults in the program are 
independent. Therefore, locating one fault will not give 
the test engineers any clue for locating other faults. This 
assumption also excludes the case in which one fault masks 
others. For example, in the testing process, the following 
situation happens sometimes: In a program, because of 
the presence of fault 2,  the failure caused by fault 3 will 
not appear in the execution of this program. The only 
way that fault 3 can affect the function of the program is 
that fault i is removed. The independent faults assumption 
excludes this situation. As long as this situation does not 
happen frequently, the independent faults assumption will 
be a fairly good approximation. 

In our multiple faults model, we let the N teams test 
the program independently. To understand our multiple 
faults model, let us use Experiment I1 and Experiment 
111. In Experiment 11, we let each of the N teams test the 
program. When a team locates a fault, it will not continue 
to test the program but waits. After each of the N teams 
locates a fault in the program, we know the locations of all 
the located faults in the program. Because all the faults 
are independent, they can be located by this mean if the 
value of N is sufficiently large. In Experiment 111, we let 
each of the N teams independently locate all the faults 
in the program. After a fault is located, it is removed 
from the program. We see that in Experiment 111, if the 
located faults are not removed, it will be equivalent to Ex- 
periment 11 and a fault may be located multiple times by 
a team before the team locates all the faults. Therefore, 
fault removal is taken into account in Experiment 111 and 
but not in Experiment 11. Fault removal is the statistic cor- 
relation between faults. Statistic correlations have nothing 
to do with the testing. I t  only affects the way in which we 
do the statistics. Therefore, in our multiple faults mode, 
Experiment 11 is used and the statistic correlation is not 
considered. 

Now let T denote the number of faults in the program. 
The average time for locating fault j is tJ. For any pair of 
t, and iJ,  they may be equal to or may not equal to each 
other. Again, we first consider the case for the descritized 
time. We use t , ( j )  to denote the time needed to  locate 
fault 3 and A , ( J )  to  denote the number of teams which 
locate fault 3 at time t , ( j ) .  Then we have the following 

82 



constrains on i i i ( j ) ’ s :  

and 

xcfii(j) = N (9) 

t = l  

where m3 is the number of time tickets a t  which fault j is 
located. As the same as in Section 2.1,  N ,  f3’s, and t , ( j ) ’ s  
are constant. All i i , ( j ) ’ s  are the random variables which 
are subject to the constrains in Eqs. (9) and (10) 

Using the same method as we used in the single 
fault model, we calculate the number of configurations, 
I’({iil(j))), for a set of fiI(j)’s and obtain 

Now we need to find the maximum point of the function 
r({iir(j)}) in Eq. (11) under the 7 + 1 constrains in Eqs. 
(9) and (10). One can take the same approach as we used 
for the single fault model to obtain the maximum point 
of I’. One also can take a different approach to obtain 
the maximum point {fi,(j)). It  can be shown that finding 
the maximum point of the function r with the constrains 
in Eqs. (9) and (10) is equivalent to finding the minimum 
point of the following function, El,  without any constrains 
when the time becomes continuous: 

\ 

(12) 
where n, ( j )  is the number of teams which locate fault j a t  
time t ,  (j) and cis to be determined by Eq. (9). Notice that 
we use the different symbols in Eq. (11) and (12). This 
is because we would like to emphasize that the variables 
& ( j ) ’ s  in Eq. (11) are the solution of Eq. (10) and the 
variables ~i,(j)’s in Eq. (12) are not necessarily the solution 
of Eq. (9). 
Calculating the derivatives of the function EI with respect 
to n , ( j ) ’ s  respectively and letting them be zero, we obtain 

( l o ) ,  but they are still the solution of Eq. 

i i i ( j )  
P i ( j )  = - N 

(13) 
In Eq. (13),  p ; ( j )  is the probability of locating fault j 
at time t l ( j ) .  If we substitute Eq. (13) into Eq. ( lo) ,  
we will find that iir(j)’s are the solution of Eq. (10) in 
the continuous time limit . This is because we choose the 
correct factor ir(.j)-’ for the first term in Eq. (12). 

Eq. (13) is the result for the discretized time. As we 
mentioned in the discussion for the single fault model, to 
olbtain the results for the continuous time from the results 
for the disrectized time, we can just simply change the 
summation over t z ( j ) ’ s  into the integral on time t. Per- 
forming this substitution and assuming that the faults can 
be located a t  any time between 0 to infinity, we obtain the 
result for the continuous time: 

where p ,  ( t ) d t  is the probability of locating the fault j dur- 
ing the time from t to t + d t .  If T = 1, Eq. (14) recovers 
to Eq. (8). 

