

Review

- Languages and Grammars
- Alphabets, strings, languages
- Regular Languages
- Deterministic Finite Automata
- Nondeterministic Finite Automata
- Today:
- Equivalence of NFA and DFA
- Regular Expressions
- Equivalence to Regular Languages

Could This Produce Infinite States?

If the NFA has states

$$
q_{0}, q_{1}, q_{2}, \ldots
$$

There are a finite number of NFA states by definition
the DFA has states in the powerset

$$
\varnothing,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{3}, q_{4}, q_{7}\right\}, \ldots
$$

Powerset of finite set can be big, but it is not infinite!

Procedure NFA to DFA
2. For every DFA's state $\quad\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$ $\left.\begin{array}{l}\text { Compute in the NFA } \\ \delta *\left(q_{i}, a\right), \\ \delta *\left(q_{j}, a\right)\end{array}\right\}=\left\{q_{i}^{\prime}, q_{j}^{\prime}, \ldots, q_{m}^{\prime}\right\}$$\delta\left(\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}, a\right)=\left\{q_{i}^{\prime}, q_{j}^{\prime}, \ldots, q_{m}^{\prime}\right\}$

Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Procedure NFA to DFA

3. For any DFA state $\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$

If some q_{j} is a final state in the NFA
Then, $\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$
is a final state in the DFA

Induction hypothesis: $1 \leq|v| \leq k$

$$
v=a_{1} a_{2} \cdots a_{k}
$$

$$
M: \rightarrow\left(q_{0}\right) \xrightarrow{a_{1}} q_{i}{ }^{a_{2}}\left(q_{i}\right) \xrightarrow{a_{k}}\left(q_{d}\right)
$$

Induction Step: $|v|=k+1$
$v=\underbrace{a_{1} a_{2} \cdots a_{k}}_{v^{\prime}} a_{k+1}=v^{\prime} a_{k+1}$

We have shown: $\quad L(M) \subseteq L\left(M^{\prime}\right)$

We also need to show: $L(M) \supseteq L\left(M^{\prime}\right)$ (proof is similar)

Regular Expressions

- Regular expressions describe regular languages
- Example: $(a+b \cdot c)^{*}$
describes the language
$\{a, b c\}^{*}=\{\lambda, a, b c, a a, a b c, b c a, \ldots\}$

Recursive Definition

Primitive regular expressions: $\varnothing, \lambda, \alpha$ Given regular expressions r_{1} and r_{2}
$\left.\begin{array}{l}r_{1}+r_{2} \\ r_{1} \cdot r_{2} \\ r_{1} * \\ \left(r_{1}\right)\end{array}\right\}$ Are regular expressions

Examples

A regular expression:

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

Not a regular expression: $\quad(a+b+)$

Languages of Regular Expressions

- $L(r)$: language of regular expression r
- Example
$L\left((a+b \cdot c)^{*}\right)=\{\lambda, a, b c, a a, a b c, b c a, \ldots\}$

Formal Definition

- For primitive regular expressions:

$$
\begin{aligned}
& L(\varnothing)=\varnothing \\
& L(\lambda)=\{\lambda\} \\
& L(a)=\{a\}
\end{aligned}
$$

Definition (continued)

- For regular expressions r_{1} and r_{2}

$$
\begin{aligned}
L\left(r_{1}+r_{2}\right) & =L\left(r_{1}\right) \cup L\left(r_{2}\right) \\
L\left(r_{1} \cdot r_{2}\right) & =L\left(r_{1}\right) L\left(r_{2}\right) \\
L\left(r_{1} *\right) & =\left(L\left(r_{1}\right)\right)^{*} \\
L\left(\left(r_{1}\right)\right) & =L\left(r_{1}\right)
\end{aligned}
$$

Example

- Regular expression

$$
\begin{array}{r}
r=(a+b) *(a+b b) \\
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\}
\end{array}
$$

What's Next

- Read
- Linz Chapter 1, 2.1, 2.2, 2.3, (skip 2.4), Chapter 3
- JFLAP Startup, Chapter 1, 2.1, (skip 2.2) 3, 4
- Next Lecture Topics from Chapter 3.2 and 3.3
- Regular Expressions and Regular Languages
- Regular Grammars and Regular Languages
- Quiz 1 in Recitation on Wednesday 9/17
- Covers Linz 1.1, 1.2, 2.1, 2.2, 2.3, and JFLAP 1, 2.1
- Closed book, but you may bring one sheet of 8.5×11 inch paper with any notes you like.
- Quiz will take the full hour
- Homework
- Homework 2 is Due Thursday

