
Using Software Structure to Predict Vulnerability Exploitation Potential
1Awad A. Younis and 1Yashwant K. Malaiya

1Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA
{younis,malaiya}@cs.colostate.edu

Abstract— Most of the attacks on computer systems are due to
the presence of vulnerabilities in software. Recent trends show
that number of newly discovered vulnerabilities still continue to be
significant. Studies have also shown that the time gap between the
vulnerability public disclosure and the release of an automated
exploit is getting smaller. Therefore, assessing vulnerabilities
exploitability risk is critical as it aids decision-makers prioritize
among vulnerabilities, allocate resources, and choose between
alternatives. Several methods have recently been proposed in the
literature to deal with this challenge. However, these methods are
either subjective, requires human involvement in assessing
exploitability, or do not scale. In this research, our aim is to first
identify vulnerability exploitation risk problem. Then, we
introduce a novel vulnerability exploitability metric based on
software structure properties viz.: attack entry points,
vulnerability location, presence of dangerous system calls, and
reachability. Based on our preliminary results, reachability and
the presence of dangerous system calls appear to be a good
indicator of exploitability. Next, we propose using the suggested
metric as feature to construct a model using machine learning
techniques for automatically predicting the risk of vulnerability
exploitation. To build a vulnerability exploitation model, we
propose using Support Vector Machines (SVMs). Once the
predictor is built, given unseen vulnerable function and their
exploitability features the model can predict whether the given
function is exploitable or not.

Keywords—Risk Assessment; Measurement; Software
Vulnerability; Software Security Metrics; Attack Surface, Machine
Learning.

1. INTRODUCTION

Recent trends show that the number of newly discovered
vulnerabilities still continue to be significant (+13000
vulnerabilities in 2013) and so does the number of attacks (+37
million of attacks in 2012-2013) [1]–[3]. It has also been observed
that the time gap between the vulnerability public disclosure and
the release of an automated exploit is getting smaller [4].
Therefore, assessing the risk of exploitation associated with
software vulnerabilities is needed to aid decision-makers prioritize
among vulnerabilities, allocate resources, and choose between
alternatives.

Several methods have been proposed to deal with this
challenge. They can be categorized into: test-based, measurement-
based, model-based, and analysis-based approaches. First, test-
based approaches do not scale up as writing an exploit is difficult
and expensive. Second, measurement-based approaches either
make the implicit assumption that all vulnerabilities have the same
risk of exploitation (number of attack entry points), or are
subjective in nature and do not model properties of software
structure. Third, model-based approaches also assume that
vulnerability have the same risk of exploitation (number of
vulnerabilities).This is unrealistic because different vulnerabilities
have different chances of being exploited depending upon their
inherent properties such as reachability. Besides, model-based
approaches do not model properties of software structure. Finally,
analysis-based approaches either require human involvement in the
assessment or require vulnerability intelligence provider.

In this research proposal, our aim is to reduce subjectivity,
minimize human involvement and improve scalability in assessing
vulnerability exploitation risk. To reduce subjectivity, we
introduce a novel vulnerability exploitability metric based on
software structure properties such as attack entry points,
vulnerability location, presence of dangerous system calls, and
reachability for less subjective measures. Based on the preliminary
results, reachability and the presence of dangerous system calls
appear to be good indicator of exploitability.

To reduce human involvement and improve scalability in
assessing exploitability risk, we propose using the suggested
metric as feature to construct a model using machine learning
techniques. We plan to examine the effectiveness of machine
learning for automatically predicting the risk of vulnerability
exploitation. To build a vulnerability exploitation model, we
consider using Support Vector Machines (SVMs). Once the
predictor is built, given a vulnerable function and their
exploitability features the predictor can assess whether it is
exploitable or not and estimate the impact of its exploitation.

