We say: Regular languages are closed under

- Union: $L_1 \cup L_2$
- Concatenation: L_1L_2
- Star: L_1^*
- Reversal: L_1^R
- Complement: $\overline{L_1}$
- Intersection: $L_1 \cap L_2$

Reverse

NFA for L_1^R

1. Reverse all transitions
2. Make initial state final state and vice versa
Example

\[L_1 = \{a^n b\} \]

\[L_1^R = \{ba^n\} \]

Intersection

DeMorgan's Law: \[L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2} \]

\[L_1 \cap L_2 \] regular

\[\overline{L_1} \cup \overline{L_2} \] regular

Standard Representations of Regular Languages

- DFAs
- NFAs
- Regular Expressions
- Regular Grammars

Example

\[L_1 = \{a^n b\} \] regular

\[L_2 = \{ab, ba\} \] regular

\[L_1 \cap L_2 = \{ab\} \] regular
When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions about Regular Languages

Membership Question

Question: Given regular language L and string w, how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted
Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

$L \neq \emptyset$

DFA

$L = \emptyset$

DFA

L is infinite

DFA

L is finite
Question: Given regular languages L_1 and L_2, how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation
How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L.

Problem: this is not easy to prove

Solution: the Pumping Lemma !!!

The Pigeonhole Principle

- $a^n b^n : n \geq 0$
- $\{ vv^R : v \in \{a, b\}^* \}$

Regular languages

- $a^* b$
- $b^* c + a$
- $b + c(a + b)^*$
- etc...

Non-regular languages

- $\{a^n b^n : n \geq 0\}$
- $\{ vv^R : v \in \{a, b\}^* \}$
A pigeonhole must contain at least two pigeons.

The Pigeonhole Principle

There is a pigeonhole with at least 2 pigeons.

The Pigeonhole Principle

and

DFAs
DFA with 4 states

In walks of strings:
- aabb
- bhaa
- abbbabh
- abbbabhbabbb...

If string w has length $|w| \geq 4$:
- Then the transitions of string w are more than the states of the DFA.
- Thus, a state must be repeated.
In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

Transitions are pigeons

States are pigeonholes

The Pumping Lemma

Take an infinite regular language L

There exists a DFA that accepts L
Take string w with $w \in L$.

There is a walk with label w:

If string w has length $|w| \geq m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write $w = x y z$.
Observations:

\[
\begin{align*}
\text{length } |x y| &\leq m \\
\text{number of states of DFA} & \\
\text{length } |y| &\geq 1
\end{align*}
\]

Observation: The string \(x \ z\) is accepted.

Observation: The string \(x y y z\) is accepted.

Observation: The string \(x y y y z\) is accepted.

Observation: The string \(x y y y z\) is accepted.
In General: The string $x y^i z$ is accepted $i = 0, 1, 2, ...$

In other words, we described:

The Pumping Lemma !!!

The Pumping Lemma:

- Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \geq m$
- we can write $w = x y z$
- with $|x y| \leq m$ and $|y| \geq 1$
- such that: $x y^i z \in L$ $i = 0, 1, 2, ...$

Language accepted by the DFA
Applications of the Pumping Lemma

Theorem: The language $L = \{a^n b^n : n \geq 0\}$ is not regular.

Proof: Use the Pumping Lemma

$L = \{a^n b^n : n \geq 0\}$

Assume for contradiction that L is a regular language.

Since L is infinite, we can apply the Pumping Lemma.

Let m be the integer in the Pumping Lemma.

Pick a string w such that: $w \in L, \: |w| \geq m$.

We pick $w = a^m b^m$.
Write: \(a^m b^m = x y z \)

From the Pumping Lemma it must be that length \(|x y| \leq m, \ |y| \geq 1\)

\[
x y z = a^m b^m = a \cdots a a a a a b \cdots b
\]

\(x y z = a^m b^m \quad y = a^k, \ k \geq 1 \)

From the Pumping Lemma: \(x y^i z \in L \)

\(i = 0, 1, 2, \ldots \)

Thus: \(x y^2 z \in L \)

Thus: \(y = a^k, \ k \geq 1 \)

\[
xy^2z = a \cdots a a a \cdots a a \cdots a b \cdots b \in L
\]

\(x y z = a^m b^m \quad y = a^k, \ k \geq 1 \)

From the Pumping Lemma: \(x y^i z \in L \)

\(i = 0, 1, 2, \ldots \)

Thus: \(x y^2 z \in L \)

\[
xy^2z = a \cdots a a a \cdots a a \cdots a b \cdots b \in L
\]

Thus: \(a^{m+k} b^m \in L \)

BUT: \(L = \{ a^n b^n : n \geq 0 \} \)

\(a^{m+k} b^m \notin L \)

CONTRADICTION!!!
Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language

Non-regular languages $\{a^n b^n : n \geq 0\}$

Regular languages

What’s Next

- **Read**
 - Linz Chapter 1, 2.1, 2.2, 2.3, (skip 2.4) 3, and 4
 - JFLAP Startup, Chapter 1, 2.1, 3, 4, 6.1

- **Next Lecture Topics from Chapter 4.3**
 - More Pumping Lemma

- **Quiz 1 in Recitation on Wednesday 9/17**
 - Covers Linz 1.1, 1.2, 2.1, 2.2, 2.3 and JFLAP 1, 2.1
 - Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you like.
 - Quiz will take the full hour

- **Homework**
 - Homework Due Today
 - New Homework Assigned Friday Morning
 - New Homework Due Following Thursday