
Using Attack Surface Entry Points and Reachability Analysis to
Assess the Risk of Software Vulnerability Exploitability

1Awad A. Younis, 1Yashwant K. Malaiya, and 1Indrajit Ray
1Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA

{younis,malaiya,indrajit}@cs.colostate.edu

Abstract— An unpatched vulnerability can lead to security
breaches. When a new vulnerability is discovered, it needs to be
assessed so that it can be prioritized. A major challenge in software
security is the assessment of the potential risk due to vulnerability
exploitability. CVSS metrics have become a de facto standard that is
commonly used to assess the severity of a vulnerability. The CVSS
Base Score measures severity based on exploitability and impact
measures. CVSS exploitability is measured based on three metrics:
Access Vector, Authentication, and Access Complexity. However,
CVSS exploitability measures assign subjective numbers based on
the views of experts. Two of its factors, Access Vector and
Authentication, are the same for almost all vulnerabilities. CVSS
does not specify how the third factor, Access Complexity, is
measured, and hence we do not know if it considers software
properties as a factor. In this paper, we propose an approach that
assesses the risk of vulnerability exploitability based on two software
properties – attack surface entry points and reachability analysis. A
vulnerability is reachable if it is located in one of the entry points or
is located in a function that is called either directly or indirectly by
the entry points. The likelihood of an entry point being used in an
attack can be assessed by using damage potential-effort ratio in the
attack surface metric and the presence of system calls deemed
dangerous. To illustrate the proposed method, five reported
vulnerabilities of Apache HTTP server 1.3.0 have been examined at
the source code level. The results show that the proposed approach,
which uses more detailed information, can yield a risk assessment
that can be different from the CVSS Base Score.

 Keywords—Risk assessment; Measurement, Software Vulnerability;
Software Security Metrics; Attack Surface; CVSS Metrics.

1. INTRODUCTION
The security of computer systems and networks depends on

the security of the software running on them. Vulnerabilities are
security related defects that might be exploited by a malicious
user causing loss or harm. In spite of recent advances in
vulnerability avoidance (e.g., formal and informal design
methods, software development process control), vulnerability
identification and removal (e.g., testing, model checking), and
intrusion prevention (e.g., firewall, anti-virus software), it is
unlikely that completely vulnerability free systems will become
possible anytime soon [1]. Therefore, evaluating the risk
associated with software vulnerabilities is needed to assess and
allocate the resources needed to address them.

A security metric is a quantifiable measurement that indicates
the level of security for an attribute of the system [2]. Security
metrics give a way to prioritize threats and vulnerabilities by
considering the risks they pose to information assets based on
quantitative or qualitative measures. The metrics proposed
include: vulnerability density, attack surface, flaw severity and
severity-to-complexity, security scoring vector for web
applications, the Common Vulnerability Scoring System (CVSS)
metrics etc. [3]. Each of them is based on specific perspective and
assumptions and measures different attributes of software
security. They are intended to objectively help decision makers in

resource allocation, program planning, risk assessment, and
product and service selection.

Problem Description. Assessing the risk associated with
software vulnerabilities is accomplished by assessing their
severity. CVSS metrics are the de facto standard that is currently
used to measure the severity of vulnerabilities. CVSS Base Score
measures severity based on exploitability (the ease of exploiting
vulnerability) and impact (the effect of exploitation).
Exploitability is assessed based on three metrics: Access Vector,
Authentication, and Access Complexity. However, CVSS
exploitability measures have come under some criticism. First,
they assign static subjective numbers to the metrics based on
expert knowledge regardless of the type of vulnerability, and they
do not correlate with the existence of known exploit [4]. Second,
two of its factors (Access Vector and Authentication) have the
same value for almost all vulnerabilities [5]. Third, there is no
formal procedure for evaluating the third factor (Access
Complexity) [6]. Consequently, it is unclear if CVSS considers
the software structure and properties as a factor. Thus, there is a
need for an approach that can take into account detailed
information about the vulnerabilities for a less subjective risk
measure.

Contribution. The objective of this research is to propose an
approach that can help in assessing the severity of a vulnerability
by considering the detailed software structure. In this paper, the
concept of structural severity is introduced. A vulnerability has to
be reachable in order to be exploitable. Our approach evaluates
vulnerability exploitability based on software properties. The
evaluation is based on the presence of a function call connecting
attack surface entry points to the vulnerability location within the
software under consideration. If such a call exists, we estimate
how likely the entry point is going to be used in an attack based
on damage potential-effort ratio [7] in the attack surface metric
and dangerous system calls [8]. The damage potential-effort ratio
assesses how an attacker might choose an entry point based on
benefit (privilege) and cost (effort) that are needed to invoke the
targeted method. The dangerous system calls paradigm has been
considered as these system calls allow attackers to escalate a
method privilege and hence cause more damage. To determine
the effectiveness of the proposed approach, the Apache HTTP
server was selected as a case study. Apache has been chosen in
particular because web servers form a major component of the
Internet and Apache has the highest market share among the
HTTP servers [9]. Besides, its source code availability allows
evaluation of its attack surface and its richness of known
vulnerability dataset allows investigation of CVSS exploitability
sub-scores.