The probability of locating fault j during the time from 
tiine 0 to time t ,  P3(t) ,  is obtained using Eq. (14) 

(15) 

If we set t to be 03, we obtain the probability of locating 
fault j during the time from 0 to 00: 

(16) 
6 P3(00) = -. i: f3 

The value of NP, (w)  gives us the number of teams which 
locate fault j. From Eq. (16), we can see that the harder 
fault j is to be located, the bigger the value of P3(0o) 
is. This result tells us that in our theory, the value of 
P3 does not necessarily reflect the hardness of locating a 
fault. Only the average time of locating a fault gives us 
the hardness of locating the fault. 

The ratios t / f J ’ s  are very important in evaluating how 
much effort is used to locate the faults. Let us first cal- 
culate the average value of the ratio t / t 3  for fault j. We 
use < A >3 to denote the average value of a variable A for 
fault j .  Using Eqs. (14) and (16) we obtain 

3=1 

Eq. (17) tells us that if we scale the quantity < t >3 by 
the average time f3, then we will obtain the fraction of the 
teams which take part in locating fault j. 

Now let us discuss the meaning of the ratio t / f 3  in more 
details using the discretized time. We assume that a set 
of n,(j)’s is assigned for locating fault j. Let T3 be the 
average time used to locate fault j for the set of n, ( j ) ’ s .  
T3 is calculated using the following equation: 

T 3 =  ’ 
N3 

1 



where N,  is the total number of the teams participating in 
locating fault j, namely 

i 

Let AT, denote the value of T, - E,. The value of AT, 
tells us that on the average, how much more time a team 
needs to locate fault j if AT, < 0 and how much more 
time a team spends to locate fault j than it should spend 
if AT, > 0. In the other words, if AT, < 0, then more 
effort is needed to locate fault j; if AT, > 0 , then too 
much effort is used to locate fault j. In order to compare 
how much more or less effort is used for locating fault j 
with the efforts for locating other faults, we need to use the 
relative deviation AT,/f, multiplied by the total number 
of people who locate fault j, e , ,  namely, 

e ,  = ~ , i ; l  AT,. 

The first term of function Er in Eq. (12) is e , / N .  Now 
we understand that the first term of E1 is actually the time 
related effort for locating fault j. Later, we will discuss 
more about the effort on the testing. 

2.3 The Fault Exposure Ratio For The In- 
dependent Fault Model 

In this section, we will use the results from the pre- 
vious setions to calculate the fault exposure ratio for the 
independent faults model. The fault exposure ratio, K ,  is 
defined to be 

where M ( t )  is the number of the faults left in the program 
at time t and TL is the average time needed for a single 
execution. In Experiment 11, after a fault is located, the 
fault can be considered to be removed from the program. 
Therefore, we have M ( t )  = MoR(t ) ,  where MO is the total 
number of faults at  t = 0 and R(t)  is the probability that 
a fault is in the program after time t ,  i.e. R(t)  = 1 - P ( t ) .  
Thus we obtain 

Eq. (18) gives us the relation between the fault exposure 
ratio K and the quantity R(t) which can be calculated 
analytically in our independent faults model. 

Now let us turn to the multiple faults model. P,(t) in 
Eq. (15) is the probability of locating fault j during time 
t .  The probability of locating any fault is the sum of all 
the P,(t)’s. Doing this using Eq. (18), we obtain 

2 exp(--t/i,) 

(19) 
,=1 

K ( t )  = I‘ TL . c E, exp(-t/f,) 
,=1  

Eq. (19) is different than the result obtained by 
Y.K.Malaiya, et.al. [ 3 ] .  This is because they are two dif- 
ferent models. For large value o f t ,  the terms that contain 

the largest value of f3 ’ s  in the summations, f m Q x ,  domi- 
nates the values of the summations. Thus, for large value 
o f t ,  we have K ( t )  M t;i,T~. We can see that for large 
value of t ,  the fault exposure ratio for the independent 
faults model recovers to the fault exposure ratio given by 
Y.K.Malaiya, et.al. [ 3 ] .  

