
1

CS 301 - Lecture 25
Computability and Decidability

Fall 2008

Review
•  Languages and Grammars

–  Alphabets, strings, languages
•  Regular Languages

–  Deterministic Finite and Nondeterministic Automata
–  Equivalence of NFA and DFA
–  Regular Expressions
–  Regular Grammars
–  Properties of Regular Languages
–  Languages that are not regular and the pumping lemma

•  Context Free Languages
–  Context Free Grammars
–  Derivations: leftmost, rightmost and derivation trees
–  Parsing and ambiguity
–  Simplifications and Normal Forms
–  Nondeterministic Pushdown Automata
–  Pushdown Automata and Context Free Grammars
–  Deterministic Pushdown Automata
–  Pumping Lemma for context free grammars
–  Properties of Context Free Grammars

•  Turing Machines
–  Definition, Accepting Languages, and Computing Functions
–  Combining Turing Machines and Turing’s Thesis
–  Turing Machine Variations
–  Universal Turing Machine and Linear Bounded Automata
–  Recursive and Recursively Enumerable Languages, Unrestricted Grammars
–  Context Sensitve Grammars and the Chomsky Hierarchy

•  Computational Limits and Complexity
–  Today: Computability and Decidability

Decidability

Consider problems with answer YES or NO

Examples:
•  Does Machine have three states ? M

•  Is string a binary number? w

•  Does DFA accept any input? M

2

A problem is decidable if some Turing machine
decides (solves) the problem

Decidable problems:
•  Does Machine have three states ? M

•  Is string a binary number? w

•  Does DFA accept any input? M

Turing Machine
Input
problem
instance

YES

NO

The Turing machine that decides (solves)
a problem answers YES or NO
for each input in the problem domain

The domain is essential… part 1

Problem: is the following context-
free language ambigous?

•  Clearly we can decide this problem.

 (the above grammar is not ambiguous)

The domain is essential… part 2

Problem: is an arbitrary context-free
language ambigous?

•  Clearly we can decide this problem this
problem for some grammars in the domain.

•  The problem is decidable only if we can
 answer this for all grammars in the domain

3

Some problems are undecidable:

which means:
there is no Turing Machine that
solves all instances of the problem

A simple undecidable problem:

The halting problem

The Halting Problem

Input: • Turing Machine M

• String w

Question: Does halt on input ? M w

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable

(there are and for which we cannot
decide whether halts on input)

M w
M w

Thus, there exists Turing Machine
that solves the halting problem

H

H
M

w

YES M halts on w

M doesn’t
halt on

wNO

4

H

wwM 0q
yq

nq

Input:
initial tape contents

Encoding
of M w

String

YES

NO

Construction of H
Construct machine : H ′

If returns YES then loop forever H

If returns NO then halt H

H

wwM 0q
yq

nq NO

aq bq

H ′

Loop forever
YES

ĤConstruct machine :

Input:

If M halts on input Mw

Then loop forever

Else halt

Mw (machine) M

5

Mw MM wwcopy
Mw

H ′

Ĥ

ĤRun machine with input itself:

Input:

If halts on input

Then loop forever

Else halt

Hw ˆ (machine) Ĥ

Ĥ Hw ˆ

on input Ĥ Hw ˆ

If halts then loops forever

If doesn’t halt then it halts

:

Ĥ

Ĥ

NONSENSE !!!!!

Therefore, we have contradiction

The halting problem is undecidable

END OF PROOF

6

Another proof of the same theorem:

If the halting problem was decidable then
every recursively enumerable language
would be recursive

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable

There exists Turing Machine
that solves the halting problem

H

H
M

w

YES M halts on w

M doesn’t
halt on

wNO

Let be a recursively enumerable language L

Let be the Turing Machine that accepts M L

We will prove that is also recursive: L

we will describe a Turing machine that
accepts and halts on any input L

7

M halts on ? w
YES

NO M

w

Run
with input

M
w

H
reject w

accept w

reject w

Turing Machine that accepts
and halts on any input

L

Halts on final state

Halts on non-final
state

Therefore L is recursive

But there are recursively enumerable
languages which are not recursive

Contradiction!!!!