The paper is organized as follows. Section 2 presents the
related work. In Section 3, the background of the attack surface
metric, CVVS metrics, the Apache HTTP server, and Exploit
database are discussed. In the following section, the key steps of
our approach are introduced. In sections 5, the Apache’s
exploitability measures are examined. In section 6, the
exploitability of five vulnerabilities is assessed using the

2014 IEEE 15th International Symposium on High-Assurance Systems Engineering

978-1-4799-3466-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HASE.2014.10

1

proposed approach. Section 7 presents the observations and
results. Finally, concluding comments are given along with the
issues that need further research.
2. RELATED WORK

The Attack surface metric has been proposed to quantify the
opportunity that an attacker has to compromise the security of a
software system. The attack surface notion was first introduced
by Howard in his Relative Attack Surface Quotient metric [10]. It
was later formally defined by Manadhdata and Wing in [7]. They
proposed a framework that included the notion of Entry and Exit
Points and the associated damage potential-effort ratio. They have
applied their formally defined metric to many systems and the
results show the applicability of the notion of attack surface.
Their new metric has been adapted by a few major software
companies, such as Microsoft, Hewlett-Packard, and SAP.
Manadhdata et al in [11] relate the number of reported
vulnerabilities for two FTP daemons with the attack surface
metric along the method dimension. Younis and Malaiya [12]
have compared vulnerability density of two versions of Apache
HTTP server with the attack surface metric along the method
dimension. Neither [10] nor [11], however, related entry points
with the location of the vulnerability to measure its exploitability.

Brenneman [13] has introduced the idea of linking the attack
surface entry point to the attack target to prioritize the effort and
resource required for software security analysis. Their approach is
based on path-based analysis, which can be utilized to generate an
attack map. This helps visualizing the attack surfaces, attack
target, and functions that link them. This is believed to make
significant improvement to software security analysis. In contrast
to their work, we not only utilize the idea of linking attack surface
entry point with the reported vulnerability location to estimate
vulnerability exploitability, but also apply the damage potential-
effort ratio in the attack surface metric and checked for the
dangerous system calls inside every related entry point to
estimate how likely the entry point is going to be used in an
attack. This is helpful for inferring attacker’s motive in invoking
the entry point method.

Bozorgi et al. [4] aimed at measuring vulnerabilities severity
based on likelihood of exploitability. They argued that the
exploitability measures in CVSS Base Score metric cannot tell
much about the vulnerability severity. They attributed that to the
fact that CVSS metrics rely on expert knowledge and static
formula. To that end, the authors proposed a Machine Learning
and Data mining technique that can predict the possibility of
vulnerability exploitability. They observed that many
vulnerabilities have been found to have high severity score using
CVSS exploitability metric although there were no known
exploits existing for them. This indicates that CVSS score does
not differentiate between exploited and non-exploited
vulnerabilities. This result has also been confirmed by Allodi et
al. [5], [14], [15]. However, unlike their work, ours relies on
attack surface metric, source code analysis, and the reported
vulnerabilities location to estimate vulnerability exploitability.

Joh and Malaiya in [16] formally defined a risk measure as a
likelihood of adverse event and the impact of this event. In one
hand, they utilized the vulnerability lifecycle and applied Markov
stochastic model to measure the likelihood of vulnerability
exploitability. On the other hand, they used the impact related
metrics from CVSS to estimate the exploitability impact. They
applied their metric to assess the risk of two systems that had
known unpatched vulnerabilities using actual data. In contrast, we
assess vulnerability exploitability based on vulnerability

reachability regardless of the availability or unavailability of a
patch.

Sparks et al in [17] extended the black box fuzzing using a
genetic algorithm that use the past branch pro�ling information to
direct the input generation in order to cover speci�ed program
regions or points in the control �ow graph. The control �ow is
modeled as Markov process and �tness function is de�ned over
Markov probabilities which are associated with state transition on
control �ow graph. They generated inputs using grammatical
evolution. These inputs are capable of reaching deeply vulnerable
code which is hidden in a hard to reach locations. In contrast to
their work, ours relies on source code analysis, a link between
vulnerability location and attack surface entry points, and
dangerous system call analysis that were specifically intended for
measuring vulnerability exploitability.

E.Gabrielli and L.Mancini in [8] have presented a detailed
analysis of the UNIX system calls and classify them according to
their level of threat with respect to system penetration. To control
these system calls invocation, they proposed Reference Monitor
for UNIX System (REMUS) mechanism to detect intrusion that
may use these system calls which could subvert the execution of
privileged applications. Nevertheless, our work applies their idea
to deduce the motive of an attacker in using an entry point, as
attackers usually looks to cause more damage to targeted systems.
Thus, our work is not about intrusion detection but rather
measuring the exploitability of a known vulnerability.
3. BACKGROUND

3.1 Attack Surface Metric
A system’s attack surface is the subset of the system’s

resources that are used by an attacker to attack the system [7].
The resources are referred to as methods (e.g., API), channels
(e.g., sockets), and data items (e.g., input strings). This means
that more number of available resources indicate larger attack
surface and hence the system is less secure. Notably, only some
of these resources are considered as part of the attack surface. To
the relevant resources to be identified, the entry point and exit
point framework is used. Besides, the resource contribution is
estimated using damage potential-effort ratio. In this paper, the
entry point along the method dimension has been chosen. This is
due to the fact that most software vulnerabilities exist in a
method(s). Besides, in order to exploit a vulnerability in a method
an attacker needs to invoke that method either directly or
indirectly.
3.2 Software Vulnerability & CVSS Metrics

Software vulnerability is defined as a defect in software
systems that presents considerable security risk [18]. A subset of
the security related defects, vulnerabilities, are to be discovered
and become known eventually [18]. The finders of the
vulnerabilities disclose them to the public using some of the
common reporting mechanisms available in the field. The
databases for the vulnerabilities are maintained by several
organizations such as National Vulnerability Database (NVD),
Open Source Vulnerability Database (OSVDB), BugTraq, CVE
database, etc., as well as the vendors of the software.
Vulnerabilities are assigned a unique identifier using MITRE
Common Vulnerability and Exposure (CVE) service.