It can be shown that the function K ( t )  in Eq. (19) is 
always a decreasing function of time t for any set of SJ’s. 
This tells us that the fault exposure ratio calculated from 
the independent faults model is a decreasing function of 
time t. As the time passes, the value of the fault expo- 
sure ratio becomes smaller and smaller and the smallest 
value of the fault exposure ratio is the value of f ; i ,T~ .  
This behavior does not agree with what we observed in 
reality. This deviation results from the assumption of our 
independent faults model. 

3 Correlated Faults Model 

In this section, we will take the nonrandom testing into 
account in the calculation. We will see that the nonrandom 
testing can be treated as the dynamic correlations between 
faults. The correlated faults model will be introduced to 
model the dynamic correlations. As in the independent 
faults model, because statistic correlations are not related 
to the testing, it is not considered in the correlated faults 
model. 

Now let us first explain the dynamic correlations be- 
tween faults. In programs, we can divide the faults into 
three types according to the way in which the testing is 
performed and they are found. The faults of the first type 
are the independent faults which we have considered in the 
previous section. The independent faults are located due 
to random testing. Most of this type of faults are found 
in the early period of testing. In this period, the testing 
engineers randomly choose the inputs to test the program 
using a testing strategy. Therefore there is no correlation 
among the faults except the statistic correlation. This type 
of faults can be treated independently. 

In reality, the randomness of choosing the inputs is not 
always the same during the testing. After a period of test- 
ing, test engineers may gain some experience from the pre- 
vious testing. Then they actually have a fairly good idea 
about what types of inputs have a high probability of ex- 
posing the faults and ought to be chosen and what types of 
inputs are unlikely to expose the faults and should be cho- 
sen later. Therefore, after a period of time, the testing is 
not as random as the testing at  the beginning. The effect 
of this kind of testing on locating faults is the following: 
After finding fault 2, we will take less time to find fault 
than the time taken to  find fault 1 without finding fault z 
before. Such faults like fault i and fault j are the faults of 
the second type. 

The faults of the last type are those which are masked 
by other faults. As in the hardware fault testing, one fault 
may masks another in software fault testing. If fault j is 
masked by fault 2, then in order to find fault j ,  we have to 
find fault i first. 

We notice that in both the second type and third type 
of faults, if faults B is correlated to fault A, finding fault B 
is related to the time at  which fault A is found. Therefore, 
we call the correlations among the faults of the second type 
and the third type are dynamic correlations. As pointed 



out in reference [3], the dynamic correlations have a major 
effect on the fault exposure ratio especially in the late stage 
of testing. 

NOW let us to explain how we model these three types 
of faults in our theory. In the previous section, we have 
shown how we model the faults of the first type using the 
independent fault model. For the faults of second and 
third types, we will use our correlated faults model to take 
the dynamic correlation into account. In the correlated 
faults model, we consider the following correlations: Sup- 
pose that we have two correlated faults of the second type, 
faults i and j. If we locate fault i before fault j is located, 
then the average time used to locate fault j will be smaller 
than the average time used to locate fault j without locat- 
ing fault i first, and vise versa. For the faults of third type, 
if fault z masks fault j, then fault j can not be located un- 
til fault z is located. In the correlated faults model, for 
the faults of both the second type and the third type, we 
only consider the one-step correlations between faults. For 
example, for the two correlated faults of the second type, 
fault i and fault j, after finding fault i, we find fault j and 
finding fault j will not affect on finding other faults. For 
the faults of the third type, we only consider the case in 
which a masked fault does not mask other faults and is 
marsked by only one fault. 

In the correlated faults model, because some of the 
faults are correlated to each other, we need to use correla- 
tion functions to describe this system. In order to state the 
correlation functions clearly, we use the following conven- 
tions to specify the faults and the times. We use indices 
i, j ,  and k to  specify the faults. If indices i and j appear 
in the same correlation function, then faults i and j are 
independent of each other. We use indices i and 1, to de- 
note that fault ki is correlated to fault i and is located 
after fault i is found. We use indices n and m for the time 
tickets, where n = 1 , 2 , . . .  and m = 1 , 2 , .  ... If fault z 
is located independently, then tn(i) is used to specify the 
time when it is located. We use t,,,(i, ki) to denote the 
additional time needed to locate fault ki after fault i is lo- 
cated a t  time tn(z). In the other words, tn(z) + t,,,(z, k ; )  
is the time when fault ki is located. Notice that the time 
interval tn,m(z, k ; )  is always greater than or equal to zero 

Two types of correlation function are used. The func- 
tion p i J [ t n ( i ) ,  t m ( j ) )  is defined to be the probability of 
locating both fault i a t  time t,(i) and fault j at time 
tm( j ) .  The function pik,[t.(z), tn,m(i, k i ) ]  is defined to be 
the probability that fault i is located a t  the time in(;) and 
after the time interval tn,m(i, ki),  fault k ;  is located. Once 
we obtain all the correlation functions, all the quantities 
that we need can be calculated. 