Since is chosen arbitrarily, every
recursively enumerable language
is also recursive

L

Therefore, the halting problem is undecidable

END OF PROOF

The Membership Problem

Input: • Turing Machine M

• String w

Question: Does accept ? M w

?)(MLw∈

8

Theorem:

The membership problem is undecidable

Proof: Assume for contradiction that
the membership problem is decidable

(there are and for which we cannot
decide whether)

M w
)(MLw∈

Thus, there exists a Turing Machine
that solves the membership problem

H

H
M

w

YES M accepts w

NO M rejects w

Let be a recursively enumerable language L

Let be the Turing Machine that accepts M L

We will prove that is also recursive: L

we will describe a Turing machine that
accepts and halts on any input L

M accepts ? w
NO

YES M

w

H
accept w

Turing Machine that accepts
and halts on any input

L

reject w

9

Therefore, L is recursive

But there are recursively enumerable
languages which are not recursive

Contradiction!!!!

Since is chosen arbitrarily, every
recursively enumerable language is also
recursive

L
Therefore, the membership problem
 is undecidable

END OF PROOF

Does machine halt on input ?

Some Undecidable Problems

Halting Problem:

M w

Membership problem:

Does machine accept string ? M w

Does machine enter state
on input ?

Does machine halt when starting
on blank tape?

Blank-tape halting problem:

M

State-entry Problem:
M

w
q

Are These Problems Undecidable?

Could start from scratch for each problem…
 instead could we use our previous results??

10

Reducibility

Problem is reduced to problem A B

If we can solve problem then
we can solve problem

B
A

B
A

If is undecidable then is undecidable

If is decidable then is decidable B A

A B

Problem is reduced to problem A B
Example: the halting problem

is reduced to

the state-entry problem

11

The state-entry problem

Inputs: M• Turing Machine

• State q

Question: Does M

• String w

enter state q
on input ? w

Theorem:
The state-entry problem is undecidable

Proof: Reduce the halting problem to

the state-entry problem

state-entry
problem
decider

M
w
q

YES

NO

 enters M q

 doesn’t
 enter M q

Suppose we have a Decider
for the state-entry algorithm:

Halting problem
decider

M

w

YES

NO

 halts on M w

 doesn’t
 halt on M w

We want to build a decider
for the halting problem:

12

M ′
q
w

State-entry
problem
decider

Halting problem decider

YES

NO

YES

NO

M

w

We want to reduce the halting problem to
the state-entry problem:

M ′
q
w

Halting problem decider

YES

NO

YES

NO

M

w

Convert
Inputs
 ?

We need to convert one problem instance
to the other problem instance

State-entry
problem
decider

Convert to : M
• Add new state q

• From any halting state of add transitions to q

M q

halting states
Single
halt state

M ′

M ′

M M halts on input

M ′ halts on state on input q

if and
only if

w

w

13

Generate
M ′M

w

M ′
q
w

Halting problem decider

YES

NO

YES

NO

State-entry
problem
decider

Since the halting problem is undecidable,
the state-entry problem is undecidable

END OF PROOF

We reduced the halting problem
to the state-entry problem

Another example:

the halting problem

is reduced to

the blank-tape halting problem

The blank-tape halting problem

Input: MTuring Machine

Question: Does M halt when started with
a blank tape?

14

Theorem:

Proof: Reduce the halting problem to the

blank-tape halting problem

The blank-tape halting problem is undecidable

M

w

Blank-tape
halting problem
decider

Halting problem decider

YES

NO
wM

YES

NO

We want to reduce the halting problem to
the blank-tape halting problem:

M

w

Blank-tape
halting problem
decider

Halting problem decider

YES

NO
wM

YES

NO

We need to convert one problem instance
to the other problem instance

Convert
Inputs
 ?

What’s Next
•  Read

–  Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), 7.1, 7.2, 7.3, (skip
7.4), 8, 9, 10, 11, 12

–  JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9, (skip 10), 11
•  Next Lecture Topics

–  No Lecture on Thurs 11/20
•  Quiz 4 in Recitation on Wednesday 12/3

–  Covers Linz 9, 10 and JFLAP 9, 11
–  Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you

like.
–  Quiz will take the full hour

•  Homework
–  Homework Due Tuesday After Thanksgiving

