
 1

Technical Report

Vulnerabilities in Major Operating Systems

O. H. Alhazmi Y. K. Malaiya I. Ray

{omar,malayia,indrajiy}@colostate.edu
Department of Computer Science

Colorado State University

2004

 2

ABSTRACT

 Operating systems are complex pieces of software. The usage
environment puts challenges on systems causing them to uncover
previously unknown defects. Some of these defects are concerned with
the security requirements they are referred to as vulnerabilities. In this
work, we attempt to study some reported data and try to identify some
repeatable patterns. This is currently an initial work to put bases for further
work in this area. Our ultimate goal is to try to model vulnerability growth
and provide an estimation formula that will help us determine the present
and the future.

Characterizing such vulnerability in a quantitative manner will allow us
to assess security risks. We, therefore, analyze the historical data related
to identification of vulnerabilities in several major operating systems
through their different releases. In this work we will study effort and how
can it affect accumulation of vulnerabilities. We believe that such a
quantitative characterization of vulnerabilities is useful to estimate how
much resources should be allocated to test a new operating system for
security.

 3

1. Introduction

is widely recognized that fault free software is very difficult to achieve. While

extensive testing can isolate a large fraction of the defects, it is impossible to eliminate
them completely. A defect density ranging from 3 to 6 faults per one thousand lines of
software code (KSLOC) has been common [16] in the past. Thus, numerous attempts
have been made by researchers to estimate, in a quantitative manner, the number of
defects in a particular release version of software. These measures help in determining
the resources that need to be allocated to test a particular piece of software
since the operating system vulnerabilities – the faults associated with maintaining
security requirements– are considered to be a special case of software defects, a
similar measure for estimating security vulnerabilities is warranted. In this paper, we
quantitatively examine the number of vulnerabilities in several recent operating
systems. Such quantitative characterization of vulnerabilities can used to evaluate
metrics which can guide the allocation of resources for security testing, scheduling,
and development of security patches. Furthermore, it can be used by end-users to
assess risks and estimate needed redundancy in resources and procedures to handle
potential security breaches. . A vulnerability may be defined as a defect “which enables
an attacker to bypass security measures” [7].

We will examine several operating systems. We have grouped them into related
families. We have plotted the cumulative number of vulnerabilities as reported. One of
our objectives is to identify possible reasons for the changes in the trend. We have
examined data for both the both operating systems and the usage environment for
these. In this paper, we study some of the attributes of usage environment and its
effect on the vulnerabilities plots. We chose to study the accumulative vulnerability
trends’ behavior because it gives better view of the discovery of vulnerabilities.

 Researchers in software reliability engineering have developed methods that use
plots of cumulative number of defects found against time. Methods have been
developed to project the mean time to failure (MTTF) etc. that will result after a specific
testing time [13, 15, 17]. Very little quantitative work has been done to characterize
security vulnerabilities along the same line. One major difference makes understanding
the vulnerability discovery rate harder. Throughout the lifetime of the software since its
release, it encounters changes in its usage environment. When the new version of an
operating version is released, its installed base starts to grow. However when a newer
version of the operating system is released, the number of installations of the older
version starts to decline. The rate at which the vulnerabilities are discovered are
influenced by the interaction between the system and the environment. We need to
look at both to form a comprehensive perspective of security.

Connectivity of computing systems has brought security of operating systems under
intense scrutiny. Much of the work on security has been qualitative, focused on
detection and prevention of vulnerabilities in these systems. In this paper we address
feasibility of quantitative characterization of security risks in terms of vulnerabilities
present in the software. Such characterization of vulnerabilities can provide us metrics
that can be used by the developers and potential users. It is can be used to develop
guidelines for allocation of resources for security testing, scheduling, and development

 4

of security patches. Furthermore, it can be used by the users for assessing risk and
estimating needed redundancy in resources and procedures to handle potential
breaches. Quantitative characterization requires use of models that capture repeatable
behavior. Such models have been in use in software reliability engineering field where
the number of defects and the defect finding rate can be measured. In this paper we
examine available data to identify possible factors to be considered.

