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CS 301 - Lecture 25   
Computability and Decidability 

Fall 2008 

Review 
•  Languages and Grammars 

–  Alphabets, strings, languages  
•  Regular Languages 

–  Deterministic Finite and Nondeterministic Automata 
–  Equivalence of NFA and DFA  
–  Regular Expressions 
–  Regular Grammars 
–  Properties of Regular Languages 
–  Languages that are not regular and the pumping lemma 

•  Context Free Languages 
–  Context Free Grammars 
–  Derivations:  leftmost, rightmost and derivation trees 
–  Parsing and ambiguity 
–  Simplifications and Normal Forms 
–  Nondeterministic Pushdown Automata 
–  Pushdown Automata and Context Free Grammars 
–  Deterministic Pushdown Automata 
–  Pumping Lemma for context free grammars 
–  Properties of Context Free Grammars 

•  Turing Machines 
–  Definition, Accepting Languages, and Computing Functions 
–  Combining Turing Machines and Turing’s Thesis 
–  Turing Machine Variations 
–  Universal Turing Machine and Linear Bounded Automata 
–  Recursive and Recursively Enumerable Languages,  Unrestricted Grammars 
–  Context Sensitve Grammars and the Chomsky Hierarchy 

•  Computational Limits and Complexity 
–  Today: Computability and Decidability 

Decidability 

Consider problems with answer YES or NO  

Examples: 
•  Does Machine        have three states ? M

•  Is string        a binary number?  w

•  Does DFA         accept any input?   M
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A problem is decidable if some Turing machine 
decides (solves) the problem 

Decidable problems: 
•  Does Machine        have three states ? M

•  Is string        a binary number?  w

•  Does DFA         accept any input?   M

Turing Machine 
Input 
problem 
instance 

YES 

NO 

The Turing machine that decides (solves)  
a problem answers YES or NO  
for each input in the problem domain 

The domain is essential…   part 1 

Problem:  is the following context-
free language ambigous? 

•  Clearly we can decide this problem. 

  (the above grammar is not ambiguous) 

The domain is essential…    part 2 

Problem:  is an arbitrary context-free 
language ambigous? 

•  Clearly we can decide this problem this  
problem for some grammars in the domain. 

•  The problem is decidable only if we can  
   answer this for all grammars in the domain 
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Some problems are undecidable: 

which means: 
there is no Turing Machine that 
solves all instances of the problem 

A simple undecidable problem: 

The halting problem 

The Halting Problem 

Input: • Turing Machine M

• String  w

Question: Does          halt on input      ?  M w

Theorem: 

The halting problem is undecidable 

Proof: Assume for contradiction that 
the halting problem is decidable 

(there are         and      for which we cannot 
decide whether        halts on input        ) 

M w
M w

Thus, there exists Turing Machine 
that solves the halting problem 

H

H
M

w

YES M halts on w

M doesn’t  
halt on 

wNO 
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H

wwM 0q
yq

nq

Input: 
initial tape contents 

Encoding 
of M w

String 

YES 

NO 

Construction of H
Construct machine         : H ′

If         returns YES then loop forever  H

If         returns NO then halt H

H

wwM 0q
yq

nq NO 

aq bq

H ′

Loop forever 
YES 

ĤConstruct machine       : 

Input:    

If   M halts on input  Mw

Then loop forever 

Else halt 

Mw (machine       ) M
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Mw MM wwcopy 
Mw

H ′

Ĥ

ĤRun machine        with input itself: 

Input:    

If   halts on input  

Then loop forever 

Else halt 

Hw ˆ (machine       ) Ĥ

Ĥ Hw ˆ

on input  Ĥ Hw ˆ

If        halts then loops forever 

If       doesn’t halt then it halts 

: 

Ĥ

Ĥ

NONSENSE !!!!! 

Therefore, we have contradiction 

The halting problem is undecidable 

END OF PROOF 
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Another proof of the same theorem: 

If the halting problem was decidable then 
every recursively enumerable language 
would be recursive 

Theorem: 

The halting problem is undecidable 

Proof: Assume for contradiction that 
the halting problem is decidable 

There exists Turing Machine 
that solves the halting problem 

H

H
M

w

YES M halts on w

M doesn’t  
halt on 

wNO 

Let        be a recursively enumerable language  L

Let        be the Turing Machine that accepts M L

We will prove that        is also recursive:  L

we will describe a Turing machine that 
accepts      and halts on any input L
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M  halts on     ? w
YES 

NO M

w

Run       
with input 

M
w

H
reject w

accept w

reject w

Turing Machine that accepts 
and halts on any input 

L

Halts on final state 

Halts on non-final  
state 

Therefore L is recursive 

But there are recursively enumerable 
languages which are not recursive 

Contradiction!!!! 

