

Review

- Languages and Grammars
- Alphabets, strings, languages
- Regular Languages
- Deterministic Finite Automata
- Nondeterministic Finite Automata
- Equivalence of NFA and DFA
- Regular Expressions
- Today:
- Regular Grammars and Regular Languages
- Properties of Regular Languages

Grammars

- Grammars express languages
- Example: the English language \langle sentence $\rangle \rightarrow\langle$ noun_phrase $\rangle\langle$ predicate \rangle
\langle noun_phrase $\rangle \rightarrow\langle$ article $\rangle\langle$ noun \rangle
\langle predicate $\rangle \rightarrow\langle$ ver $b\rangle$

Some Terminal Rules
\langle article $\rangle \rightarrow a$
\langle article $\rangle \rightarrow$ the
\langle noun $\rangle \rightarrow$ cat
\langle noun $\rangle \rightarrow$ dog
\langle verb $\rangle \rightarrow$ runs
\langle ver $\rangle \rightarrow$ walks

A Resulting Sentence

$$
\begin{aligned}
\langle\text { sentence }\rangle & \Rightarrow\langle\text { noun_phrase }\rangle\langle\text { predicate }\rangle \\
& \Rightarrow\langle\text { noun_phrase }\rangle\langle\text { verb }\rangle \\
& \Rightarrow\langle\text { article }\rangle\langle\text { noun }\rangle\langle\text { verb }\rangle \\
& \Rightarrow \text { the }\langle\text { noun }\rangle\langle\text { verb }\rangle \\
& \Rightarrow \text { the dog }\langle\text { verb }\rangle \\
& \Rightarrow \text { the dog walks }
\end{aligned}
$$

The Resulting Language
$L=\{$ "a cat runs",
"a cat walks",
"the cat runs",
"the cat walks",
"a dog runs",
"a dog walks",
"the dog runs",
"the dog walks" \}

Definition of a Grammar $G=(V, T, S, P)$
V : Set of variables
T : Set of terminal symbols
S: Start variable
P : Set of Production rules

Example Grammar Notation
$S \rightarrow a S b$
$S \rightarrow \lambda$
$G=(V, T, S, P)$
$V=\{S\} \quad T=\{a, b\}$
$P=\{S \rightarrow a S b, S \rightarrow \lambda\}$

Deriving Strings in the Grammar

- Grammar:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \lambda
\end{aligned}
$$

- Derivation of sentence $a a b b$:

Sentential Form

- A sentence that contains variables and terminals

General Notation for Derivations

- In general we write: $\quad w_{1} \Rightarrow w_{n}$
- If: $w_{1} \Rightarrow w_{2} \Rightarrow w_{3} \Rightarrow \cdots \Rightarrow w_{n}$
- It is always the case that: $\quad w \Rightarrow w$

Why Notation Is Useful

- We can now write:

$$
S \Rightarrow a a a b b b
$$

- Instead of:
$S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a S b b b \Rightarrow a a a b b b$

A Non-Linear Grammar

Grammar $G: \quad$| | $S \rightarrow S S$ |
| ---: | :--- |
| | $S \rightarrow \lambda$ |
| | $S \rightarrow a S b$ |
| | $S \rightarrow b S a$ |

$$
L(G)=\left\{w: n_{a}(w)=n_{b}(w)\right\}
$$

Number of a^{\prime} sin string w

Another Linear Grammar

Grammar $G: \quad S \rightarrow A$
$A \rightarrow a B \mid \lambda$
$B \rightarrow A b$

$$
L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Right-Linear Grammars

- All productions have form:
- Example: $S \rightarrow a b S$
$S \rightarrow a$

Left-Linear Grammars

- All productions have form:
- Example: $S \rightarrow A a b$

$$
\begin{array}{ll}
A \rightarrow A a b \mid B & \text { string of } \\
B \rightarrow a & \text { terminals }
\end{array}
$$

Regular Grammars

- A regular grammar is any right-linear or left-linear grammar
- Examples:

$$
\begin{array}{lrl}
\qquad S \rightarrow a b S & S & \rightarrow A a b \\
S \rightarrow a & A & \rightarrow A a b \mid B \\
& B & \rightarrow a \\
\text { What languages are generated by these grammars? }
\end{array}
$$

Languages and Grammars	
$S \rightarrow a b S$	$S \rightarrow A a b$
$S \rightarrow a$	$A \rightarrow A a b \mid B$
	$B \rightarrow a$
$L\left(G_{1}\right)=(a b)$	$L\left(G_{2}\right)=a a b(a b)^{*}$

The case of Right-Linear Grammars

- Let $G^{\text {be a right-linear grammar }}$
- We will prove: $L\left(\mathrm{G}^{\text {is }}\right)^{\text {regular }}$
- Proof idea: We will construct NFA using the grammar transitions

Example

Given right linear grammar:
$V_{0} \rightarrow a V_{1}$
$V_{1} \rightarrow a b V_{0} \mid b$