Fortunately we have access to actual data about vulnerabilities found in major
operating systems. In this paper we will try to address some major questions. Based
on available data, do we observe any similarity of behavior when we observe new
vulnerabilities discovery rate for different systems so that we can develop suitable
models? It has been noted that for a given state of technology, the defect density of
software systems at release tend to fall within a range [14]. This makes defect density
a suitable measure for managing software projects. Is it possible to do something
similar for vulnerabilities in the systems software? We have attempted to identify
metrics that are potentially measurable and can be used for managing risk in such
systems.

 5

2. Related Work

Some work has recently been done on the quantitative aspects of security, but
many important problems are yet to be investigated. We need generally accepted
metrics that are practical, useful and meaningful.

Quantitative evaluation of security has different scopes. Depending on how we view
systems, the applicable metric can be different. In [3, 11], Littlewood et al have
presented some work using the dependability and reliability backgrounds. They have
tried to measure and assess security from this prospective. They have compared the
reliability and security attributes of systems. They have proposed the usage of effort
instead of time to characterize the accumulation of vulnerabilities. However, they did
not specify how to assess effort.

Some other researchers have focused on modeling and designing tools that will
make some kind of security assessment possible [6, 10]. Wang and Wulf have [19]
proposed a framework to measure and compare systems security by dividing the
system into smaller components and considering their individual significance and
probabilities of failure. Arbach et al. [2] and Browne et al. [4] have examined several
systems using the vulnerability data reported by CERT. Browne et al. [4] examined
some actual statistical data to study the growth of cumulative vulnerabilities found.
They have suggested that cumulative vulnerabilities C accumulate according
to MSIC += ; where M is time, and I and S are estimated using regression.

We need to develop an understanding of what processes control the discovery
rates of the vulnerabilities. As more data becomes available to us, we can verify the
models and enhance them. The goal is to be confident that the model we have will
enable developers and users to better assess security of these systems.

 6

3. Observable Trends in Vulnerability Data

Operating Systems face escalating security challenges because connectivity is
growing and the overall number of incidents is increasing. CERT and other databases
keep track of reported vulnerabilities and incidents. The data they have published is
plotted in Figures 1 and 2 [5]. These figures shows rapid growth in both number of
reported incidents and number of vulnerabilities discovered. Note that an incident is
defined as the act of violating an explicit or implied security policy.

To get an idea of the threat posed by security incidents, we plotted normalized data
in Figure 3 which gives the number of incidents reported per vulnerability. It shows a
rising trend of incidents reported per vulnerability, but the trend is not growing
exponentially. The overall trend for the eight year period is perhaps linear, suggesting
a possible correlation between rates of incidents and the vulnerability finding rate. The
positive slope suggests that the number of incidents is rising faster than the complexity
of the systems.

The number of the users of the internet, the environment that incidents take place
in, has shown fast growth as shown in Figure 4 [9]. To see the correlation between the
internet population and the number of incidents we plotted the number of incidents per
million workstations, given in Figure 5.

417

1090

2437

171 345 262

3,7844129

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1995 1996 1998 1999 2000 2001 2002 2003

V
u
ln

er
ab

il
iti

es
 R

ep
or

te
d

Figure 1: Number of vulnerabilities reported

 7

52,658

82,094

137,529

21,756

9,859
3,734

2,1342,573
2,412

2,340
1,334

773406252
0

20000

40000

60000

80000

100000

120000

140000

160000

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

In
ci

d
en

ts
 �

Figure 2: Number of security incidents reported

In Figure 5, we observe that the number of incidents per million workstations shows a

minimum around 1998. A possible explanation can be that during 1995-1986 perhaps
the number of serious hackers did not rise relative to the overall internet population,
resulting in the decline of incident rate. We have seen a reversal of the trend in 1998,
which could be due to a rise in the relative number of serious hacker or better availability
of tool for hackers in general. The steady growth observed in Figure 5 since 1997 in
disconcerting.