The paper is organized as follows. Section 2 presents the
problem description and research motivations. In section 3, related
works is discussed. In Section 4, the proposed metric will be
discussed. In the following section, the key steps of our framework
are introduced. Section 6 presents the preliminary results. Finally,
the concluding comments are given along with the issues that need
further research.
2. PROBLEM DESCRIPTION AND RESEARCH MOTIVATION

Vulnerability exploitation risk depends on the likelihood of
exploiting a vulnerability and the effect of this exploitation, as
given in Eq.1. The first factor, exploitability, is the likelihood that
a potential vulnerability can be successfully exploited. This factor
concerns to the question “Is the vulnerability exploitable?” and
thus is a classification problem. The other factor, impact, means
the losses that occur given a successful exploitation. This factor is
related to the question “Which is the most exploitable
vulnerability?” and hence is a ranking problem.

 �������	���
 ��� = �(�������	������, ���	��) (�)

To clarify why this problem is challenging, we will look at the
main issues that contribute to making the problem complicated.
We will use [5], [6] as guide for our analysis of the problem. Here,
the problem will be expressed as questions. First we will look at
the challenges of the exploitability factor and identify seven key
questions that are needed to be addressed. Then, we will discuss
the challenges of impact factor and also identify one key question
that is required to be tackled.
2.1 Exploitability Factor

There are four main challenges when it comes to assessing the
exploitability factor. They are explained as follows.
1) Exploitability Estimators

The main challenge is determining the estimator (attribute) to
be used in assessing exploitability factor. There are number of
estimators such as: existence of exploit, existence of patches,
number of vulnerabilities, number of attack entry points, black
market, and Proof of concept.

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.17

13

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.17

13

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.17

13

Q1: Which one of those makes a good estimator of
exploitability?

To answer this question, let’s look at every one of those
estimators. As it can be seen from Table 1, every one of the
estimators assesses exploitability from specific prospective and
has its own limitation. As no single estimator can capture the
whole picture of exploitability, incorporating multiple estimators
to form a complete understanding of the exploitation risk is
desired. However, the challenge then:
Q2: How can we combine those estimators?
2) Measures derivation

The other challenging is deriving the measures of
vulnerability exploitation. Obtaining the measures of
exploitability can be accomplished by using one of the following:
security expert opinion, history of reported vulnerabilities and
exploits, and software code. In one hand, relying on expert
opinions leads to subjectivity and thus hinders the accuracy of the
assessment. The challenge is:
Q3: How can we reduce subjectivity and minimize human
involvement in exploitation assessment?
On the other hand, the history data of reported vulnerabilities or
exploits is not always available especially for newly released
software. Thus, the question is:
Q4: How can risk of exploitation get assessed in the absence of
history data?
The alternative could be using the software code. However, the
question is:
Q5: What type of features can be used as an indicative of
vulnerability exploitability?
3) Assessment Method

 Another challenge is choosing the assessment method. The
chosen method should capture the essence of the problem and its
related aspects. The challenge is:
Q6: Which one of the following methods: testing, modeling,
measurement, and analysis should be used?

 Answering this question requires looking at what the requirements
of the problem are. Based on the above mentioned challenges, the
method should satisfy the following criteria.

� The method should be able to combine multiple
estimators and also should able to be customized once a
new estimator is introduced.

� The method should reduce subjectivity.
� The method should minimize human involvement in

performing assessment (Automation).
� The method should rely on multiple sources of data.
� The method should be speedy and systematic in

performing the assessment.
Table 2 compares the assessment methods based on the criteria

stated above. This can be used as a guide for choosing the right
method.
4) Level of assessment.

A further challenge is deciding on the level of assessment that
the exportability should be assessed at.
Q7: Should we assess exploitability for individual vulnerabilities
or the whole software?

Assessing the vulnerability exploitability at the software level
is not informative as it assumes that all vulnerability have the same
risk of exploitation. This is unrealistic as different vulnerabilities
have different risk of exploitation. Thus, assessing the exploitation
risk at the individual vulnerability level should be done first.
Thereafter, we can add up the number of the exploitable
vulnerabilities and hence get the total risk of exploitation for the
whole system.

2.2 Impact Factor
Estimating the impact factor is challenging because it is a

context dependent. For instance, a mission critical server being
shut down may be more “severe” than a print server. There are two
types of impacts: Technical impact (e.g., privilege elevation) and
Business impact (e.g., monetary loss). While the latter depends on
the mission and the priority of the given context, the former,
however, can be estimated at function level. Nevertheless, the
question is:
Q8: What estimators should be used to determine the technical
impact?