Common Vulnerability Scoring System (CVSS) is the
standard measure for vulnerability risk. The CVSS score system
provides vendor independent framework for communicating the
characteristics and impacts of known vulnerabilities [6]. It is used
to evaluate the degree of risks posed by vulnerabilities so
mitigation efforts can be prioritized. CVSS defines three metric

2

groups that can be used to characterize vulnerabilities: Base
Score, Temporal and Environmental. The Base Score metrics
represent the intrinsic characteristics of vulnerability, and are the
only mandatory metrics. The optional environmental and
temporal metrics are used to augment the Base Score metrics and
depend on the target system and changing circumstances. CVSS
score from 0.0 to 3.9 corresponds to low severity, 4.0 to 6.9 to
medium severity and 7.0 to 10.0 to high severity.

The Base Score metrics include two sub-groups, exploitability
and impact metrics. Exploitability observed as a metric for
describing the ease of exploiting vulnerability. It is measured
based on three factors: Access Vector (AV), Authentication,
(AU), and Access (attack) Complexity (AC) [6] :

 Exploitability= 20 * AV * AC * AU

Access complexity sub-score is assigned as low, medium, and
high. Low complexity means one that involves no specialized
conditions such as default configuration or the attack can be
implemented with not much skills. Medium complexity means
that access conditions are somewhat specialized such as involving
no default configuration or require specific system knowledge.
High complexity requires specialized access conditions such as
elevated privileges.
3.3 Apache HTTP Server

Apache HTTP server is a Web server that is developed and
maintained by an open community of developers under the
auspices of the Apache Software Foundation. Apache HTTP
server is simply a piece of software that responds to requests for
information sent by web browsers [19]. It has gone through a
number of improvements after its initial launch, which led to the
release of several versions: 1.3.x, 2.0.x, 2.2.x, 2.3.x, and 2.4.x.
According to [9], Apache web server has over 64% market share
of the top web servers on the Internet.

3.4 The Exploit Database (EDB)
EDB is an essential collection of exploits and vulnerable

software [20]. It is used by penetration testers, vulnerability
researchers, and security fanatics. It reports vulnerability for
which a there is a proof-of-concept exploit. EDB is considered as
the white market for exploits. EDB contains around 24075
exploits as the time of writing this paper. Most of its data are
derived from Metasploit Framework, a tool for creating and
executing exploit code against a distant target machine. It
provides a search using vulnerability CVE number for variety of
vulnerabilities types and software.
4. APPROACH

Our approach in assessing software vulnerability
exploitability is based on the following steps:

• Define the entry points, methods that contained a call to a
function in input functions, of the chosen system.

• Use function call analysis to find a connection (path)
between the entry point and the vulnerability location.

• Estimate the likelihood of an entry point being used in an
attack using:
� Damage potential-effort ratio along the method

dimension in the attack surface metric as given in (1).
� Dangerous system calls in the entry points and their

dangerous level as in (2).
• Assess an individual vulnerability exploitability based on

I, II, and III and then assign its structural severity value.

4.1 Entry Point and Exit Point Framework
The entry point and exit point framework is a formal

framework that defines the set of entry points and exit points
(methods), the set of channels, and the set of untrusted data items
from the source code of a system [7]. Entry and Exit points are
the methods that an attacker uses to either send or receive data
from the system. In this paper, we will use only the entry points
as they are the main target by malicious attacks. A method can be
either a direct or an indirect entry point [7]. In one hand, a
method is a direct entry point if it receives data directly from the
environment; read method defined in unistd.h in C library is an
example [11]. Besides, a method is an indirect entry point if it
receives data from direct entry point.
4.2 Damage Potential-Effort Ratio

Damage potential and access effort ratio is an informal means
that are used to estimate damage potential-effort in terms of
resources attributes [7]. The damage depends on the method’s
privilege, the channel’s type, and the data item’s type, whereas,
the effort depends on the rights of the resource that the attacker
needs to acquire to use a resource in an attack. The likelihood of a
method being used in an attack is given in (1) [18]:

 ac(method)= privilege/access right (1)

where ac() is the attackability. The user of this metric is
responsible for assigning a numeric values for privilege levels,
types of the channel, and types of data items [9]. However, the
following should be taken in considerations: the higher the
privilege, the higher the damage, whereas the higher the access
right the higher the effort [9].

As it can be seen in Table 1, a value to each privilege level
and access right level is assigned based on our knowledge of
Apache HTTP server and Linux (Ubuntu). The privilege in (1) is
used as an indicator of the exploitability impact (damage), while
the access right is an indicator of exploitability difficulty (attacker
effort).

4.3 Dangerous System Calls

 System calls are the entry points to privileged kernel
operations [21]. They are the essential interface between an
application program and the operating system kernel. Operating
systems contain groups of calls for performing various low-level
operations. Hence, if we want to execute an operating system call
from a program, we need to make a system call. Calling a system
call from a method (a user function not library function) in
program can violets the least privilege principle. This helps an
attacker to directly invoke a system call inside a vulnerable
method or indirectly invoking a system call within the scope of
that vulnerable function. Thus, this will further help the attackers

Table 1: Numeric values of Privilege & Access Rights

Method Privilege Value Access Rights Value

root 5 root 5

apache or (www-data,
manager.sys, or nobody) 3

apache or (www-
data, manager.sys,
or nobody)

3

authenticated 3 authenticated 3

unauthenticated 1 unauthenticated 1

Anonymous 1

3

escalate their privilege and hence causing mo
compromised system.