14.1

7.5 8.1

12

20

36

20 22
24

0

5

10

15

20

25

30

35

40

1995 1996 1997 1998 1999 2000 2001 2002 2003

In
ce

de
nt

s
pe

r
vu

ln
er

ab
ili

ty

Figure 3: Number of incidents per vulnerability

 8

16 36
70

147

248
304

757
745

719
682

677
608

587

569

558
513

479458451

359

0

100

200

300

400

500

600

700

800

Dec
., 1

99
5

Dec
., 1

99
6

Dec
., 1

99
7

Dec
., 1

99
8

Dec
., 1

99
9

Mar.
 20

00

Ju
l.,

20
00

Dec
., 2

00
0

Mar.
, 2

00
1

Ju
n.,

 20
01

Aug
., 2

00
1

Apr
. 2

00
2

Ju
l.,

20
02

Sep
., 2

00
2

Mar.
, 2

00
3

Sep
., 2

00
3

Oct.
, 2

00
3

Dec
., 2

00
3

Feb
., 2

00
4

May
, 2

00
4

M
ill

io
n

s
o

f
u

se
rs

Figure 4: The population of the Internet (number of workstation connected)

Incidents per million user

151

71

103

140

191

48
40

30 25

0

50

100

150

200

250

1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure 5: Incidents per million Internet workstation

In this paper, we focus on some of the major operating systems in use. Table 1,
shows the release dates of some operating systems that we will study in the following
subsections [17].

 9

Table 6: Release, withdrawal and end of serveice dates of some major operating
systems

Operating
System

Release date Withdrawn End of Service

Windows 95 August 1995 December 2000 December 2002

Windows 98 June 1998 June 2002 June 2006

Windows XP October 2001 December 2005 December 2007
(Home)

December 2011
(Professional)

Windows NT
4.0

July 1996 December 2002 December 2004

Windows 2000
(NT 5.0)

February 2000 Mar 2004 June 2010

Windows
Server 2003

May 2003 June 2008 June 2013

Solaris 2.5 November 1995 December 1998 December 2003

Solaris 2.6 August 1997 July 2001 July 2006

Solaris 7.0 October 1998 TBD TBD

Solaris 8.0 January 2000 TBD TBD

3.1 Microsoft Windows Operating System

The Microsoft’s Windows family of operating systems has dominated the O.S.
market for the past decade. A record of each of the vulnerability found is available.
Therefore they are good examples of complex systems to study.

Windows NT 4.0 and its successor Windows 2000 are intended for servers. Hence,
attacking systems using these operating systems would be more rewarding to
attackers than Windows 95 or 98 which are primarily used for individual PCs. The
servers operating systems need to be more secure. That may explain partially, why the
NT and 2000 family have seen much more vulnerabilities discovered and reported,
(see Figures 6 to 9). In addition, in operating systems intended for servers there may
be more code that handles access mechanisms which may have a larger number of
vulnerabilities.

We notice that a number of vulnerabilities span across different releases of a
Windows system. An interesting observation is that some vulnerabilities have been
reported even before the release date of the particular version. This leads us to
conclude that several modules of a particular version that are responsible for the
vulnerability are reused in later versions before the vulnerabilities are fixed. (The
release dates are shown in Table 1 for each version [18]). Although we can assume
that we count the vulnerabilities discovered after the release date, to get the big picture
we still show these pre-release vulnerabilities.