In the correlated faults model, we will take another ap- 
proach to calculate the correlation function. We use Zipf’s 
least effort principle [4,5] to solve the problem, which 
states that  people always tend to spend least effort to 
achieve an object. In order to find out how the faults are 
found in our model, we need to construct the effort func- 
tion, E. Then the minimum point of the effort function E 
will give us the behavior of the testing. 

We use T to denote the effort function which is pro- 
portional to the time spent to  locate the faults. From the 
independent fault model, we know that the average value 
o f t  for a fault alone does not reflect how much effort a team 
spends on locating the fault. Only the ratio of < t >? and 
fJ is proportional to the effort on locating fault j .  There- 
fore, T must be the sum of all the ratios for the faults in 

the program. Actually, the function Er is the effort func- 
tiion for the independent faults model. We can used the 
form of EI to obtain the effort function E for our corre- 
lated faults model. Let fz denote the average time used to 
independently locate fault 2. Let f 2 , k ,  be the average time 
used to locating fault k ,  after fault i is located. Consider- 
ing the form of EI in Eq. (12) and the above discussion, 
we obtain 

Here { z ,  k , }  means that the summation is taken over all 
the possible pairs of correlated faults. 

Now let us turn to another aspect of the effort for test- 
ing. We understand that if we want to choose a test which 
can located a specific fault, we need to expend a lot of 
e A r t  to do so. On the other hand, if we randomly choose 
one of all the possible inputs to see if the input exposes 
any fault, we will spend much less effort to do so. There- 
fore, the effort function also depends on the randomness 
of the testing. The more random the testing is, the less 
eflort we spend in the testing. A quantity of measuring 
the randomness for a system is “entropy”. We use S to 
denote the entropy. In our case, the entropy can be eaily 
calculated and is 

where SO is a constant. 
From the function EI in Eq. ( l a ) ,  we see that function 

Er contains the two parts we discussed above. Here we 
assume that the effort function E only contains these two 
parts. One part is T ,  which is the effort related to the time 
spent on the testing and defined in Eq. (20) .  The other 
part is the entropy S ,  which is the effort related to the 
randomness of the testing and defined in Eq. (21). Then 
the effort function is 
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Here the two terms with a factor c are used to assure 

p i j [ t n ( i ) j t m ( j ) l  
t,3,n,m 

t i ,ki} ,n ,m 
+ pik,[tn(i),tn,m(Z,ki)] = 1. 

(23) 
and Eq. (23) is used to determine the constant c later. 

In Eq. (22),  the effort function E is the function of 
p i j [ t n ( Z ) ,  tm( j ) ] ’ s  and Pik;[tn(Z), tn,m(z, ki ) ] ’~ .  In the test- 
ing, the least effort is used. Therefore, we need to find the 
sets of p i j [ t n ( i ) ,  tm( j ) ] ’ s  and Pik,[tn(i), tn ,m(i ,  kt)]’s such 
that the effort function E reaches its minimum. These sets 
can be obtained by starting with calculating the deriva- 
tives of the function E with respect to p i3[ tn ( i ) , tm( j ) ’ s  
and ~ j k , [ t ~ ( i ) , t ~ , ~ ( i ,  k;)]’s and let each of them be zero. 
Then Eq. (23) is used to dtermine the value of c. This 
procedure is similar to what we did in the multiple faults 
mode. Therefore, we skip all the calculations and give the 
result for the contimue time directly: 

pi,(t, r) = z - ~  exp(-t/f; - r / f 3 ) ,  (24) 

pik,(t, At) = Z-l eXp(-t/f, - At/&,k,), (25) 
where 

,3 { $ > k c }  

The meaning of p,, ( t ,  r ) d t d r  is the probability that fault 
z is located during the time from time t to time t + d t  
while fault is located during the time from time r to 
time r+dr. p&,(t, At)dtdAt is the probability that fault z 
is located during the time from time t to time t + d t  while 
fault k, is located during the time from time t + A t  to time 
t + At + dAt. 

