Decision Process

• Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left):
 – select route with highest LOCAL-PREF
 – select route with shortest AS-PATH
 – apply MED (if routes learned from same neighbor)
 – select route with smallest NEXT-HOP cost
...Decision Process

– select route learned from E-BGP peer with lowest BGP ID

– select route from I-BGP neighbor with lowest BGP ID

• Install selected route in Loc-RIB

• Selectively disseminate routes to peers, update Adj-RIB-Out

• Done
Multi-homing

• With multi-homing, a single network has more than one connections to the Internet
• Improves reliability and performance:
 – can accommodate link failure
 – bandwidth is sum of links to Internet
• Multiple connections provide load sharing but not load balancing
 – BGP cannot do load balancing
Issues With Multi-homing

- Symmetric routing
 - while conventional wisdom prefers symmetric paths, many (most?) are asymmetric
- Packet re-ordering
 - may trigger TCP’s fast retransmit algorithm
- Other concerns:
 - addressing, DNS, aggregation
Static Routing May Not Work

Static routing may send traffic from ISPs 2-n to customer over one link and traffic from ISP1 over the other link. Lacks flexibility.
Multi-homing with Multiple Providers

• Major issues:
 – addressing
 – aggregation

• Customer address space:
 – delegated by ISP1
 – delegated by ISP2
 – delegated by ISP1 and ISP2
 – obtained independently

• Advantages and disadvantages?
Case 1: Customer Uses Address Space From One ISP (1 or 2)

- Customer uses address space from ISP1
- ISP1 advertises /16 aggregate
- Customer advertises /24 route to ISP2
- ISP2 relays route to ISP1 and ISP3
- ISP2-3 use the /24 route
- ISP1 routes directly
- Problems with traffic load?
Case 2: Customer Uses Address Space From Both ISPs

- ISP1 and ISP2 continue to announce aggregates
- Load sharing depends on traffic to two prefixes
- Lack of reliability: if ISP1 link goes down, part of customer becomes inaccessible
- Customer may announce prefixes to both ISPs
Case 3: Customer Uses Its Own Address Space

- Offers the most control, but at the cost of aggregation
- Still need to control paths:
 - suppose ISP1 large, ISP2-3 small – want traffic directly from ISP1, but ISP3 should send via ISP2
 - customer advertises artificially long path to ISP1, but local-pref attribute at ISP overrides
 - ISP3 learns shorter path from ISP2

Diagram:
- ISP1
- ISP2
- ISP3
- Customer

- Arrows indicate traffic direction.
How can BGP express the following policies:
2 will not act as transit to 3
2 will not accept packets sourced in 1
1 will use the green path for packets destined to 4 and the red for packets destined to 5
IPv6

• **Initial motivation:** 32-bit address space soon to be completely allocated.

• **Additional motivation:**
 – header format helps speed processing/forwarding
 – header changes to facilitate QoS

IPv6 datagram format:

– fixed-length 40 byte header
– no fragmentation allowed
IP datagram format

Header Fields

- **IP protocol version**
 - number
 - header length (bytes)
 - “type” of data
- **16-bit identifier**
- **time to live**
- **32 bit source IP address**
- **32 bit destination IP address**
- **Options (if any)**
- **Data**
 - (variable length, typically a TCP or UDP segment)

Header Length

- **Header length (bytes)**
 - max number of remaining hops (decremented at each router)

Flags

- **Fragment**
- **Offset**

Total Datagram Length

- **Total datagram length (bytes)**

How much overhead with TCP?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

Other

- E.g. timestamp, record route, taken, specify list of routers to visit.
IPv6 Header (Cont)

- **Priority**: identify priority among datagrams in flow
- **Flow Label**: identify datagrams in same “flow.”
 - (concept of “flow” not well defined).
- **Next header**: identify upper layer protocol for data

<table>
<thead>
<tr>
<th>ver</th>
<th>pri</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>payload len</td>
<td>next hdr</td>
<td>hop limit</td>
</tr>
<tr>
<td>source address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(128 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(128 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 32 bits
Other Changes from IPv4

- **Checksum**: removed entirely to reduce processing time at each hop
- **Options**: allowed, but outside of header, indicated by “Next Header” field
- **ICMPv6**: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - multicast group management functions
Transition From IPv4 To IPv6

• Not all routers can be upgraded simultaneous
 – no “flag days”
 – How will the network operate with mixed IPv4 and IPv6 routers?

• *Tunneling*: IPv6 carried as payload in IPv4 datagram among IPv4 routers
Tunneling

Logical view:
- A
- B
- tunnel
- E
- F

Physical view:
- A
- B
- C
- D
- E
- F
- A-to-B: IPv6
- B-to-C: IPv6 inside IPv4
- B-to-C: IPv6 inside IPv4
- E-to-F: IPv6

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow: X</th>
<th>Src: A</th>
<th>Dest: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAT: Network Address Translation

• **Motivation:** local network uses just one IP address as far as outside word is concerned:
 – no need to be allocated range of addresses from ISP: - just one IP address is used for all devices
 – can change addresses of devices in local network without notifying outside world
 – can change ISP without changing addresses of devices in local network
 – devices inside local net not explicitly addressable, visible by outside world (a security plus).
NAT: Network Address Translation

• 16-bit port-number field:
 – 60,000 simultaneous connections with a single LAN-side address!

• NAT is controversial (books term):
 – NAT is evil (protocol designer and security term)
 – routers should only process up to layer 3
 – violates end-to-end argument
 • NAT possibility must be taken into account by app designers, eg, P2P applications
 – address shortage should instead be solved by IPv6
NAT: Network Address Translation

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers.

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual).
NAT: Network Address Translation

Implementation: NAT router must:

- **outgoing datagrams:** replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)

 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.

- **remember (in NAT translation table)** every (source IP address, port #) to (NAT IP address, new port #) translation pair

- **incoming datagrams:** replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
NAT: Network Address Translation

1: host 10.0.0.1 sends datagram to 128.119.40.186, 80

<table>
<thead>
<tr>
<th>NAT translation table</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN side addr</td>
</tr>
<tr>
<td>138.76.29.7, 5001</td>
</tr>
<tr>
<td>.....</td>
</tr>
</tbody>
</table>

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

3: Reply arrives dest. address: 138.76.29.7, 5001

4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345
What’s Next

• Read Chapter 1, 2, 3, and 4.1-4.3
• Next Lecture Topics from Chapter 5.1 and 5.2
 – UDP and TCP
• Homework
 – Due Thursday in lecture
• Project 3
 – Will be posted this week