 10

3.1.1 Windows 95 and Windows 98

Figure 6 gives the accumulative vulnerabilities for Windows 95 and 98 [8]. At the
beginning the curve for Windows 95 shows slow growth until about March 1998 and
then showed some saturation for several months. Windows 98 also showed a relative
slow growth until about June 1998. After that both Windows 95 and Windows 98 both
show a faster rate of growth. This suggests that Windows 98 had inherited a lot of
Windows 95 modules. This is supported by the plot for shared vulnerabilities in Figure
6. The installed base of Windows 98 peaked during 1999-2000 [1]. Some time after
that for the discovery rates for the vulnerabilities in both of them slowed down. The
saturation is more apparent in Windows 95. Based on our observation on shared
vulnerabilities, we believe that many of the Windows 95 vulnerabilities later discovered,
were actually discovered in the Windows 98 release. The number of vulnerabilities in
Windows 95 and Windows 98 appears to reached a plateau. Some vulnerabilities in
Windows 98 were discovered rather late. This is explained by the code shared
between it and XP, as discussed in the next subsection.

0

10

20

30

40

50

60

Ju
n-

96

D
ec

-9
6

Ju
n-

97

D
ec

-9
7

Ju
n-

98

D
ec

-9
8

Ju
n-

99

D
ec

-9
9

Ju
n-

00

D
ec

-0
0

Ju
n-

01

D
ec

-0
1

Ju
n-

02

D
ec

-0
2

Ju
n-

03

D
ec

-0
3

V
ul

ne
ra

bi
lit

ie
s

Windows 95 Shared Windows 98

Figure 7: Accumulative vulnerabilities of Windows 95 and Windows 98

3.1.2 Windows 98 and Windows XP

Figure 7 gives the accumulative vulnerabilities in Windows 98 and XP [8]. It shows
that Windows XP has shown swift growth in vulnerabilities with respect to its release
date. There were many shared vulnerabilities with Windows 98. However, XP has its
own unique vulnerabilities and they are in the majority. Windows XP shows practically
no learning phase, the plot shows a linear accumulation of vulnerabilities. The slope is

 11

significantly sharper than for Windows 98. The sharpness of the curve for XP is
explained by its fast adoption rate [1] making finding vulnerabilities in XP more
rewarding. Windows 98 has shown longer learning phase followed by a linear
accumulation, later followed by saturation.

0

10

20

30

40

50

60

Ju
l-9

8

O
ct

-9
8

Ja
n-

99

A
pr

-9
9

Ju
l-9

9

O
ct

-9
9

Ja
n-

00

A
pr

-0
0

Ju
l-0

0

O
ct

-0
0

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

A
pr

-0
2

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

A
pr

-0
3

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

V
ul

ne
ra

bi
lti

es

Windows XP Shared Windows 98

Figure 8: Accumulative vulnerabilities reported in Windows 98 and its successor

Windows XP

3.1.3 Windows 98 and shared vulnerabilities with Windows 95 and Windows XP

The relationship between the vulnerabilities reported in the older Windows 95,

Windows 98 and Windows XP is important. As we can observe in Figure 8, Windows
98 inherited most of the older vulnerabilities in Windows 95. Vulnerabilities reported for
Windows 98 slowed down at some point, only to pick up again when Windows XP was
released. It appears that Windows XP has contributed to the discovery of most of the
later Windows 98 vulnerabilities.

The data for the three operating systems demonstrates that there is significant
interdependence among vulnerability discovery rates for three versions. This
interdependence due to the sharing of code and shifting shares of the installed base
needs to be taken into account when examining the vulnerability discovery trends.
Windows 98 represents a middle stage between the other two versions from the
perspective of vulnerability discovery.

3.1.4 Windows NT 4.0 and Windows 2000

Figure 9 gives the plots for vulnerability discovery in the Windows NT family, which
includes Windows 2000 [8]. An initial learning phase is observed in which

 12

vulnerabilities are reported at a low rate, which is followed by an accelerated phase.
The plot for NT 4.0 shows a slowdown around July 2000 at the time Windows 2000
was released. The share of installed base for NT4.0 has been declining since the
beginning of 2002. However, the shared vulnerabilities with the next version Windows
2000 result in its showing some steady accumulation.