The answer could be any one of those: privilege, access right,
dangerous system calls, and exploit mitigation. While determining
the dangerous system calls can be easily accomplished at the
source code level, privilege and access right is hard as they require
deep analysis of the source code. Besides, in the absence of the
source code the problem gets even harder because identifying the

Table 1: Exploitability Estimators Limitations.

Exploitability Estimator Limitation

a. Existence of an exploit
The data required to measure
this attribute is not always
available.

b. Existence of a patch

Existence of a patch does not
tell whether they have been
applied or not because studies
[7] shows patches applications
depends on the administrators’
behavior.

c. Number of vulnerabilities
and number of attack entry
points

These estimators are not
informative as they do not
specify which vulnerability is
exploitable and rather they
estimate the exploitability of the
whole system.

d. Black market

It is expensive as it requires
continues intelligence gathering.
Besides, attackers do not tend to
share their expertise with the
public and their activities are
most of the time unknown.

e. Proof of concept
It is hard, not scalable, and
expensive to generate reliable
exploit.

Table 2: Comparison of the Assessment Methods.
 Method

Criteria
Testing Measurement Modeling Analysis

Adapt to
adding new
features

No No Yes No

Reduce
subjectivity Yes Yes Yes No

Minimize
human
involvement

Yes No Yes No

Use multiple
sources of
data

No No Yes Yes

Speedy Yes No Yes No

141414

privilege and access right from a binary is not a trivial task.
However, identifying the exploit mitigation at the function level is
possible when the source code is available but it is hard when all
you have is an executable file.
3. RESEARCH OBJECTIVES

The main objective of this research is to propose a framework
that can encounter for the challenging questions discussed in the
problem description. We mainly focus on reducing subjectivity,
minimize human involvement and improve scalability in assessing
vulnerability exploitation risk. To reduce subjectivity, we
introduce novel vulnerability exploitability metric based on
software properties: attack entry points, vulnerability location,
dangerous system calls, and reachability analysis. To minimize the
human involvement and improve scalability, we construct a model
based on machine learning techniques that uses the proposed
metric as feature to predict the risk of vulnerability exploitation.
4. RELATED WORK

In this section, we review the work related to vulnerability
exploitation risk assessment. We organize this section based on the
method used to assess exploitation risk into: measurement-based,
model-based, test-based, and analysis-based approaches.
4.1 Measurement-based approaches

Attack Surface Metric: The attack surface notion was first
introduced by Howard in his Relative Attack Surface Quotient
metric [8]. It was later formally defined by Manadhdata and Wing
in [9]. They proposed a framework that included the notion of
Entry and Exit Points and the associated damage potential-effort
ratio. They have applied their formally defined metric to many
systems and the results show the applicability of the notion of
attack surface. Their new metric has been adapted by a few major
software companies, such as Microsoft, Hewlett-Packard, and
SAP. Manadhdata et al in [10] relate the number of reported
vulnerabilities for two FTP daemons with the attack surface metric
along the method dimension. Younis and Malaiya [11] have
compared vulnerability density of two versions of Apache HTTP
server with the attack surface metric along the method dimension.
However, attack surface metric does not measure the risk of
exploitation for individual vulnerabilities. Rather, it measures the
exploitability for the whole system and as a result it cannot help in
prioritizing among vulnerabilities. Besides, neither [10] nor [11],
however, related entry points with the location of the vulnerability
to measure its exploitability.

CVSS Metrics: CVSS metrics are the de facto standard that is
currently used to measure the severity of vulnerabilities [12].
CVSS Base Score measures severity based on exploitability (the
ease of exploiting vulnerability) and impact (the effect of
exploitation). Exploitability is assessed based on three metrics:
Access Vector, Authentication, and Access Complexity. However,
CVSS exploitability measures have come under some criticism.
First, they assign static subjective numbers to the metrics based on
expert knowledge regardless of the type of vulnerability, and they
do not correlate with the existence of known exploit [13]. Second,
two of its factors (Access Vector and Authentication) have the
same value for almost all vulnerabilities [14]. Third, there is no
formal procedure for evaluating the third factor (Access
Complexity) [12]. Consequently, it is unclear if CVSS considers
the software structure and properties as a factor.
4.2 Model-based approaches