Now let us start to calculate the fault exposure ratio 
using Eq. (18). Let P ( t )  be the probability of locating any 
of the faults from time 0 to time t .  We use Pt(t)  to denote 
the probability of fault z being found from time 0 to time t 
and P+(t)  to denote the probability of locating both fault 
z and fault L, from time 0 to time t. Then the function 
P ( t )  can be calculated using the following equation: 

I {:A> 

According to the definition for the functions P,(t) and 
Pt,k, ( t ) ,  we calculate the functions pt(t) and Ptk,(t) using 
the correlation functions p t 3  ( t ,  r )  and p&, ( t ,  At) in Eqs. 
(24) and (25) respectively and obtain 

(28) 
Substituting Eqs. (27) and (28) into Eq. (26) and using 
Eq. ( la) ,  we obtain 

Comparing Eqs. (19) and (29), we can see that if there is 
no correlations, Eq. (29) will recover to  the fault exposure 
ratio for independent faults model. Let cy-’ = mux{E,} 
and p-’ = “c{f8,k,}. For large t ,  we have 

= min{a, p } T L  K l t = m  
We see that the asymptotic behaviors of the fault exposure 
ratio for both the correlated faults model and the indepen- 
dent faults model are the same. Both of them are equal to 
the largest average time of the faults in the program. 

In order to see what role the dynamic correlations be- 
tween faults play in the fault exposure ratio, we rewrite 
Eq. (29) in another form. Let us first define RI@), KI( t ) ,  
Rc( t ) ,  and Kc( t )  as followings: 

RI  f3f,  exp(-t/f,), 

and 
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We express Eq. (19) in terms of Rr(t), Kl ( t ) ,  Rc(t) ,  and 
Kc ( t )  : 

To understand Eq. (32),  we first have a look at  the 
meanings of Rr(t), h’~(t), Rc( t ) ,  and Kc( t ) .  Rr(t) is 
proportional to the probability that any of the indepen- 
dent faults is not found during the time from 0 to t. All 
the faults in Rr(t) are independent of each other. There- 
fore, the function Rr(t) behaves the same as the function 
R(t) for the independent faults model. According to the 
definition of the function Kr(t) ,  we know that Kr(t)  is 
the corresponding fault exposure ratio for Rr(t) and is the 
fault exposure ratio for the independent faults. Compar- 
ing Eqs. (19) and (30),  we find that Kr(t)  shares the same 
formula with the fault exposure ratio for the independent 
faults model. This is expected because these two equa- 
tions actually describe the same thing and both are the 
fault exposure ratio for the independent faults. As we dis- 
cussed in the independent faults model, the function Kr(t)  
is a decreasing function of time t .  This means that in the 
correlated faults model, the independent faults are more 
and more difficult to be found as in the independent faults 
model. 

In Eq. (31),  the summations are over all the pairs of 
correlated faults. It is clear that Rc( t )  is proportional to 
the probability of not locating any correlated faults during 
the time from 0 to t .  Eq. (31) defines the fault exposure 
ratio, Kc( t ) ,  for the correlated faults. In the fault expo- 
sure ratio Kc( t ) ,  only the events of two correlated faults 
being found in certain periods are taken into account. To 
locate a correlated fault k,, we must locate the indepen- 
dent fault z first. Thus, the function Rc(t)  decreases much 
slower than the function Rr(t) does at  the beginning of the 
testing. This can be seen from the values of Kc(0) and 
h’~(0).  Letting t = 0 in Eqs. (30) and (31),  we obtain that 
Kc(0) is zero and K r ( 0 )  takes a nonzero value. The zero 
value of h’c(0) means that at the beginning of the testing, 
a correlated fault is much more difficult to be found than 
an independent fault. Because Kc(0) = 0 and Kc( t )  is al- 
ways greater or equal to zero, Kc( t )  must be an increasing 
function of t at least for small values of t. This is the ma- 
jor difference between the independent faults and the the 
correlated faults. The consequence of this behavior is that 
at the beginning of the testing, the correlated faults are 
very difficult to be located. Later, when testing engineers 
have more experience, the correlated faults are easier and 
easier to be located. This behavior is just the opposite to 
the behavior of independent faults. 