Since       is chosen arbitrarily, every  
recursively enumerable language  
is also recursive  

L

Therefore, the halting problem is undecidable 

END OF PROOF 

The Membership Problem 

Input: • Turing Machine M

• String  w

Question: Does          accept      ?  M w

?)(MLw∈
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Theorem: 

The membership problem is undecidable 

Proof: Assume for contradiction that 
the membership problem is decidable 

(there are         and      for which we cannot 
decide whether                      ) 

M w
)(MLw∈

Thus, there exists a Turing Machine 
that solves the membership problem 

H

H
M

w

YES M accepts w

NO M rejects w

Let        be a recursively enumerable language  L

Let        be the Turing Machine that accepts M L

We will prove that        is also recursive:  L

we will describe a Turing machine that 
accepts      and halts on any input L

M accepts     ? w
NO 

YES M

w

H
accept w

Turing Machine that accepts 
and halts on any input 

L

reject w
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Therefore, L is recursive 

But there are recursively enumerable 
languages which are not recursive 

Contradiction!!!! 

Since       is chosen arbitrarily, every 
recursively enumerable language is also 
recursive  

L
Therefore, the membership problem 
 is undecidable 

END OF PROOF 

Does machine        halt on input      ? 

Some Undecidable Problems 

Halting Problem: 

M w

Membership problem: 

Does machine        accept string      ? M w

Does machine        enter state     
on input      ? 

Does machine        halt when starting 
on blank tape? 

Blank-tape halting problem: 

M

State-entry Problem: 
M

w
q

Are These Problems Undecidable? 

Could start from scratch for each problem… 
    instead could we use our previous results?? 
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Reducibility 

Problem        is reduced to problem A B

If we can solve problem      then 
we can solve problem 

B
A

B
A

If       is undecidable then        is undecidable 

If      is decidable then        is decidable B A

A B

Problem        is reduced to problem A B
Example: the halting problem 

is reduced to 

the state-entry problem 
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The state-entry problem 

Inputs: M• Turing Machine 

• State q

Question: Does  M

• String w

enter state q
on input      ? w

Theorem: 
The state-entry problem is undecidable 

Proof: Reduce the halting problem to 

the state-entry problem 

state-entry 
problem  
decider 

M
w
q

YES 

NO 

   enters M q

   doesn’t 
   enter M q

Suppose we have a Decider 
for the state-entry algorithm: 

Halting problem 
decider 

M

w

YES 

NO 

   halts on M w

   doesn’t 
   halt on M w

We want to build a decider 
for the halting problem: 
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M ′
q
w

State-entry 
problem 
decider 

Halting problem decider 

YES 

NO 

YES 

NO 

M

w

We want to reduce the halting problem to 
the state-entry problem: 

M ′
q
w

Halting problem decider 

YES 

NO 

YES 

NO 

M

w

Convert 
Inputs 
      ? 

We need to convert one problem instance 
to the other problem instance 

State-entry 
problem 
decider 

Convert          to          : M
• Add new state q

• From any halting state of       add transitions to  q

M q

halting states 
Single 
halt state 

M ′

M ′

M M halts on input  

M ′ halts on state     on input  q

if and 
only if 

w

w
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Generate 
M ′M

w

M ′
q
w

Halting problem decider 

YES 

NO 

YES 

NO 

State-entry 
problem 
decider 

Since the halting problem is undecidable, 
the state-entry problem is undecidable 

END OF PROOF 

We reduced the halting problem 
to the state-entry problem 

Another example:  

the halting problem 

is reduced to 

the blank-tape halting problem 

The blank-tape halting problem 

Input: MTuring Machine 

Question: Does  M halt when started with 
a blank tape? 
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Theorem: 

Proof: Reduce the halting problem to the 

blank-tape halting problem 

The blank-tape halting problem is undecidable 

M

w

Blank-tape 
halting problem 
decider  

Halting problem decider 

YES 

NO 
wM

YES 

NO 

We want to reduce the halting problem to 
the blank-tape halting problem: 

M

w

Blank-tape 
halting problem 
decider  

Halting problem decider 

YES 

NO 
wM

YES 

NO 

We need to convert one problem instance 
to the other problem instance 

Convert 
Inputs 
     ? 

What’s Next 
•  Read  

–  Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3),  7.1,  7.2, 7.3, (skip 
7.4),  8, 9, 10, 11, 12 

–  JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6, 7, (skip 8), 9, (skip 10), 11 
•  Next Lecture Topics    

–  No Lecture on Thurs 11/20 
•  Quiz 4 in Recitation on Wednesday 12/3   

–  Covers Linz 9, 10  and JFLAP 9, 11 
–  Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you 

like. 
–  Quiz will take the full hour 

•  Homework  
–  Homework Due Tuesday After Thanksgiving 