For Windows 2000, which was released in mid 2000, the learning phase was very
brief due to the similarity between it and Windows NT4.0. The curve for Windows 2000
largely shows a linear trend. Windows 2000 has not shown a clear slow-down in
accumulation as yet. This is because it is still in its early lifetime. Its market share is
still significant. Windows Server 2003 is the intended replacement for Windows 2000,
but its installed base is still small. Available data for Windows Server 2003 is very
limited at this time.

0

20

40

60

80

100

120

Ja
n-

99

A
pr

-9
9

Ju
l-9

9

O
ct

-9
9

Ja
n-

00

A
pr

-0
0

Ju
l-0

0

O
ct

-0
0

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

A
pr

-0
2

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

A
pr

-0
3

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

A
pr

-0
4

V
ul

ne
ra

bi
lit

ie
s

Win 98 Shared with Win 95 Shared with Win XP

Figure 9: Accumulative vulnerabilities reported in Windows 98, and showing the shared
vulnerabilities with Windows95 and Windows XP.

 13

0

20

40

60

80

100

120

140

160

180

Ju
l-9

6

Nov-9
6

Mar-
97

Ju
l-9

7

Nov-9
7

Mar-
98

Ju
l-9

8

Nov-9
8

Mar-
99

Ju
l-9

9

Nov-9
9

Mar-
00

Ju
l-0

0

Nov-0
0

Mar-
01

Ju
l-0

1

Nov-0
1

Mar-
02

Ju
l-0

2

Nov-0
2

Mar-
03

Ju
l-0

3

Nov-0
3

Mar-
04

V
ul

ne
ra

bi
lit

ie
s

Windows NT 4.0 Shared Windows 2000

Figure 10: Windows NT 4.0 and Windows 2000 vulnerabilities reported. Large triangle
represents the release date for Win 2000.

3.2 Solaris

We next look at a very different operating system – the SunOS Solaris family, which has
had several versions. We look at two versions of Solaris, version 2.5 and version 8.0. We
compared their vulnerabilities accumulation and they seem to be very correlated. Solaris 8.0 is
the successor so it contained most of the vulnerabilities of version 2.5. Then version 8.0
started to show some unique vulnerabilities with a few shared ones. For version 2.5 all the
vulnerabilities reported later were also reported in 8.0. Thus we conclude that these
vulnerabilities were inherited by version 8.0, and were discovered in either 8.0 or 2.5. No
saturation is seen in either of them at this time.

For the Solaris operating systems, we do not see the changes as abrupt as in the windows
operating systems. As we can see in Figure 10, the linear growth dominates the behavior.

 14

0

20

40

60

80

100

120

140

160

Ja
n-

95

Ju
l-9

5

Ja
n-
96

Ju
l-9

6

Ja
n-

97

Ju
l-9

7

Ja
n-
98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-
01

Ju
l-0

1

Ja
n-

02

Ju
l-0

2

Ja
n-
03

Ju
l-0

3

Ja
n-

04

V
u
ln

er
ab

ili
lti

es

Solaris 8.0 Shared Solaris 2.5

Figure 11: Solaris 2.5 and Solaris 8.0 and the shared vulnerabilities between them; the
large black circle and triangle are the release dates.

3.3 Linux

Linux 3.0 (January 1998 to February 2004)

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Months

Vu
ln

er
ab

ili
ti

es

Vulnerabilities

Accumilitavie vulnerabilities

Figure 12: Linux 3.0 accumulation of vulnerabilities.

 15

Linux 6.0 Vulnerabilities (January 1999 to March 2004)

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Months

V
ul

nb
er

ab
ilt

ie
s

Accumlitive Vulnerabilties

Vulnerabilties

Figure 13: Linux 3.0 accumulation of vulnerabilities.

Linux 9.0 Reported Vulnerabiities (March 1999 to March 2004)

0

10
20

30

40
50

60

70
80

90

Months

MONTHS

V
u

ln
er

ab
ili

ti
es

Accumilative Vulnerabilties

Vulnerabilties

Figure 14: Linux 3.0 accumulation of vulnerabilities.