 E.Gabrielli and L.Mancini in [8] define d
calls as specific system calls that can be used
control of the system, cause a denial of service, o
acts. These system calls (UNIX calls) have be
classified into four levels of threat. Level one a
of the system while level two used for denial of
the other hand, level three used for disrupt
process and level four is considered harmless.
focus will be mainly in threat level one and two.
calls of threat level one is due to the fact that t
of the system can cause more harm to th
particularly selecting level two is because that
Apache where denial of service vulnerabilities r
total number of vulnerabilities across all versi
Table 2 shows the dangerous system calls of lev
two as classified by [8]. There are 22 system ca
one and 32 of threat level two.

 However, as dangerous system calls hav
level, every level has been assigned a weight as
As a method might include one or more dangero
with different levels, the following equation ha
estimate the dangerous level of a system call:�
� �������
�������������������������	
����������� ����� � ����

��� ��
�
where n is the number of system calls in a given
dangerous system calls, and TL is the threat leve

Table 3: Threat Level Weights

Threat Level Weight
1 1

2 0.6

3 0.3

4 0

4.4 Structural Severity

Structural severity is introduced as a m
software attributes to evaluate the risk of an at
vulnerability location from attack surface en
measured based on three values: high, medium
high if a vulnerability is reachable from an
dangerous system calls. It is medium if it is r

Table 2: Dangerous System Calls

Threat Level Dangerous Sys

1. Full control of the system

chmod, fchmod,
lchown, execve, mo
link, symlink, unlin
setfsgid, setre
creat_module, se
setuid, setfsuid

2. Denial of service

umount, mkdir, rm
nfsservctl, truncate,
dup, dup2, flock, fo
ioperm, clone, mo
vhangup, vm86, de
settimeoday, socke
syslog, setdoma
ptrace

1999 2000 2001 2002 2003 2004 2005

High 0 0 1 1 0 0 1

Medium 0 1 0 1 1 0 3

Low 8 7 11 18 15 20 6

0

5

10

15

20

25

N
um

be
r o

f V
ul

ne
ra

bi
lt

ie
s

re damage to the

dangerous system
to take complete

or other malicious
een identified and
allows full control
service attack. On
ing the invoking
In this paper, the

. Choosing system
taking full control
e system. While
our case study is

represents 30% of
ions and releases.
vel threat one and
alls of threat level

e different threat
shown in Table 3.

ous system calls
as been devised to

����������������

n method, DSC is
el weight.

measure that uses
ttacker reaching a
ntry points. It is
m, and low. It is
entry point with

reachable from an

entry point with no dangerous system
reachable from any entry points.
5. APACHE’S EXPLOITABILITY MEAS

The vulnerability datasets of Ap
have been obtained from NVD [22
National Institute of Standers and Te
the department of Home Land Securi
vulnerabilities were of a period from
169 vulnerabilities. In the follow
investigate the access complexity sub
look at the distribution of the main A
and the access complexity sub-score
authentication and the access vector.
5.1 Access Complexity

 To understand the ease and
vulnerabilities exploitability, we h
Apache’s access complexity CVSS su
2013 for all reported vulnerabilities.
1, most of the discovered vulnerabilit
2005 had a low access complexity
medium). However, starting from th
trends have dramatically changed
medium access complexity (from 34
This could be attributed to security im
made to its product code and eliminat
However, it has also been noticed t
vulnerabilities have increased from 3
to 13.3% in period 2006-2013. This
recent rise in the market share price
vulnerabilities and the sophistica
discovers scanners and techniques.

Figure 1: Vulnerabilities

5.2 Access Complexity across Vu
Looking at the type of apache

noticed that the following vulnerabilit
the overall reported vulnerabilities
33.5%, execute code 13.6%, cross s
overflow 8.8%, and others around
distribution of access complexity su
selected vulnerabilities types fo
vulnerabilities. By looking at the
during the two periods 1999-2005
observed a dramatic decline in the
score among the four types as show
hand, we have also witnessed an inc
complexity from the period 1999-200
unlike the other three types of the vul
vulnerabilities had a medium acc

stem Calls

chown, fchown,
ount, rename, open,

nk, setgroups, setgid,
esgid, setregid,
etresuid, setreuid,

mdir, umount2, ioctl,
, ftruncate, quotactl,

ork, kill, iopl, reboot,
odify_ldt, adjtimex,
elete_module, stime,
etcall, sethostname,
ainname,_sysctl,exit,

