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Transport Layer: UDP and TCP 

Fall 2011 



Topics 
•  Principles underlying transport-layer 

services 
– Demultiplexing 
– Detecting corruption 
– Reliable delivery 
– Flow control 

•  Transport-layer protocols 
– User Datagram Protocol (UDP) 
– Transmission Control Protocol (TCP) 



Role of Transport Layer 
•  Application layer 

–  Communication between networked applications 
–  Protocols: HTTP, FTP, NNTP, and many others 

•  Transport layer 
–  Communication between processes (e.g., 

socket) 
–  Relies on network layer and serves the 

application layer 
–  Protocols: TCP and UDP 

•  Network layer 
–  Communication between nodes 
–  Protocols: IP 



Transport Protocols 
•  Provide logical 

communication between 
application processes running 
on different hosts 

•  Run on end hosts  
–  Sender: breaks application 

messages into segments,  
and passes to network 
layer 

–  Receiver: reassembles 
segments into messages, 
passes to application layer 

•  Multiple transport protocol 
available to applications 
–  Internet: TCP and UDP 
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Internet Transport Protocols 
•  Datagram messaging service (UDP) 

–  No-frills extension of “best-effort” IP 
–  Just send the data – each send is a message 

•  Reliable, streaming, in-order delivery (TCP) 
–  Connection set-up 
–  Discarding of corrupted packets 
–  Retransmission of lost packets 
–  Flow control 
–  Congestion control (next lecture) 

•  Services not available 
–  Delay guarantees 
–  Bandwidth guarantees 



Multiplexing and Demultiplexing 
•  Host receives IP datagrams 

–  Each datagram has source 
and destination IP address,  

–  Each datagram carries one 
transport-layer segment 

–  Each segment has source 
and destination port 
number  

•  Host uses IP addresses and 
port numbers to direct the 
segment to appropriate socket 
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User Datagram Protocol (UDP) 

•  Lightweight communication between processes 
–  Avoid overhead and delays of ordered, reliable delivery 
–  Send messages to and receive them from a socket 

•  Lightweight delivery service 
–  IP plus port numbers to support (de)multiplexing 
–  Optional error checking on the packet contents 

 SRC port  DST port 

checksum length 

DATA 



Why Would Anyone Use UDP? 
•  Finer control over what data is sent and when 

–  As soon as an application process writes into the socket 
–  … UDP will package the data and send the packet 

•  Low delay 
–  UDP just blasts away without any formal preliminaries 
–  … which avoids introducing delays such as setup 

•  No connection state 
–  No allocation of buffers, parameters, sequence #s, etc. 
–  … making it easier to handle many active clients 

•  Small packet header overhead 
–  UDP header is only eight-bytes long 



Popular Applications That Use UDP 
•  Multimedia streaming 

–  Retransmitting lost/corrupted packets is not worthwhile 
–  By the time the packet is retransmitted, it’s too late 
–  E.g., telephone calls, video conferencing, gaming 

•  Simple query protocols like Domain Name System 
–  Overhead of connection establishment is overkill 
–  Easier to have application retransmit if needed 

“Address for www.cnn.com?” 

“12.3.4.15” 



Transmission Control Protocol (TCP) 
• Connection oriented 

– Explicit set-up and tear-down of TCP session 
• Stream-of-bytes service 

– Sends and receives a stream of bytes, not messages 
– Similar to file I/O 

• Reliable, in-order delivery 
– Checksums to detect corrupted data 
– Acknowledgments & retransmissions for reliable 

delivery 
– Sequence numbers to detect losses and reorder data 

•  Flow control 
–  Prevent overflow of the receiver’s buffer space 

• Congestion control 
– Adapt to network congestion for the greater good 



Human Analogy: Talking on a 
Cell Phone 

•  Alice and Bob talk on their cell phones 
•  What if Bob couldn’t understand Alice? 

–  ..or there was a brief dropout? 
–  Bob asks Alice to repeat what she said 

•  What if Bob hasn’t heard Alice for a while? 
–  Is Alice just being quiet? 
–  Or, have Bob and Alice lost connection? 
–  Maybe Alice should periodically say “uh huh” 
–  … or Bob should ask “Can you hear me now?”   
–  How long should Bob just keep on talking? 