Probabilistic Model: Joh and Malaiya in [15] formally
defined a risk measure as a likelihood of adverse event and the
impact of this event. In one hand, they utilized the vulnerability

lifecycle and applied Markov stochastic model to measure the
likelihood of vulnerability exploitability for an individual
vulnerability and the whole system. On the other hand, they used
the impact related metrics from CVSS to estimate the
exploitability impact. They applied their metric to assess the risk
of two systems that had known unpatched vulnerabilities using
actual data. However, the transition rate between vulnerability
lifecycle events has not been determined and the probability
distribution of lifecycle events remains to be studied. Moreover,
the probability of being in an exploit state requires information
about the attacker behavior which might not be available.
Additionally, the probability of a patch being available but not
applied requires information about the administrator behavior
which has not been considered by the proposed model and also
hard to be obtained. In contrast, we assess vulnerability
exploitability for individual vulnerabilities based on code
properties regardless of the availability or unavailability of a patch.

Logistic Model: Vulnerability density metric assesses the risk
of potential exploitation based on the density of the residual
vulnerabilities [16]. The density of residual vulnerabilities is
measured based on the number of known reported vulnerabilities
and the total number of vulnerabilities. However, the total number
of vulnerabilities is unknown but can be predicted using
vulnerability discovery models (VDMs). Alhazmi and Malaiya
[17] proposed a logistic vulnerability discovery model, termed the
AML model. AML examines the reported known vulnerabilities of
a software system to estimate the total number of vulnerabilities
and their rate of discovery. However, considering the number of
vulnerabilities alone is insufficient in assessing the risk of
individual vulnerability exploitation. Because different
vulnerabilities have different opportunity of being exploited based
on their properties such as reachability.

Machine Learning based Metric: Bozorgi et al. [13] aimed at
measuring vulnerabilities severity based on likelihood of
exploitability. They argued that the exploitability measures in
CVSS Base Score metric cannot tell much about the vulnerability
severity. They attributed that to the fact that CVSS metrics rely on
expert knowledge and static formula. To that end, the authors
proposed a Machine Learning and Data mining technique that can
predict the possibility of vulnerability exploitability. They
observed that much vulnerability have been found to have high
severity score using CVSS exploitability metric although there
were no known exploits existing for them. This indicates that
CVSS score does not differentiate between exploited and non-
exploited vulnerabilities. This result has also been confirmed by
Allodi et al. [14], [18], [19]. However, unlike their work, ours
relies on software properties such as attack surface entry points,
source code structure, and the vulnerabilities location to estimate
vulnerability exploitability. This is particularly important for
newly released applications that do not have large amount of
historical vulnerabilities.
4.3 Test-based approaches (Proof of concept)

Automated exploit-generation system (AEG): T. Avgerinos
et al. [20] proposed an automated exploit-generation system
(AEG) to assess the risk of vulnerability exploitation. AEG first
uses static analysis to find potential bug locations in a program,
and then uses a combination of static and dynamic analysis to find
an execution path that reproduces the bug, and then generates an
exploit automatically. AEG generates exploits, which provide
evidence that the bugs it finds are critical security vulnerabilities.
However, generating an exploit is expensive and does not scale.
AEG has only been applied to specific type of vulnerabilities and
software.

151515

Black Fuzz Testing: Sparks et al in [21] extended the black
box fuzzing using a genetic algorithm that use the past branch
profiling information to direct the input generation in order to
cover specified program regions or points in the control flow
graph. The control flow is modeled as Markov process and fitness
function is defined over Markov probabilities which are associated
with state transition on control flow graph. They generated inputs
using grammatical evolution. These inputs are capable of reaching
deeply vulnerable code which is hidden in a hard to reach
locations. In contrast to their work, ours relies on source code
analysis, a link between vulnerability location and attack surface
entry points, and dangerous system call analysis that were
specifically intended for measuring vulnerability exploitability.
4.4 Analysis-Based approaches