2006 2007 2008 2009 2010 2011 2012 2013

1 2 1 1 1 1 2 1

3 9 8 3 3 7 3 3

0 6 3 4 5 4 3 1

m calls. It is low if it is not

SURES
pache HTTP server releases
2] which is maintained by
echnology and sponsored by
ity. The collected discovered

m 1999 to 2013 and they are
wing subsections we will
b-score trends. Then, we will
Apache‘s vulnerability types
es. Next, we will check the

d difficulty of Apache’s
have collected data of the
ub-score of the period 1999-
As it can be seen from Fig.
ies during the period 1999 to
(from 90.4% low to 6.4%

he period 2006 to 2013 the
from majority low to half
4.6% low to 52% medium).
mprovement that Apache has
tion of its old vulnerabilities.
that high access complexity
.2% in the period 1999-2005
s could be attributed to the
e of high access complexity
ation of the vulnerability

s by Access Complexity
ulnerability Types
e’s vulnerabilities, we have
ties represent around 70% of
: denial of service (DoS)

site scripting, (XSS) 12.4%,
30%. Fig. 2 presents the

ub-score with respect to the
or the overall reported

vulnerabilities distribution
 and 2006-2013, we have
low access complexity sub-

wn in Table 4. On the other
crease in the medium access
05 to 2006- 2013. However,
nerabilities, majority of XSS

cess complexity while the

4

Denial of Service Execute Code XSS

Low 45 15 1

Medium 10 5 18

High 5 3 2

0
5

10
15
20
25
30
35
40
45
50

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

overflow vulnerabilities did not have any vuln
access complexity.

5.3 Authentication and Access Vector

 We have checked the authentication and the
Apache HTTP server from 1999-2013. Our stud
vulnerabilities are accessed remotely an
vulnerabilities, out of the 168, required authen
The three vulnerabilities required a single system

6. VULNERABILITY EXPLOITABILITY ASSESSMEN

6.1 System Vulnerabilities
In [12], Younis and Malaiya recognized th

server has new and inherited vulnerabilities f
The former represents the vulnerabilities
introduced in a specific version, while the lat
vulnerabilities that have been introduced from
and/or releases due to concept of reuse. Howev
version has two new vulnerabilities and
vulnerabilities. To apply our method, we h
following known vulnerabilities based on th
information about their locations and their types
(DoS), CVE-2012-0031 (DoS), CVE-2010-001
CVE-2004-0940 (XSS), and CVE-2004-0488 (Ov
6.2 System Attack Surface Entry Points

In this section, we will identify the attack su
along the method dimension for Apache HT
However, identifying the attack surface entry
looking at the code base and finding all entry po
be part of the attack surface. By finding such
needed next is classifying each one of them int
The code bases of the chosen version was obtain

Table 4: % of Access Complexity across Vulnerability

Vulnerability Type Period Low % Mediu

 1. Denial of service
1999-2005 96.7 0

2006-2013 51.7 34.5

 2. Execute Code
1999-2005 86.7 13.3

2006-2013 25 37.5

 3. XSS
1999-2005 16.7 83.3

2006-2013 86.7 86.7

 4. Overflow
1999-2005 25 8.3

2006-2013 33.3 66.7

Figure 2: Access Complexity across Vulnerab

Overflow

12

3

0

nerability of high

e access vector of
dies show that all
nd only three
ntications (1.7%).
m authentication.

NT

hat Apache HTTP
for every version.

that have been
tter represents the

m another versions
ver, Apache 1.3.0
eleven inherited

have chosen the
he availability of
: CVE-2011-0419
10 (Execute code),
verflow).

urface entry points
TTP Server 1.3.0.
y points requires
oints which could
h points, what is
to an attack class.
ned from [23].

 The entry points along the me
defined using cflow tool. The tool ana
C programming language and pr
dependencies between various func
graph, the methods that contained a
functions are identified. However, a
and access right level of the entry
dimension is required. Determine e
access right can be determined by loo
calls and Access Right: location w
performed.

 We have identified the entry poin
selected the ones that are related to
location. We realized that the related
apache privilege and access right a
include them in Table 5. Besides, w
entry point has a dangerous system
two. These entry points and the dang
in Table 5.

6.3 Mapping the Entry Points to

Once the vulnerabilities have be
points of the system have been
vulnerability to an entry point can be
vulnerability location in the source c
location can be determined from vuln
static code analyzers when the rep
information. The static code analyze

y Types

um % High %

3.22

 13.8

 0

 37.5

 0

 13.3

0

 0

Table 5: Apache 1.3.0 Entry Points and D

File Input Method Entry

1. http_core.c

gethostbyaddress

ap_get_rem

gethostbyname ap_inl

2. http_main.c

getopt

realma

master

 main(

signal

siglist

set_sig

child_

make_child

standalone_

child_sub_m

3.http_protocol.c

fread ap_send_fd

getline

read_reque

getmime_h

ap_get_clie

4.proxy_util.c

gethostbyname,
gethostbyaddress

ap_proxy_h

scanf
ap_proxy_h
ap_proxy_d
proxy_matc

5.mod_include.c getc GET_CHA

6.ssl_util.c -

bility Types

ethod dimension have been
alyzes a code base written in
roduces a graph charting
ctions [24]. From the call
a call to a function in input
assessing the privilege level
y points along the method
each method privilege and

oking at: Privilege: setUID()
where the authentication is

nts for the whole system and
o the chosen vulnerabilities

d entry point methods had an
and as a result we did not
we have checked whether an

call of threat level one and
gerous system call are shown

the Vulnerabilities
een identified and the entry
determined, mapping each
achieved by first finding the

code. Finding a vulnerability
nerability report or by using
port does not finalize such
ers are tools that are used to

angerous System Calls

y Point Dangerous
System Calls

mote_host()

line()

ain(), exit

rmain(),

()

t_init(),

gnals(),

_main(), setgid and setuid
dup, exit, and
flock

d(), fork

_main(), setuid, open,
fork, kill, exit,
and unlink

main() dup

d_length()

st_line(),

headers(),

ent_block()

host2addr()

hex2c(),
date_canon(),
ch_ipaddress()