Now we are ready to understand Eq. (32).  h’ in Eq. 
(32) is the total fault exposure ratio. Eq. (32) tells us that 
the total fault exposure ratio is simply calculated from the 
average of the fault exposure ratios for the independent 
faults Kl( t )  and the correlated faults Kc( t )  weighted by 
Rr(t)  and Rc:(t), respectively. Because K i ( t )  is a decreas- 
ing function o f t  and Kc( t )  is an increasing function o f t  in 
a certain area o f t ,  unlike the fault exposure ratio for the 
independent faults model, a complicated behavior of K is 
expected. 

Now let us use an example to show the above discussions 
graphically. In this example, we consider that there are 
four faults in a program. We label them using numbers 1, 
2, 3,  and 4, respectively. In the numerical calculations, we 
set TL to be the unit time. 

In the correlated faults model, we let faults 1 and 2 be 
independent faults and faults 3 and 4 be the correlated 
faults with fault 2. Faults 3 and 4 cannot be located until 
fault 2 is located. The average times are tl = 1.0, & = 4.0, 
& , 3  = 5.0, and &,4 = 10.0, respectively. 

0.4 I I I I I I 1 
0.38 

0.36 

0.34 

h’r 0.32 

0.3 

0.28 

0.26 

0.24 I I I I I I I 
0 10 20 30 40 50 60 

testing t ime 
Figure 1. The vertical axis is the fault exposure ratio for 
faiilts 1 and 2. 

Figure 1 shows the curve of h’r V.S. t .  Only the two 
independent faults, faults 1 and 2, contribute to K I .  KI  
decays very fast to a nonzero value. This is because the 
largest average time in these two faults is 4.0. For large 
valiues of t ,  the value of Kr approaches to the inverse of 
thr: largest average time, 1/4.0. 

0.12 I I I I I 1 
0.1 

0.08 

K c  0.06 

0 10 20 30 40 50 60 
testing t ime 

Figure 2. The vertical axis is the fault exposure ratio for 
faults 3 and 4 correlated to fault 2. 

Figure 2 shows the curve of Kc V.S. t .  In K c ,  two pairs 
of ‘correlated faults contribute to h’c. One pair is faults 
2 and 3, and the other pair is faults 2 and 4. Comparing 
figures 1 and 2, we can see that there is a big difference 
between K r  and Kc.  The value of Kc at t = 0 is zero and 
then increases as t until t m 16.0.  At the beginning of the 
testing, because fault 2 has not been located yet, it is im- 
possible to locate either faults 3 or 4. The fault exposure 
ratio for locating faults 3 and 4 is zero. As the testing con- 
tinues, the probability of locating fault 2 increases. Then 
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locating faults 3 or 4 becomes possible and the fault ex- 
posure ratio Kc takes a nonzero value. The longer the 
testing time is, the bigger the probabfity of locating fault 
2 is, and the faster faults 3 and 4 are located. So the fault 
exposure ratio K c  increases with time t .  In the region 
o f t  > 16.0, K c  decays to the value of the inverse of the 
biggest average time, 1/10.0. At this time, fault 2 has al- 
ready been located. Thus locating faults 3 and 4 is similar 
to locating the independent faults. The fault exposure ra- 
tio K c  approaches the value of the inverse of the biggest 
average time in faults 3 and 4 as the fault exposure ratio 
for independent faults K I  behaves. 

1 

0.09 1 I I I I I I 
0 10 20 30 40 50 60 

testing t ime 
F igure  3.1. The vertical axis is the fault exposure ratio 
for all the four faults. 
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0 2 4 6 8 10 

testing t ime 
Figure 3.2. The vertical axis is the K for all the four 
faults. I t  is the same as Figure 3.1 but with a different 
scale in the horizontal axis. 

We plot the fault exposure ratio K for the correlated 
faults model against time t in figure 3 .  Because the fault 
exposure ratio li contains all the four faults, it is combined 
from the feature of KI  and the feature of Kc. In the earlier 
stage of the testing, the independent faults are much easier 
to be located than the correlated faults are. The fault 
exposure ratio for the independent faults dominates the 
fault exposure ratio h’. In this period of time, the fault 
exposure ratio K behaves the same as the fault exposure 

ratio KJ for the independent faults does. After this period 
of time, the testing process enters the later stage of the 
testing. In the later stage of the testing, the independent 
faults have been located and some experience from the 
earlier stage of the testing has been obtained. Then the 
correlated faults start to be located. Therefore, in the 
later stage of the testing, the fault exposure ratio K c  for 
the correlated faults dominates the fault exposure ratio K .  
The fault exposure ratio K starts to increase with time t 
as we observed in figure 2. 