Black Market Data Analysis: L. Allodi and F. Massacci in
[14], [18] proposed the black market as an index of risk of
vulnerability exploitation. Their approach assesses the risk of
vulnerability exploitation based on the volumes of the attacks
coming from the vulnerability in the black market. It first looks at
the attack tools and verifies whether the vulnerability is used by
such tool or not. It also analyzes the attacks on the wild to verify
whether the vulnerability have been a target of such attacks or not.
If the vulnerability is being used by one of the attack tools or being
a target of real attacks, they consider this vulnerability as a threat
for exploitation. This approach has introduced a new view of
measuring risk of exploitation by considering the history of attacks
at vulnerabilities. This approach does not require spending large
amount of technical resources to thoroughly investigate the
possibility of vulnerability exploitation. However, this approach
requires vulnerability intelligence provider as the information
about the attacks and tools are dynamic in nature. Moreover, if the
vulnerability right now is not used by a tool or it is not a target of
an attack, it does not mean that it is going to be so continually. Our
approach, on the other hand, relies only on software properties and
does not make any assumption about the attacks and attacker
resources.

Source Code Analysis: Brenneman [22] has introduced the
idea of linking the attack surface entry point to the attack target to
prioritize the effort and resource required for software security
analysis. Their approach is based on path-based analysis, which
can be utilized to generate an attack map. This helps visualizing
the attack surfaces, attack target, and functions that link them. This
is believed to make significant improvement to software security
analysis. In contrast to their work, we not only utilize the idea of
linking attack surface entry point with the reported vulnerability
location to estimate vulnerability exploitability, but also apply the
damage potential-effort ratio in the attack surface metric and
checked for the dangerous system calls inside every related entry
point to estimate how likely the entry point is going to be used in
an attack. This is helpful for inferring attacker’s motive in
invoking the entry point method.

System Calls Analysis: E.Gabrielli and L.Mancini in [23]
have presented a detailed analysis of the UNIX system calls and
classify them according to their level of threat with respect to
system penetration. To control these system calls invocation, they
proposed Reference Monitor for UNIX System (REMUS)
mechanism to detect intrusion that may use these system calls
which could subvert the execution of privileged applications.
Nevertheless, our work applies their idea to deduce the motive of
an attacker in using an entry point, as attackers usually looks to
cause more damage to targeted systems. Thus, our work is not
about intrusion detection but rather measuring the exploitability of
a known vulnerability.

5. PROPOSED METRIC

Security is defined as “the freedom from the possibility of
suffering damage or loss from malicious attack [24].” Quantitative
security is realized by means of measurement. A measurement of a
security is represented by a metric. A metric is a system of related
measures enabling quantification of some characteristics [24]. A
security metric is a quantifiable measurement that indicates the
level of security. We are interested in studying security metrics
and in particular metrics for vulnerability exploitation prediction.

Our metric is based on combining attack surface analysis,
vulnerability analysis, and exploitation analysis to assess
exploitability. The proposed metric uses three values: high,
medium, and low as a measure of exploitability risk. The values
are assigned based on the following. High, if a vulnerability is
reachable from an entry point with dangerous system calls.
Medium, if it is reachable from an entry point with no dangerous
system calls. Low, if it is not reachable from any entry points. The
following shows the steps used to obtain the measures of our
metric. Further details can be found in [25].
5.1 Define attack entry points of software

We define the attack entry points using the system’s attack
surface entry point framework in is [9]. Entry points are the
functions that an attacker uses to send data to the system. In this
paper, we used only the entry points as they are the main target by
malicious attacks. A function is a direct entry point if it receives
data directly from the environment; read method defined in
unistd.h in C library is an example [26]. Fig.1 shows how the entry
points are identified. Input functions are function that receives data
from the environment.

The required steps are explained as follows. After we obtain
the source code, we first identify all functions that receive data
from the user environment (C/C++ Library functions). Then, we
verify whether these functions are used by any of the user
functions. After that, we identify all functions called by the main
function using cflow. By using python script, we verify whether
any of these functions has one of the C/C++ input functions. If we
find any, we consider that function as EP. Finally, we get the list of
all identified entry points
5.2 Finding Vulnerability Location

The vulnerability location can be found by manually looking at
the report or automatically by using static code analyzer such as
Splint [27]. The flowing report shows how a location can be found
from a vulnerability report.