AR()

-

5

Figure 4: Indirectly Mapping the Entry Points in http_core, http_main, and http_prorotocol to the vulnerable method

find common bugs or vulnerabilities in the code base without the
need to execute the code. Splint (Secure Programming Lint) is an
example. It is a tool that uses static analysis to detect
vulnerabilities in programs [25]. However, in this paper we will
use the vulnerability report to find the location of the
vulnerability and leave using the static tools as a future work.
Then, we use cflow to find whether the vulnerable method is
called by the entry point(s) or not. Due to the pages limits, only
the analysis of the first and the second vulnerabilities will be
presented in the following subsections.
6.3.1 CVE-2011-0419:

Vulnerabilities are either located in one of the entry points or
are located in a function that is called by the entry points directly
or indirectly. From the following report description, the location
of the vulnerabilities CVE-2011-0419 has been determined:

“Stack consumption vulnerability in the fnmatch
implementation in ap_fnmatch.c in the Apache Portable Runtime
(APR) library before 1.4.3 and the Apache HTTP Server before
2.2.18, and in fnmatch.c in libc in NetBSD 5.1, OpenBSD 4.8,
FreeBSD, Apple Mac OS X 10.6, Oracle Solaris 10, and Android,
allows context-dependent attackers to cause a denial of service
(CPU and memory consumption) via *? sequences in the first
argument, as demonstrated by attacks against mod_autoindex in
httpd [26]”.

As it can be seen, the vulnerability located in fnmatch.c. The
fnamtch has two methods namely ap_fnmatch() and

ap_is_fnmatch() that can be invoked by outsider methods. By
analyzing the source code we have found out that the
vulnerability located in the ap_fnmatch() method. Using the
entry points, the attacker can have an access to the vulnerability
by two ways:

• Directly: the http_core.c component has to entry points
and is able to call the vulnerable component fnmatch.c by
using any of its three methods: userselection(),
fileselection(), and create_core_dir_config() which in turn
call the ap_is_fnmatch() method in the fnmatch.c. As it can
be seen from Fig.3, the two entry pints had no access (no
path) to any of the http_core three methods. Besides,
ap_is_fnmatch() method has no access to the ap_fnamtch()
method which makes it even harder to the attacker to invoke
the ap_fnamtch() method using the entry points in http_core
component. As a result, it could be concluded that there is no
call relationship between the http_core.c entry point and the
vulnerable method.

• Indirectly: http_request.c does not have any entry points
but can be accessed by one of the three components
namely: http_core.c, http_main.c, and http_protocol.c
which have an entry points. http_request has three
methods: directory_wallk(),location_walk, and
file_walk() which can invoke the vulnerable method
ap_fnmatch(). From Fig.4, the following have been
observed:

� http_core uses its method default_handelr() to invoke
the ap_update_mtime() method in the http_request.
We have found out that the two entry points in the
http_core cannot invoke the method
default_handelr(). Besides, the ap_update_mtime()
cannot invoke any of the three http_request methods
which call the vulnerable method.

� http_main has three entry points: child_main(),
child_sub_main(), and realmain() that can invoke the
ap_process_request() method in the http_request.
However, ap_process_request() had no access to any
of the three http_request methods which in turn call
the vulnerable method.

� http_protocol has four entry points:
get_mime_headers(), ap_get_client_block(),
ap_send_fd_length(), and read_request_line() that are
able to invoke the ap_die() method in the
http_request. In spite of this, the ap_die() possessed
no access to the vulnerable methods.

Based on the indirect access using the entry points of the
system to the vulnerable method, it can be concluded that there is
no indirect call relationship.

Figure 3: Directly Mapping the EP in http_core.c to the vulnerable method.

6

6.3.2 CVE-2012-0031:
 “scoreboard.c in the Apache HTTP Server 2.2.21 and earlier

might allow local users to cause a denial of service (daemon crash
during shutdown) or possibly have unspecified other impact by
modifying a certain type field within a scoreboard shared memory
segment, leading to an invalid call to the free function.
Scoreboard issue could allow an unprivileged child process to
cause the parent to crash at shutdown rather than terminate
cleanly”.

To determine the location of the vulnerability in the
scoreboard.c, we looked at the patch report and we have found
out that the vulnerable code is in the methods
ap_cleanup_scoreboard and ap_creat_scoreboard. As it can be
seen in Fig.5, in one hand the entry points in the http_main.c have
a direct access to the vulnerable methods by either passing the
parameter ap_scoreboard_immage or ap_scoreboard_fname. On
the other hand, the entry points in the http_core.c have no access
to the vulnerable methods. As a result, it could be concluded that
there is a call relationship between http_main.c entry points and
the vulnerable code.