 16

4. MEASURING EFFORT AND MEAN USAGE EFFORT TO VULNERIBILITY
DESCOVERY

In this section we present two metrics, that can be calculated when we have
gathered some statistics about the system. From these row statistics we compute
these useful metrics that will enable us, to compare and have a clear idea of how
secure are these systems and to what degree we are confident in having the software
running without new vulnerabilities been discovered.

In this section we will discuss some of these metrics and there required data and
we will give examples of real actual data.

As we have seen in Section 3, usually vulnerabilities are compared to time;
however, we believe that time alone is not enough, because there many changes
occur to the environment during time. Hence, we looked into environment attributes,
and we have found that systems with higher market share are:
1. More attractive to attackers: because it is makes more sense to attack it (i.e. more

rewarding).
2. It gets better chances to be tested than those of smaller market share.

From market share over a period of time, knowing approximately the whole
population figure, we can calculate what we call Accumulative Usage Effort (AUE). The
AUE can be measured by using the basic notation user’s-months, which is similar to
persons-months used in software engineering and resource management context.

Figure 4 illustrate the growth of the internet population since late 1995 and until
very recently. Formula 4.3 shows how we are going to calculate the AUE.
Formula:

)(
0 i

n

i i PUAUE ×= � =
 (2)

Where, n represent time units (i.e. months), Ui is the whole population at time i,
Pi is the percentage of the population using this system at time i, the usage effort will
be measured in user-months or Million-user-months.

 17

0

10

20

30

40

50

60

May
-99

Aug
-9

9

Nov-9
9

Feb
-0

0

May
-00

Aug
-0

0

Nov-0
0

Feb
-0

1

May
-01

Aug
-0

1

Nov-0
1

Feb
-0

2

May
-02

Aug
-0

2

Nov-0
2

Feb
-0

3

May
-03

Aug
-0

3

Nov-0
3

Feb
-0

4

M
ar

ke
t S

ha
re

 P
er

ce
nt

ag
e

Windows 95 Windows 98
Windows XP Windows NT
Windows 2000 Others

Figure 15: Trends showing users percentage for each OS.

0

50

100

150

200

250

300

350

400

May
-99

Aug
-9

9

Nov-9
9

Feb
-0

0

May
-00

Aug
-0

0

Nov-0
0

Feb
-0

1

May
-01

Aug
-0

1

Nov-0
1

Feb
-0

2

May
-02

Aug
-0

2

Nov-0
2

Feb
-0

3

May
-03

Aug
-0

3

Nov-0
3

Feb
-0

4

Win 95 Win 98 Win XP Win NT 2000

Figure 16: Trend shows the actual number of users for each system.
From the data in the tables 15 and figure 16, we compiled the total number of

workstation that has the system installed in each month individually see figure 18.
Figure 19, shows only a limited part of the picture, from that picture we can view a
three operating system model, it would look very much close to what figure 20 shows.

 18

Figure 17: The usage environment challenge effort against time during the

lifetime of three consecutive versions of an O.S.

0

2000

4000

6000

8000

10000

12000

14000

May
-99

Aug
-9

9

Nov-9
9

Feb
-0

0

May
-00

Aug
-0

0

Nov-0
0

Feb
-0

1

May
-01

Aug
-0

1

Nov-0
1

Feb
-0

2

May
-02

Aug
-0

2

Nov-0
2

Feb
-0

3

May
-03

Aug
-0

3

Nov-0
3

Feb
-0

4

win 95 win 98 win XP win nt 2000

Figure 18: Accumulative User-month.

Then we used formula 2 to build the accumulative usage effort for each system,

see figure 18. Now after what we have got in figure 18, we want to eliminate time as a
factor to get vulnerability-AUE plots for each system individually.
 Figure 18, shows Windows 95, but because the analyzed data had started at a
late stage of the lifetime of Windows 95(i.e. from May 1999), while Windows 95 was

 19

released in august 1995. The data does not cover the earlier period; however it shows
the later events of Windows 95.
 In the other versions, more later versions and better covered by the available
data, if we can notice in Figure 20, which shows windows 98, it shows a trend close to
a logarithmic trend, the same observation applies to the rest of the Windows systems
in figures 19-23.