Step 1: Create States for Each Variable

- Construct NFA M such that every state is a grammar variable:
$\rightarrow V_{0}$
(V1)
$V_{0} \rightarrow a V_{1}$
$V_{1} \rightarrow a b V_{0} \mid b$

Step 2.1:

Edges for Productions

- Productions of the form $V_{i} \rightarrow a V_{j}$ result in $\delta\left(V_{i}, a\right)=V_{j}$

$$
\begin{aligned}
& V_{0} \rightarrow a V_{1} \\
& V_{1} \rightarrow a b V_{0} \mid b
\end{aligned}
$$

Step 2.2:
Edges for Productions

- Productions of the form $\quad V_{i} \rightarrow w V_{j}$ are only slightly harder.... Create row of states that derive w and end in V_{j}

$V_{0} \rightarrow a V_{1}$
$V_{1} \rightarrow a b V_{0} b$

Step 2.3:

Edges for Productions

- Productions of the form $V_{i} \rightarrow w$ Create row of states that derive wand end in a final state

$V_{1} \rightarrow a b V_{0}(b)$

In General

- Given any right-linear grammar, the previous procedure produces an NFA
- We sketched a proof by construction
- Result is both a proof and an algorithm
- Why doesn't this work for a non linear grammar?
- Since we have an NFA for the language, the right-linear grammar produces a regular language

Any regular language L is generated by some regular grammar G

Proof idea:

Let M be the NFA with $L=L(M)$.
Construct from M a regular grammar G such that $L(M)=L(G)$

In General

- Given any NFA, the previous procedure produces a right linear grammar
- We sketched a proof by construction
- Result is both a proof and an algorithm
- Every regular language has an NFA
- Can convert that NFA into a right linear grammar
- Thus every regular language has a right linear grammar
- Combined with Part 1, we have shown right linear grammars are yet another way to describe regular languages

But What About Left-Linear Grammars

- What happens if we reverse a left linear grammar as follows:

$$
\begin{aligned}
& \qquad V_{i} \rightarrow V_{j} w \quad \text { Reverses to } \quad V_{i} \rightarrow w^{R} V_{j} \\
& \underset{\substack{\text { The resuit is a right Reverses to to } \\
\text { Tinear grammar. } \\
\text { - If the left linear grammar produced L, then what does the } \\
\text { resulting right linear grammar produce? }}}{ } V_{i} \rightarrow w^{R}
\end{aligned}
$$

But What About Left-Linear Grammars

- The previous slide reversed the language!

$$
\begin{array}{lll}
V_{i} \rightarrow V_{j} w & \text { Reverses to } & V_{i} \rightarrow w^{R} V_{j} \\
V_{i} \rightarrow w & \text { Reverses to } & V_{i} \rightarrow w^{R}
\end{array}
$$

- If the left linear grammar produced language L, then the resulting right linear grammar produces L^{R} Claim we just proved left linear grammars produce regular languages? Why?
\(\left.\begin{array}{rl}\hline For regular languages L_{1} and L_{2}

we will prove that:

Union: \& L_{1} \cup L_{2}

Concatenation: \& L_{1} L_{2}

Star: \& L_{1} *

Reversal: \& L_{1}^{R}

Complement: \& \bar{L}_{1}

Intersection: \& L_{1} \cap L_{2}\end{array}\right\}\)| Are regular |
| :--- |
| Languages |

Left-Linear Grammars Produce Regular Languages

- Start with a Left Linear grammar that produces L want to show L is regular
- Can produce a right linear grammar that produces L^{R}
- All right linear grammars produce regular languages so L^{R} is a regular language
- The reverse of a regular language is regular so $\left(L^{R}\right)^{R}=L \quad$ is a regular language!

We say: Regular languages are closed under
$\begin{aligned} \text { Union: } & L_{1} \cup L_{2} \\ \text { Concatenation: } & L_{1} L_{2} \\ \text { Star: } & L_{1}^{*} \\ \text { Reversal: } & L_{1}^{R} \\ \text { Complement: } & \bar{L}_{1} \\ \text { Intersection: } & L_{1} \cap L_{2}\end{aligned}$
Concatenation: $L_{1} L_{2}$

Regular language L_{1}	Regular language L_{2}
$L\left(M_{1}\right)=L_{1}$	$L\left(M_{2}\right)=L_{2}$
NFA M1	NFA M_{2}
Single final state	Single final state

What's Next

- Read
- Linz Chapter 1,2.1, 2.2. 2.3, (skip 2.4), 3, and Chapter 4
- JFLAP Startup, Chapter 1, 2.1, (skip 2.2), 3, 4
- Next Lecture Topics from Chapter 4.2 and 4.3
- Properties of regular languages
- The pumping lemma (for regular languages)
- Quiz 1 in Recitation on Wednesday 9/17
- Covers Linz 1.1, 1.2, 2.1, 2.2, 2.3, and JFLAP 1, 2.1
- Closed book, but you may bring one sheet of 8.5×11 inch paper with any notes you like.
- Quiz will take the full hour on Wednesday
- Homework
- Homework Due Thursday