 Figure 1: Attack Entry Points Identification

161616

5.3 Reachability Analysis
We employed a system dependence graph (SDG) in [28] to

determine the calls from an entry point function to a vulnerability
location (vulnerable function). SDG represents programs in a
graph that includes functions and function calls. We have used
cflow tool [29] to generate this graph. Fig.2 shows reachability
analysis for one of the chosen vulnerabilities.
5.4 Dangerous System Calls

We estimate how likely an entry point is going to be used in an
attack using Dangerous System Calls (DSCs) proposed in [23].
DSCs are specific system calls that have been identified and
classified into four levels [23]. Level one allows full control of the
system while level two used for denial of service attack. On the
other hand, level three used for disrupting the invoking process
and level four is considered harmless. The following system calls
are an example of threat level one: mount, open, and link. A
complete list of these calls can be found in [23]. However, from
the list of the identified entry points, we verify whether the entry
point contains DSCs or not using a python script. If any DSCs are
found, we annotate that function as entry point with DSCs.

Figure 2: Directly Mapping the EP in http_core.c to the vulnerable method.

6. PROPOSED FRAMEWORK

Fig.3 shows the framework of our proposed method. This
framework is based on three layers as they will be explained next.

6.1 Feature Extraction (Layer 1)
First, we start by mapping vulnerabilities to their function

(location). This is accomplished by using the vulnerability and bug
repository databases. When the vulnerability location is not
available, we can use static code analyzer like (e.g. Splint) to map
vulnerabilities to their locations (functions). Next, we extract a set
of features from these functions. These features are extracted as
shown in section 5. Our proposed metric evaluates vulnerability
exploitability based on the presence of a function call connecting
attack surface entry points to the vulnerability location within the
software under consideration using SDG. Further details about the
metric can be found in [25]. If such a call exists, we estimate
whether the entry point is going to be used in an attack based on
dangerous system calls [30]. The dangerous system calls paradigm
has been considered as these system calls allow attackers to
escalate a method privilege and hence cause more damage.
6.2 Model Building (Layer 2)

To build a vulnerability exploitation predictor based on the
selected features, we model vulnerability exploitation prediction as
a supervised learning problem. Supervised learning is one of
machine learning methods in which a set of labeled examples is
used to learn a target function. The target function maps the inputs
to a desired set of outputs (labels). Input to a supervised
classification algorithm is a set of training data S = {s1, s2,…, sn}.
Each vector si = {xi

1, xi
2,…, xi

m}, ci є S is called a training instance,
where xm is a feature and ci is the class label of the training
instance si. We propose using Support Vector Machines (SVMs) as
a classifier. SVM [31] is a supervised learning algorithm that is
used for classification. SVM creates a hyper-plane in a high
dimensional space that can separate the instances in the training set
according to their class labels. When a linear separation cannot be
found in the original feature space, SVMs use kernel functions to
map training data into a higher dimensional feature space. Then
SVM creates a linear separator in this higher dimensional feature
space, which can be used to classify unseen data instances.

Table 3 represents an example of data set that will be used for
learning the classifier. The feature value of feati represents
reachability and dangerous system calls features extracted using
our proposed metric. The feature value of featn for the function fn
represented by vnm. The cn represents the class label for the
function fn indicting whether a function is exploitable or not (1 or -
1).

Figure 3: Framework to predict vulnerability exploitation from reachability Metric

171717

6.3 Prediction on new Data (Layer 3)
Finally, the developed predictor is used to predict whether or

not unseen vulnerable function will be exploitable or not based on
its exploitability features. Using dangerous system calls as a
feature implicitly captures the impact factor.

7. PRELIMINARY RESULTS

7.1 Data Collection
To measure the effectiveness of our proposed method, we built

a dataset containing 20 vulnerable functions of Apache HTTP
server. We collected the vulnerabilities from National
Vulnerability database [2] and the exploits from exploit database
[32] and Open Source Vulnerability Database [33]. The source
codes of selected software have been obtained from their archive
database [30] and [31]. Due to pages limitation, we show only a
sample of our dataset in Table 4. The following has been observed
from the dataset:

- Two out of the twenty vulnerabilities are not reachable
and have no exploits and hence have been assigned low
severity values.