Windows 95

0

5

10

15

20

25

30

35

40

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00

Accumilitive Usage Effort

V
ul

n
er

ab
ili

tie
s

Figure 19: The vulnerability-effort trend for Windows 95.

Windows 98

0

10

20

30

40

50

60

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

10
50

0

11
00

0

11
50

0

Accumilitive Usage Effort

V
ul

ne
ra

bi
lit

ie
s

Figure 20: The vulnerability-effort trend, Windows 98.

 20

Windows XP

0

10

20

30

40

50

60

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

Accumilitive Usage Effort

V
ul

ne
ra

bi
lli

tie
s

Figure 21: The vulnerability-effort trend, Windows XP.

Windows NT 4.0

0

20

40

60

80

100

120

140

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00

Accumilitive Usage Effort

V
ul

ne
ra

bi
lit

ie
s

Figure 22: The vulnerability-effort trend, Windows NT 4.0.

 21

Windows 2000

0

20

40

60

80

100

120

140

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00
42

00

Accumilitive Usage Effort

V
ul

ne
ra

bi
lit

ie
s

Figure 23: The vulnerability-effort trend, Windows 2000.

From this, we come to the conclusion that there is a rate of occurrences �; we

can calculate the mean effort to vulnerability discovery as follows:

Formula:

V
U

MUTV E= (3)

And at the same time,

EU
V=λ (4)

Where UE is total usage effort and V is the total number of vulnerabilities.

Example:

To calculate MUTV for Windows 95, 98, XP, NT 4.0 and 2000, for the period that
effort is calculated which represents the period from may 1999 to February 2004,
based on the vulnerabilities discovered reported, by using formula (4).

In this example, we can see that we need 83.33 million user months to discover a
new vulnerability in windows 95, and because the rate of usage effort spent in
Windows 95 per month is much less than Windows xp, we expect that we will discover
vulnerabilities faster per month than Windows XP, while they are very close in MUTV

 22

to each other 83.65 to 83.33 , the other class of windows is the server versions NT 4.0
and 2000 ,we can see the gap in the MUTV , we can see that windows 2000 is better
than Windows NT 4.0 because we need more usage effort than 2000.

Table 24: Calculating METV for some systems
System Effort

(Millions User-
months)

Number of
vulnerabilities

METV
(Millions User-

months)
Windows 95 3000 36 83.33
Windows 98 11500 51 225.5
Windows XP 4600 55 83.65

Windows 98 and
Windows XP

16100 90 178.9

Windows NT 4.0 1700 121 14.05
Windows 2000 4300 129 33.33

 23

5. Conclusions and Future Work

In this paper, we have presented a quantitative look at the operating system
vulnerabilities. We have considered the environmental factors that include Incidents
per vulnerability and Incidents per million user that measure a temporal aspect of the
problem. They suggest that the problem is getting worse.
We discussed several versions of three families of operating systems, Windows, Linux
and Solaris. In our analysis we took into account the fact that some of the code is
shared across different versions. The vulnerabilities shared by successive versions are
also plotted. These plots are analogous to reliability growth plots in software reliability.
However, there are some significant differences. The software reliability growth models
generally make some assumptions that are not directly applicable in case of security
growth. One of the major differences is that the test effort that goes into finding
vulnerabilities is not uniform, but varies with age of the software (time since release)
and reward factor for finding the vulnerabilities. The problem of shared code arises in
software reliability also, although majority of the studies in software reliability have
focused on software built from scratch.

