CS 301 - Lecture 25
Computability and Decidability

Fall 2008

Review

+ Languages and Grammars

—  Alphabets, strings, languages
+  Regular Languages

- Deterministic Finite and Nondeterministic Automata

—  Equivalence of NFA and DFA

- Regular Expressions

—  Regular Grammars

- Properties of Regular Languages

~ Languages that are not regular and the pumping lemma
+  Context Free Languages

- Context Free Grammars

- Derivations: leftmost, rightmost and derivation trees

- Parsing and ambiguity

~  Simplifications and Normal Forms

- Nondeterministic Pushdown Automata

~  Pushdown Automata and Context Free Grammars

- Deterministic Pushdown Automata

~ Pumping Lemma for context free grammars

- Properties of Context Free Grammars
+  Turing Machines
Definition, Accepting Languages, and Computing Functions
Combining Turing Machines and Turing's Thesis
Turing Machine Variations

~  Universal Turing Machine and Linear Bounded Automata

Recursive and Languages, Unrestricted Grammars.

~ Context Sensitve Grammars and the Chomsky Hierarchy
+  Computational Limits and Complexity

- Today: C and Decidability

Decidability

Consider problems with answer YES or NO

Examples:
« Does Machine M have three states ?

+ Is string w a binary number?

- Does DFA M accept any input?




A problem is decidable if some Turing machine
decides (solves) the problem

Decidable problems:
- Does Machine M have three states ?

+ Is string w a binary number?

- Does DFA M accept any input?

The Turing machine that decides (solves)
a problem answers YES or NO
for each input in the problem domain

Input — YES
problem — Turing Machine
instance — NO

The domain is essential... part 1

Problem: is the following context-
free language ambigous?

S — abe

* Clearly we can decide this problem.

(the above grammar is not ambiguous)

The domain is essential... part 2

Problem: is an arbitrary context-free
language ambigous?

* Clearly we can decide this problem this
problem for some grammars in the domain.

* The problem is decidable only if we can
answer this for all grammars in the domain




Some problems are undecidable:

which means:
there is no Turing Machine that
solves all instances of the problem

A simple undecidable problem:

The halting problem

‘The Halting Pr'oblem‘

Input: -Turing Machine M
*String w

Question:  Does M halt oninput w?

Theorem:
The halting problem is undecidable

(there are M and W for which we cannot
decide whether M halts on input w )

Proof: Assume for contradiction that
the halting problem is decidable

Thus, there exists Turing Machine H
that solves the halting problem

M— ——YES | M halts on W
H
w— —*NO doesn't |,
halt on




Input:

of M

Construction of H

initial tape contents
wyr W ——(q0)

a

Encoding String

H

/@y ES

{@n) NO

Construct machine H' :

If H returns YES then loop forever

If H returns NO then halt

90
NO

w
Construct machine H :
H/
Input:  Wys  (machine M)
H Loop forever
YES ‘/\’
@ If M halts oninput Wy,
War W

Then loop forever

Else halt




Wy

A

copy

Wy

Wy Wy H

Run machine H with input itself:

Input: Wg (machine H)

If H halts oninput Wy
Then loop forever

Else halt

H on input Wg

If H halts then loops forever

If H doesn't halt then it halts

Therefore, we have contradiction

The halting problem is undecidable




Another proof of the same theorem:

If the halting problem was decidable then
every recursively enumerable language
would be recursive

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable

There exists Turing Machine H
that solves the halting problem

M—

W——

—YES

—"NO

M halts on w

doesn't W

halt on

Let L bea recursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input




W

Turing Machine that

accepts L

and halts on any input

H

1<

M halts on w ?

\ 4

)1551

-NO ., reject w

Run M

accept W
Halts on final state

with input W | reject w

Halts on non-final

state

Therefore L is recursive

Since L is chosen arbitrarily, every
recursively enumerable language
is also recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlll!

Therefore, the halting problem is undecidable

‘The Membership Pr‘oblem\

Input: -Turing Machine M
*String w

Question:  Does M accept w?

weEL(M)?




Theorem:

The membership problem is undecidable

(there are M and W for which we cannot
decide whether w&L(M) )

Proof: Assume for contradiction that
the membership problem is decidable

Thus, there exists a Turing Machine 1
that solves the membership problem

M— —>VEs | M accepts w

w— —NO

M rejects w

Let L bea recursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input

Turing Machine that accepts L
and halts on any input

H
M, YES, accept W
M accepts w?
w > NO reject w




Therefore, L is recursive

Since L is chosen arbitrarily, every
recursively enumerable language is also
recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlill

Therefore, the membership problem
is undecidable

Some Undecidable Problems
Halting Problem:

Does machine M halt on input w?
Membership problem:

Does machine M accept string w?

Are These Problems Undecidable?

State-entry Problem:
Does machine M enter state ¢
oninput w?

Blank-tape halting problem:

Does machine M halt when starting
on blank tape?

Could start from scratch for each problem...
instead could we use our previous results??




Reducibility

Problem A is reduced to problem B

U

If we can solve problem B then
we can solve problem A4

B

<D

Problem A is reduced to problem B

J

If B is decidable then A is decidable

l

If A isundecidable then B is undecidable

Example: the halting problem

is reduced to

the state-entry problem
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The state-entry pr‘oblem‘

Inputs:  -Turing Machine M
‘State ¢
*String w

Question: Does M enter state ¢

oninput w ?

Theorem:

The state-entry problem is undecidable

Proof: Reduce the halting problem to

the state-entry problem

Suppose we have a Decider
for the state-entry algorithm:

SN YES
M state-entry | M enters ¢

w—— problem

q— INO, M doesn't
enter

We want to build a decider
for the halting problem:

M__ IYES, M halts on w
Halting problem
W] INO, M doesn't
halt on
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We want to reduce the halting problem to
the state-entry problem:

Halting problem

M — M ves |YES

—_—* State-entry >
— * problem

w NO [NO ,

We need to convert one problem instance
to the other problem instance

Halting problem

YES

YES

State-entry

problem
NO

NO,

Convert M +o M.

*Add new state ¢

-From any halting state of M add transitions to ¢

MI
Q\
\
M O1—Hq)
O—] Single
halting states | halt state

M halts on input W

0 T
if and

—JonlyifL__

M’ halts on state ¢ on input W
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Halting problem

M/

Generate
MI

State-entry
problem

YES

YES

NO

NO,

=

We reduced the halting problem
to the state-entry problem

Since the halting problem is undecidable,
the state-entry problem is undecidable

Another example:

the halting problem

is reduced to

the blank-tape halting problem

‘The blank-tape halting pr‘oblem‘

Input: Turing Machine M

Question: Does M halt when started with
a blank tape?
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Theorem:
The blank-tape halting problem is undecidable

We want to reduce the halting problem to
the blank-tape halting problem:

Halting problem

Halting problem

Blank-tape yes | YES >

halting problem|

no | NO

M— . ves | YES |
) Blank-tape >
Proof: Reduce the halting problem to the M., halting problem
no |NO |
blank-tape halting problem W
We need to convert one problem instance )
to the other problem instance What's Next
+ Read

— Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), 7.1, 7.2, 7.3, (skip
7.4), 8,9,10, 11,12
— JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9, (skip 10), 11

+ Next Lecture Topics

— No Lecture on Thurs 11/20
Quiz 4 in Recitation on Wednesday 12/3
— Covers Linz9, 10 and JFLAP 9, 11
— Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you
like.
— Quiz will take the full hour

*  Homework

— Homework Due Tuesday After Thanksgiving
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