6.4 Vulnerability Exploitability Estimation

 After mapping the entry points to vulnerability location,
determining the privilege and the access right to the entry points,
and identifying the dangerous system calls, estimating the
individual vulnerability structural severity can be achieved based
on our results in Table 6. Looking at Table 6, a vulnerability is
either:

1. Reachable with Dangerous System Calls,
2. Reachable with No Dangerous System Calls,
3. Not reachable.

In our case study, the privilege and the access right of the
methods were all apache. Hence the ratio in (1) was one for all
methods. In the following subsections, the chosen five
vulnerabilities will be assessed as follows.
6.4.1 CVE-2011-0419:

 According to the CVSS metric, this vulnerability had a
medium severity, medium access complexity sub score, and is of
a type DoS. Based on software structure analysis, we did not find
any call relationship between the vulnerable function and the
entry point functions. It should be also noted that the values of the
entry point privilege, access right, and dangerous system calls
have been left blank as a result of having no call relationship
between the entry points and the venerable function.
Additionally, no exploit has been found for this vulnerability in
[20], which makes the CVSS score a suspect. Thus, based on
reachability, it can be concluded that this vulnerability is not
reachable.
6.4.2 CVE-2012-0031:

Based on the CVSS metric scores, this vulnerability had
medium severity, low access complexity, and is of type DoS. The
analysis show that multiple call relationships with the vulnerable
method and the entry point functions existed. However, although
the three functions have an apache privilege and access right, our
analysis has shown that two of the three entry points
(child_main() and standalone_main()) contain some dangerous
system calls. The vulnerable method had nine system dangerous
calls. Four are of threat level 1 and five are of threat level 2.
Using (2) and the weights values in table 6, this vulnerability has
been found to be reachable with dangerous level 7.
6.4.3 CVE-2010-0010:

This vulnerability had medium severity, medium access
complexity, and it is of the type executing code. Based on our
analysis, we have found that it had indirect function calls form
the entry points. Besides, no system calls had been found. We
also looked for an exploit for this vulnerability in Exploit
database and we did not find one. However, in [27] a proof of
concept of an existence of an exploit has been provided.
Therefore, it can be concluded that this vulnerability is reachable.
6.4.4 CVE-2004-0488:

This vulnerability had high severity, low access complexity,
and it is of the type overflow. Based on our analysis, we have
found that it had no direct or indirect entry points and no system
dangerous calls. We have also looked at the Exploit database and
no exploit was found. Thus, this vulnerability is not reachable.
6.4.5 CVE-2004-0940:
 Based on the CVSS metric scores, this vulnerability had
medium severity, a low access complexity, and it is of a type
XSS. We have found out that a call relationship with the
vulnerable method and the entry point functions exist. However,
no dangerous system calls have been found. As a result, this
vulnerability is reachable with no dangerous system calls.

Table 6: Vulnerabilities Exploitability Assessment

Application Vulnerability Vulnerable
Method

Path from
Entry Points

Entry
Point

Privilege

Entry
Point Access

Rights

Entry Point’s
Dangerous System

Calls
Reachability

Apache 1.3.0

CVE-2011-0419 ap_fnmatch() No Path - - - Not reachable

CVE-2012-0031
ap_cleanup_scoreboard(),

 Path apache apache
setuid, open, fork, kill,

exit, unlink, setgid, dup,
and flock

Reachable
ap_creatscoreboard()

CVE-2010-0010 ap_proxy_send_fb() Path - - - Reachable

CVE-2004-0488 ssl_util_uuencode_binary() No path - - - Not reachable

CVE-2004-0940 get_tag() Path apache apache - Reachable

Figure 5: Directly Mapping the Entry Points in http_core and http_main to the vulnerable method

7

7. OBSERVATIONS AND RESULTS
Entry points and reachability analysis are good indicators of

vulnerability exploitability. Structural severity is measured using
three values: High, medium, and low as described in section 3.6.
Based on these three values, the chosen vulnerabilities have been
assessed and compared to CVSS Access Complexity as shown in
Table7.

For instance, the vulnerable method (CVE-2012-0031:
ap_cleanup_scoreboard()) is reachable by a method that has
dangerous system calls. Thus, the structural severity of this
vulnerability has been considered High, whereas (CVE-2004-
0940: get_tag()) which is reachable without dangerous system
calls has structural severity as Medium. On the other hand, (CVE-
2011-0419: ap_fnmatch()) is not reachable and hence it has
structural severity Low. However, in the case when two
vulnerabilities are both reachable with dangerous system calls,
the dangerous level value or the damage potential-effort ratio can
break the tie.

In Table 7, vulnerabilities one and three have been assigned
medium access complexity sub-score using CVSS metric whereas
in fact they are unreachable based on software structure analysis.
Considering network accessibility factor is useful but not
sufficient. Hence, software accessibility attributes should be also
taking into consideration when evaluating vulnerability
exploitability. Assessing vulnerabilities exploitability based on
source code analysis provide valuable information. Beside
measuring vulnerability exploitability, it also help us better
knowing our software and make it more secure by securing paths
that are likely to be used by attackers.
8. CONCLUSION AND FUTURE WORK

Assessing the severity of a vulnerability requires evaluating
the potential risk. Existing measures rely on subjective judgment.
In this paper, we have proposed an approach that uses system
related attributes such as attack surface entry points, vulnerability
location, call function analysis, and the existence of dangerous
system calls. This approach requires us to explore some of the
major software security issues such as the paths to the vulnerable
code starting from the entry points. We have demonstrated our
approach and have compared resulting measures with CVSS
access complexity metrics. Our preliminary results showed that
this approach is encouraging because it allows assessment of the
system security based on systematic evaluation and not subjective
judgment.