In this paper, we have analyzed extensive amount of data to find an explanation of
the trends in the plots of vulnerabilities found. The growth rate at the release time is
small but it accelerates. Generally the plots show a linear trend for a significant period.
The plots tend to show some saturation, often followed by an abrupt increase once
again. We have studied some explanations of the behavior we consider the usage
effort changes. We also observed that the code shared by a new and hence a
competing version of the operating system significantly impacted the vulnerability
discovery rate.

We introduced the concept of vulnerability density, which is basically the number of
vulnerabilities in one thousand lines of source code. We expect vulnerability density
will be a significant and useful metric when further data along with quantitative models
are available.

Using the data about source code size, we present the range of values for known
vulnerability densities. We present available data on known defect densities in some
commercial software systems. We discussed the correlation between density of
vulnerabilities and the general defects. This correlation could lead us to potential ways
of estimating the number of vulnerabilities in future.

In order to be able to assess the overall risk, we need to take into account some of
the other aspects of security. We need to examine the impact of delayed application of
patches by the users. Another open topic is to characterizing the reward process as a
function of usage environment considering factors other than the population of users.
We need extensive research and further data collection to develop methods akin to
those used in the software and hardware reliability field.

 24

6. References

1. O. H. Alhazmi, Y. K. Malaiya, I. Ray, , Tech Report, Computer Science Dept,
Colorado State University, 2004.

2. W. A. Arbaugh, W. L. Fithen, J. McHugh, “Windows of Vulnerability: A Case
Study Analysis”, IEEE Computer, Vol. 33, No. 12, pp. 52-59, December 2000.

3. S. Brocklehurst, B. Littlewood, T. Olovsson and E. Jonsson, “On Measurement
of Operational Security”. Proc. 9th Annual IEEE Conference on Computer
Assurance, Gaithersburg, pp. 257-66, IEEE Computer Society, 1994.

4. H. K. Browne, W. A. Arbaugh, J. McHugh, W.L. Fithen, “A Trend Analysis of
Exploitation”, Proc. IEEE Symposium on Security and Privacy, 2001, May 2001,
pp. 214 – 229.

5. CERT/CC Statistics 1988-2003, CERT Coordination Centre,
http://www.cert.org/stats / cert_stats.html, January 22, 2004.

6. M. Dacier, Y. Deswarte and M. Kaâniche, Quantitative Assessment of
Operational Security: Models and Tools, Technical Report, LAAS Report 96493,
May 1996.

7. E. Eugene Schultz Jr., David S. Brown and Thomas A. Longstaff, Responding
to Computer Security Incidents, Lawrence Livermore National Laboratory, July
23, 1990.

8. ICAT Metabase, http://icat.nist.gov/icat.cfm, September 12, 2003.

9. Internet World Stats, http://www.Internetworld stats.com/emarketing.htm,
February 2004.

10. I. Krusl, E. Spafford, M. Tripunitara, Computer Vulnerability Analysis,
Department of Computer Sciences, Purdue University. COAST TR 98-07 1998.

11. B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright;
“Towards Operational Measures of Computer Security”, Journal of Computer
Security, V. 2 (2/3), pp 211-230, 1993.

12. M. R. Lyu Ed., Handbook of Software Reliability Engineering, McGraw-Hill 1995.

13. Y. K. Malaiya and J. Denton, “What Do the Software Reliability Growth Model
Parameters Represent?” Int. Symp. on Software Reliability Engineering, 1997.
pp. 124-135.

14. Y. K. Malaiya, P. K. Srimani, Software Reliability Models: Theoretical
Development, Evaluation and Applications, IEEE Computer Society Press,
1990.

15. J. D. Musa, A. Ianino, K. Okumuto, Software Reliability Measurement Prediction
Application, McGraw-Hill, 1987.

 25

16. A. Pang, Software development, http://www.Softwaredevelopment.ca/fyios.sh
tml, 2004.

17. Software Development Canada, http://www.softwaredevelopment.ca/
fyios.shtml, December 10, 2003.

18. C. Wang; W. Wulf; “Towards a Framework for Security Measurement”,
NICSS97 Conference Proceedings, 1997, pp. 522-533.