0.19 o.2 r-ll-7 

0 10 20 30 40 50 60 
testing t ime 

Figure 4. The vertical axis is the fault exposure ratio for 
the four independent faults. 

Figure 4 shows the fault exposure ratio K for the inde- 
pendent faults model. In figure 4, there are four indepen- 
dent faults in a program. The average times of locating 
faults 1, 2 ,  3, and 4 are 1.0, 4.0, 5.0, and 10.0, respectively. 
Comparing figures 1 and 4, we can see that the fault expo- 
sure ratio K for the independent faults model and the fault 
exposure ratio KI behave the same. Unlike the fault ex- 
posure ratio for correlated faults model, the fault exposure 
ratio for independent faults model is always a decreasing 
function o f t .  The faults are more and more difficult to be 
located as the testing continues. Again, for large values of 
t ,  the fault exposure ratio approaches to the value of the 
inverse of the largest average time, 1/10.0. This is due to 
the fact that in independent faults model, the testing is 
random. At the beginning of the testing, there are more 
faults in the program. At this time, it is relatively easy 
to locate any of the faults. Later, some of the faults have 
been located and most of the rest of the faults have larger 
average times of being located or are more difficult to be 
located. Thus, the fault exposure ratio always decreases 
against time t .  

In order to see how well the fault exposure ratio for the 
correlated faults model describes the reality, we use Eq. 
(29) to fit the experimental data using the least square fit. 
The experimental data comes from reference [3]. In the 
fitting, we assume that N ,  faults with the same average 
time are masked by one fault and there are N ,  independent 
faults with the same average time. Both N ,  and N ;  are 
much greater than 1. In the fitting function, there are 
five parameters. Figure 5 shows both the experimental 
data and the curve from the fitting. We can see that the 
experimental data can be described very well by the curve. 



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
testing t ime (arbitrary unit)  

Figure 5.  The vertical axis is the relative fault exposure 
ratio. o denotes the experimental data and the solid line 
is from the correlated faults model. 

We conclude that the correlated faults model contains 
the main factor of affecting the fault exposure ratio. The 
results from the correlated faults model show that there 
are two stages in the testing process. We call them the 
earlier stage and the later stage. These two stages are 
distinguished by which type of faults dominates the fault 
exposure ratio. In the earlier stage, the independent faults 
dominate the fault exposure ratio and the fault exposure 
ratio decreases against time t .  In the later stage, the corre- 
lated faults dominate the fault exposure ratio and the fault 
exposure ratio increases with time t for a certain period of 
time. 

4 Conclusions 

In this paper, we discussed the effect of both random 
testing and nonrandom testing on software reliability an- 
alytically. The independent faults model is used to model 
the random testing. In this fault model, the fault expo- 
sure ratio of the independent faults model approaches to 
a constant as the time approaches to infinity. This behav- 
ior characterizes the testing process in the earlier stage of 
testing. The same conclusion has been made in reference 
[3] using a different fault model. 

We analyzed the effect of the nonrandom testing on 
locating faults. According to our analysis, the uonran- 
dom testing can be considered as the correlations between 
faults. Based on the analysis, the correlated faults model 
is proposed. The independent faults model is a special case 
of the correlated faults model. 

We find that the behaviors of the fault exposure ratios 
for the independent faults and the correlated faults are 
significantly different. We find that there are two phases 
in the testing process. This agrees with the observation 
from the experimental data [3]. 

We also used the fault exposure ratio for the correlated 
faults model to fit the experimental data. It fits the ex- 
perimental data very well. We conclude that the dynamic 
correlations between faults indeed play an important role 
in the testing as Malaiya, et.al. pointed out [3]. In the 
early stage of testing process, the independent f ad t s  dom- 
inate the fault exposure ratio; In the later stage of testing 

process, the correlated faults dominate the fault exposure 
ratio. 

From the theoretical aspect, the correlated faults model 
has two advantages. The first is that after the correlations 
between faults are taken into account, the testing can be 
treated as random testing. This can largely simplify the 
calculation. The second is that the fault maskings are 
automatically taken into account in the correlated faults 
n’iodel. 

This paper also provides an approach to calculate the 
probability of locating faults. For example, if the statistic 
correlation is considered, it is still possible to calculate the 
probabilities using this approach. We speculate that this 
approach will be used in solving more complicated fault 
models in the future. 
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