While five vulnerabilities were considered as examples in this
study, future studies for more vulnerability with variety of types
and for different software systems should be performed to
establish applicability of the proposed approach. We have noticed
that the location of most of the vulnerabilities has not been given
even when their severity is high. Hence, coming up with a
technique for determining the vulnerability location is essential. It

will be useful if the location identification can be supported by a
tool. While the main parts of analysis have been automated,
providing a framework that can automate the entire analysis will
be helpful in reducing the analysis overall effort. Even though
measuring the possibility of reaching a vulnerability is important,
quantifying the degree of difficulty of reaching a vulnerability is
also valuable for comparing the severity among similar
vulnerabilities, and thus needs to be examined. Finally, devising a
way of estimating the impact of the reachable vulnerabilities will
be valuable for estimating the overall risk of individual
vulnerabilities and the whole system, in addition to what CVSS
metrics currently offer.
REFERENCES
[1] S. Farrell, “Why didn’t we spot that? [Practical Security],” Internet Computing,

IEEE, vol. 14, no. 1, pp. 84 –87, Feb. 2010.
[2] W. Jansen, Directions in security metrics research. NIST, NISTIR 7564, p. 21,

2009.
[3] K. M. Goertzel, T. Winograd, H. L. McKinley, L. J. Oh, M. Colon, T. McGibbon,

E. Fedchak, and R. Vienneau, “Software Security Assurance: A State-of-Art
Report (SAR),” DTIC Document, 2007.

[4] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics:
learning to classify vulnerabilities and predict exploits,” in Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, New York, NY, USA, 2010, pp. 105–114.

[5] L. Allodi and F. Massacci, “A preliminary analysis of vulnerability scores for
attacks in wild,” ACM Proc. of CCS BADGERS, vol. 12, 2012.

[6] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common
vulnerability scoring system version 2.0,” in Published by FIRST-Forum of
Incident Response and Security Teams, 2007, pp. 1–23.

[7] P. K. Manadhata and J. M. Wing, “An Attack Surface Metric,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 371 –386, Jun. 2011.

[8] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “REMUS: A security-enhanced
operating system,” ACM Transactions on Information and System Security
(TISSEC), vol. 5, no. 1, pp. 36–61, 2002.

[9] “Usage Statistics and Market Share of Web Servers for Websites, August 2013.”
[Online]. Available: http://w3techs.com/technologies/overview/web_server/all.
[Accessed: 02-Aug-2013].

[10] M. Howard, J. Pincus, and J. Wing, “Measuring Relative Attack Surfaces,” in
Computer Security in the 21st Century, D. T. Lee, S. P. Shieh, and J. D. Tygar,
Eds. Springer US, 2005, pp. 109–137.

[11] P. Manadhata, J. Wing, M. Flynn, and M. McQueen, “Measuring the attack
surfaces of two FTP daemons,” in In Proceedings of the 2nd ACM workshop on
Quality of protection, 2006.

[12] A. A. Younis and Y. K. Malaiya, “Relationship between Attack Surface and
Vulnerability Density: A Case Study on Apache HTTP Server,” in in ICOMP,
The 2012 International Conference on Internet Computing, 2012.

[13] D. Brenneman, “Improving Software Security by Identifying and Securing Paths
Linking Attack Surface to Attack Target,” McCabe Software Inc., White Paper,
Apr. 2012.

[14] L. Allodi and F. Massacci, “My Software has a Vulnerability, should I worry?,”
arXiv preprint arXiv:1301.1275, 2013.

[15] L. Allodi, W. Shim, and F. Massacci, “Quantitative assessment of risk reduction
with cybercrime black market monitoring.,” 2013 IEEE Security and Privacy
Workshops, 2013.

[16] H. Joh and Y. K. Malaiya, “Defining and assessing quantitative security risk
measures using vulnerability lifecycle and cvss metrics,” in The 2011
International Conference on Security and Management (sam), 2011, pp. 10–16.

[17] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated vulnerability
analysis: Leveraging control flow for evolutionary input crafting,” in Computer
Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,
2007, pp. 477–486.

[18] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall PTR, 2006.
[19] R. B. Bloom and B. Foreword By-Behlendorf, Apache Server 2.0: The Complete

Reference. Osborne/McGraw-Hill, 2002.
[20] “Exploits Database by Offensive Security.” [Online]. Available:

http://www.exploit-db.com/. [Accessed: 07-Aug-2013].
[21] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts. J. Wiley

& Sons, 2009.
[22] “National Vulnerability Database Home.” [Online]. Available: http://nvd.nist.gov/.

[Accessed: 09-Aug-2013].
[23] “archive.apache.org.” [Online]. Available: http://archive.apache.org/dist/httpd/.

[Accessed: 02-Aug-2013].
[24] “GNU cflow.” [Online]. Available:

http://www.gnu.org/software/cflow/manual/cflow.html. [Accessed: 02-Aug-2013].
[25] D. Evans and D. Larochelle, “Improving security using extensible lightweight

static analysis,” software, IEEE, vol. 19, no. 1, pp. 42–51, 2002.
[26] “CVE security vulnerability database. Security vulnerabilities, exploits, references

and more.” [Online]. Available: http://www.cvedetails.com/. [Accessed: 02-Aug-
2013].

[27] “Files � Packet Storm.” [Online]. Available: http://packetstormsecurity.com/1001-
exploits/modproxy-overflow.txt. [Accessed: 14-Jul-2013].

Table 7: The Obtained Measures Compared to CVSS Access Complexity Metric

Vulnerability Reachability
Structural
Severity

CVSS (AC)

1. CVE-2011-0419 Not reachable Low Medium

2. CVE-2012-0031 Reachable with
Dangerous System Calls High Low

3. CVE-2010-0010 Reachable with No
Dangerous System Calls Medium Medium

4. CVE-2004-0488 Not reachable Low Low

5. CVE-2004-0940 Reachable with No
Dangerous System Calls Medium Low

8