- Thirteen out of the twenty vulnerabilities are reachable
with no exploit exist for them. More than half of these
vulnerabilities have dangerous system calls and hence
have been assigned high severity values.

- The remaining five vulnerabilities are reachable with
exploits exist for them. Three out of them have dangerous
system calls and thus have been assigned high severity
values.

- More than half of the vulnerabilities have dangerous
system calls.

8. CONCLUSIONS AND FUTURE WORK

In this work, we address the problem of quantifying
vulnerability exploitation and identify the limitations of the current
state of the art. We proposed a new metric that can be used as an
earlier indictor of vulnerability exploitation based on software
structure properties. We also proposed utilizing this metric as a
feature for building a model. We propose to develop a model that
uses machine learning techniques to predict whether a given
vulnerability is likely to be exploitable or not. The developed
model can help decision makers prioritize their actions objectively
based on function structure features. Preliminary results in using
the metric as early indicator of exploitability have been shown. We
also have discussed how the features can be used to build the
classifier.

Our future plans include using our dataset to measure the
effectiveness of our model. To judge the performance of the
proposed predictive model, we will evaluate the accuracy, the area

under the receiver operating characteristics curve (AUC), and false
positive rate (FPR) as measures. We will also consider adding
more exploitable features at the function level such as Node Rank
[36] and GuardStack [37] .
REFERENCES

[1] “HP Report: More Attacks, Despite Fewer New Vulnerabilities Overall - eSecurity
Planet.” [Online]. Available: http://www.esecurityplanet.com/network-security/hp-report-
more-attacks-despite-fewer-new-vulnerabilities-overall.html. [Accessed: 27-Dec-2013].

[2] “National Vulnerability Database,” http://nvd.nist.gov/; July 2013. .
[3] “Security Response Publications, Internet Security Threat Report | Symantec.” [Online].

Available: http://www.symantec.com/security_response/publications/threatreport.jsp.
[Accessed: 27-Dec-2013].

[4] S. Frei, B. Tellenbach, and B. Plattner, 0-day patch - exposing vendors (in)security
performance,” BlackHat Europe, 2008, http://www.techzoom.net/papers/blackhat 0day
patch 2008.pdf. .

[5] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management guide for information
technology systems,” Nist special publication, vol. 800, no. 30, pp. 800–30, 2002.

[6] W. Jansen, Directions in security metrics research. NIST, NISTIR 7564, p. 21, 2009.
[7] W. A. Arbaugh, W. L. Fithen, and J. McHugh, “Windows of vulnerability: a case study

analysis,” Computer, vol. 33, no. 12, pp. 52 – 59, Dec. 2000.
[8] M. Howard, J. Pincus, and J. Wing, “Measuring Relative Attack Surfaces,” in Computer

Security in the 21st Century, D. T. Lee, S. P. Shieh, and J. D. Tygar, Eds. Springer US,
2005, pp. 109–137.

[9] P. K. Manadhata and J. M. Wing, “An Attack Surface Metric,” Software Engineering,
IEEE Transactions on, vol. 37, no. 3, pp. 371 –386, Jun. 2011.

[10] P. Manadhata, J. Wing, M. Flynn, and M. McQueen, “Measuring the attack surfaces of
two FTP daemons,” in Proceedings of the 2nd ACM workshop on Quality of protection,
New York, NY, USA, 2006, pp. 3–10.

[11] A. A. Younis and Y. K. Malaiya, “Relationship between Attack Surface and Vulnerability
Density: A Case Study on Apache HTTP Server,” in in ICOMP, The 2012 International
Conference on Internet Computing, 2012.

[12] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common vulnerability
scoring system version 2.0,” in Published by FIRST-Forum of Incident Response and
Security Teams, 2007, pp. 1–23.

[13] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics: learning to
classify vulnerabilities and predict exploits,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, New York, NY, USA,
2010, pp. 105–114.

[14] L. Allodi and F. Massacci, “My Software has a Vulnerability, should I worry?,” arXiv
preprint arXiv:1301.1275, 2013.