Highlights from Previous 
Example 

•  Acknowledgments from receiver 
–  Positive: “okay” or “ACK” 
–  Negative: “please repeat that” or “NACK” 

•  Timeout by the sender (“stop and wait”) 
–  Don’t wait indefinitely without receiving some 

response 
–  … whether a positive or a negative 

acknowledgment 
•  Retransmission by the sender 

–  After receiving a “NACK” from the receiver 
–  After receiving no feedback from the receiver  



TCP Support for Reliable 
Delivery 

•  Checksum 
–  Used to detect corrupted data at the receiver 
–  …leading the receiver to drop the packet 

•  Sequence numbers 
–  Used to detect missing data 
–  ... and for putting the data back in order 

•  Retransmission 
–  Sender retransmits lost or corrupted data 
–  Timeout based on estimates of round-trip time 
–  Fast retransmit algorithm for rapid retransmission 



TCP Segments 



TCP “Stream of Bytes” 
Service 
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…Emulated Using TCP 
“Segments” 
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Segment sent when: 
1.  Segment full (Max Segment Size), 
2.  Not full, but times out, or 
3.  “Pushed” by application. 



TCP Segment 

•  IP packet 
–  No bigger than Maximum Transmission Unit 

(MTU) 
–  E.g., up to 1500 bytes on an Ethernet 

•  TCP packet 
–  IP packet with a TCP header and data inside 
–  TCP header is typically 20 bytes long 

•  TCP segment 
–  No more than Maximum Segment Size (MSS) 

bytes 
–  E.g., up to 1460 consecutive bytes from the 

stream 

IP Hdr 
IP Data 

TCP Hdr TCP Data (segment) 



Sequence Numbers 
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Initial Sequence Number (ISN) 
•  Sequence number for the very first byte 

–  Why not a de facto ISN of 0? 
•  Practical issue 

–  IP addresses and port #s uniquely identify a connection 
–  Eventually, though, these port #s do get used again 
–  … and there is a chance an old packet is still in flight 
–  … and might be associated with the new connection 

•  Security issue 
–  An adversary can guess ISNs and hijack a connection 

•  So, TCP requires changing the ISN over time 
–  Set from a 32-bit clock that ticks every 4 microseconds 
–  … which only wraps around once every 4.55 hours! 

•  But, this means the hosts need to exchange ISNs 



TCP Three-Way Handshake 



Establishing a TCP Connection 

•  Three-way handshake to establish connection 
–  Host A sends a SYN (open) to the host B 
–  Host B returns a SYN acknowledgment (SYN ACK) 
–  Host A sends an ACK to acknowledge the SYN ACK 

SYN 

SYN ACK 

ACK 
Data 
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Data 

Each host tells 
its ISN to the 
other host.!



TCP Header 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 



Step 1: A’s Initial SYN Packet 
A’s port B’s port 

A’s Initial Sequence Number 

Acknowledgment 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

A tells B it wants to open a connection…!



Step 2: B’s SYN-ACK Packet 
B’s port A’s port 

B’s Initial Sequence Number 

A’s ISN plus 1 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

B tells A it accepts, and is ready to hear the next byte…!

… upon receiving this packet, A can start sending data!



Step 3: A’s ACK of the SYN-ACK 

A’s port B’s port 

B’s ISN plus 1 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

A tells B it wants is okay to start sending!

Sequence number 

… upon receiving this packet, B can start sending data!



What if the SYN Packet Gets 
Lost? 

•  Suppose the SYN packet gets lost 
–  Packet is lost inside the network, or 
–  Server rejects the packet (e.g., listen queue is full) 

•  Eventually, no SYN-ACK arrives 
–  Sender sets a timer and wait for the SYN-ACK 
–  … and retransmits the SYN-ACK if needed 

•  How should the TCP sender set the timer? 
–  Sender has no idea how far away the receiver is 
–  Hard to guess a reasonable length of time to wait 
–  Some TCPs use a default of 3 or 6 seconds 



SYN Loss and Web Downloads 
•  User clicks on a hypertext link 

–  Browser creates a socket and does a “connect” 
–  The “connect” triggers the OS to transmit a SYN 

•  If the SYN is lost… 
–  The 3-6 seconds of delay may be very long 
–  The user may get impatient 
–  … and click the hyperlink again, or click “reload” 

•  User triggers an “abort” of the “connect” 
–  Browser creates a new socket and does  a “connect” 
–  Essentially, forces a faster send of a new SYN packet! 
–  Sometimes very effective, and the page comes fast 



What’s Next 
•  Read Chapter 1, 2, 3, 4.1-4.3, and 5.1-5.2  
•  Next Lecture Topics from Chapter 5.3 and 5.4 

–  UDP and TCP 

•  Homework  
–  Due Thursday in lecture 

•  Project 3 
– Posted on the course webiste 