[15] H. Joh and Y. K. Malaiya, “Defining and assessing quantitative security risk measures
using vulnerability lifecycle and cvss metrics,” in The 2011 International Conference on
Security and Management (sam), 2011, pp. 10–16.

[16] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and predicting security
vulnerabilities in software systems,” Computers & Security, vol. 26, no. 3, pp. 219–228,
2007.

[17] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability discovery process,” in
Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium
on, 2005, p. 10–pp.

[18] L. Allodi and F. Massacci, “A preliminary analysis of vulnerability scores for attacks in
wild,” ACM Proc. of CCS BADGERS, vol. 12, 2012.

[19] L. Allodi, W. Shim, and F. Massacci, “Quantitative assessment of risk reduction with
cybercrime black market monitoring.,” 2013 IEEE Security and Privacy Workshops, 2013.

[20] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic Exploit
Generation.,” in NDSS, 2011, vol. 11, pp. 59–66.

[21] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated vulnerability analysis:
Leveraging control flow for evolutionary input crafting,” in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, 2007, pp. 477–486.

[22] D. Brenneman, “Improving Software Security by Identifying and Securing Paths Linking
Attack Surface to Attack Target,” McCabe Software Inc., White Paper, Apr. 2012.

[23] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Remus: a security-enhanced operating
system,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 1, pp. 36–61, Feb. 2002.

[24] O. S. Saydjari, “Is risk a good security metric?,” in Proceedings of the 2nd ACM workshop
on Quality of protection, 2006, pp. 59–60.

[25] A. A. Younis, Y. K. Malaiya, and I. Ray, “Using Attack Surface Entry Points and
Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability,”
presented at the 2014 IEEE 15th International Symposium on High-Assurance Systems
Engineering, 2014.

[26] P. Manadhata, J. Wing, M. Flynn, and M. McQueen, “Measuring the attack surfaces of
two FTP daemons,” in In Proceedings of the 2nd ACM workshop on Quality of protection,
2006.

[27] D. Evans and D. Larochelle, “Improving security using extensible lightweight static
analysis,” software, IEEE, vol. 19, no. 1, pp. 42–51, 2002.

[28] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12, no. 1,
pp. 26–60, 1990.

[29] “GNU cflow.” [Online]. Available:
http://www.gnu.org/software/cflow/manual/cflow.html. [Accessed: 02-Aug-2013].

[30] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “REMUS: A security-enhanced operating
system,” ACM Transactions on Information and System Security (TISSEC), vol. 5, no. 1,
pp. 36–61, 2002.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp.
273–297, 1995.

[32] “Exploits Database by Offensive Security.” [Online]. Available: http://www.exploit-
db.com/. [Accessed: 07-Aug-2013].

[33] “OSVDB: Open Sourced Vulnerability Database.” [Online]. Available: http://osvdb.org/.
[Accessed: 19-Feb-2014].

[34] “archive.apache.org.” [Online]. Available: http://archive.apache.org/dist/httpd/. [Accessed:
02-Aug-2013].

[35] “Old Version of Firefox Download - OldApps.com.” [Online]. Available:
http://www.oldapps.com/firefox.php. [Accessed: 19-Feb-2014].

[36] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis and
prediction for software evolution,” in Proceedings of the 2012 International Conference
on Software Engineering, 2012, pp. 419–429.

[37] O. Whitehouse, Analysis of GS protections in Windows Vista. Symantec, 2007.

Table4: The Dataset of the Proposed Method.

Vulnerability Vulnerable Function Reachability Dangerous System Calls Exploit
Existence

1. CVE-2012-0031 ap_cleanup_scoreboard Reachable setuid, open, fork, kill, exit,
unlink, setgid, dup, and flock No Exploit

2. CVE-2010-0010 ap_proxy_send_fb Reachable - Exploit

3. CVE-2004-0488 ssl_util_uuencode_binary Not reachable - No Exploit

Table 3: Prediction Features.
Function feat1 feat2 .. featn Class

f1 v11 v12 v1n c1
f2 v21 v22 v2n c2

fn vn1 vn2 vnm cn

181818

