
CS 457 – Lecture 24
 Congestion

Fall 2011

Slow Start and the TCP
Sawtooth

Loss

Exponential “slow
start”

t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just

start by sending a whole window’s worth of data.

Two Kinds of Loss in TCP
•  Triple duplicate ACK

–  Packet n is lost, but packets n+1, n+2, etc. arrive
–  Receiver sends duplicate acknowledgments
–  … and the sender retransmits packet n quickly
–  Do a multiplicative decrease and keep going (no

slow-start)
•  Timeout

–  Packet n is lost and detected via a timeout
–  Could be because all packets in flight were lost
–  After the timeout, blasting away for the entire

CWND
–  … would trigger a very large burst in traffic
–  So, better to start over with a very low CWND

Repeating Slow Start After
Timeout

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start in operation
until it reaches half of

previous cwnd.

timeout
threshold

Repeating Slow Start After Idle Period
•  Suppose a TCP connection goes idle for a while

–  E.g., Telnet session where you don’t type for an hour
•  Eventually, the network conditions change

–  Maybe many more flows are traversing the link
–  E.g., maybe everybody has come back from lunch!

•  Dangerous to start transmitting at the old rate
–  Previously-idle TCP sender might blast the network
–  … causing excessive congestion and packet loss

•  So, some TCP implementations repeat slow start
–  Slow-start restart after an idle period

Summary: TCP Congestion Control
•  When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially.

•  When CongWin is above Threshold, sender is
in congestion-avoidance phase, window grows
linearly.

•  When a triple duplicate ACK occurs,
Threshold set to CongWin/2 and CongWin
set to Threshold.

•  When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Event State TCP Sender Action Commentary
ACK receipt
for previously
unACKed
data

Slow Start
(SS)

CongWin = CongWin + MSS,
If (CongWin > Threshold)
 set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

ACK receipt
for previously
unACKed
data

Congestion
Avoidance
(CA)

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by 1
MSS every RTT

Loss event
detected by
triple
duplicate
ACK

SS or CA Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery, implementing
multiplicative decrease.
CongWin will not drop
below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate
ACK

SS or CA Increment duplicate ACK count
for segment being ACKed

CongWin and Threshold not
changed

Other TCP Mechanisms

Nagle’s Algorithm and Delayed
ACK

Motivation for Nagle’s Algorithm
•  Interactive applications

–  Telnet and rlogin
–  Generate many small packets (e.g., keystrokes)

•  Small packets are wasteful
–  Mostly header (e.g., 40 bytes of header, 1 of data)

•  Appealing to reduce the number of packets
–  Could force every packet to have some minimum size
–  … but, what if the person doesn’t type more characters?

•  Need to balance competing trade-offs
–  Send larger packets to increase efficiency
–  … but at the expense of delay

Nagle’s Algorithm
• Wait if the amount of data is small

– Smaller than Maximum Segment Size (MSS)
• …and some other packet is already in flight

– i.e., still awaiting the ACKs for previous packets
• That is, send at most one small packet per RTT

– … by waiting until all outstanding ACKs have arrived

•  Influence on performance
– Interactive applications: enables batching of bytes
– Bulk transfer: no change: transmits in MSS-sized packets

anyway

vs.

ACK

Delayed ACK - Motivation

•  TCP traffic is often bidirectional
– Data traveling in both directions
– ACKs traveling in both directions

•  ACK packets have high overhead
– 40 bytes for the IP header and TCP header
– … and zero data traffic

•  Piggybacking is appealing
– Host B can send an ACK to host A
– … as part of a data packet from B to A

TCP Header Allows
Piggybacking

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

Example of Piggybacking

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

B has data to send

A has data to send

B doesn’t have data to send

Increasing Likelihood of Piggybacking
•  Increase piggybacking

–  TCP allows the receiver to wait to
send the ACK

–  … in the hope that the host will
have data to send

•  Example: rlogin or telnet
–  Host A types characters at a UNIX

prompt
–  Host B receives the character and

executes a command
–  … and then data are generated
–  Would be nice if B could send the

ACK with the new data

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

Delayed ACK

•  Delay sending an ACK
–  Upon receiving a packet, the host B sets a timer
–  If B’s application generates data, go ahead and

send
•  And piggyback the ACK bit

–  If the timer expires, send a (non-piggybacked)
ACK

•  Limiting the wait
–  Timer of 200 msec or 500 msec
–  ACK every other full-sized packet

TCP Throughput and Fairness

Recall Fixed Window Delay
Assume

 Sender requests a file
 Receiver accepts request and replies with D bit file

 No congestion
 File Request and ACK messages a very small

 small enough to ignore their transmission time

How much time will elapse before the file is completely
transfered?

Case 1: “A Big Enough Window”

“Big enough” means that
time to send window is
bigger than time to get
first ACK:

More precisely:
 (W*S)/R > RTT + S/R:

delay = handshake + request + prop +
transmt

= RTT + ½ RTT + ½ RTT +
D/R

Case 2: Window is “Too Small”

delay = handshake + request + prop
+ transmt + waiting time

= RTT + ½ RTT + ½ RTT +
L/R + #rounds(wait time each round)

= 2RRT + D/R + (K-1)[total_round_time – time_sending]

= 2RTT + D/R + (K-1)[S/R + RTT – (W*S)/R]

“Too small” means that
time to send window is
smaller than time to
get first ACK:

More precisely:
 (W*S)/R < RTT + S/R:

IS TCP Window Big Enough or Too Small?

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Need to figure out how many idle periods.
Need to figure out how much idle time each period.

Both! It starts small and grows exponentially with slow start!

Resulting Model For Basic TCP Delay

delay = handshake + request + prop + transmt + waiting time

= RTT + ½ RTT + ½ RTT + L/R + wait_in_round1 + wait_in_round2 + …..

= 2RRT + D/R + [(S/R + RTT) - S/R] + [(S/R + RTT) – 2S/R] + ……

= 2RTT + D/R + K [S/R + RTT] – (S/R + 2S/R + 4S/R + 8S/R + …..)

= 2RTT + D/R + K[S/R + RTT] - (S/R)[1 + 2 + 4 + 8 + …..]

= 2RTT + D/R + K[S/R + RTT] – (S/R)[2^k -1]

TCP Throughput

•  What’s the average throughout of TCP as a
function of window size and RTT?
–  Assume long-lived TCP flow
–  Ignore slow start

•  Let W be the window size when loss occurs.
•  When window is W, throughput is W/RTT
•  Just after loss, window drops to W/2,

throughput to W/2RTT.
•  Average throughout: 0.75 W/RTT

Problems with Fast Links

An example to illustrate problems
•  Consider the impact of high speed links:

–  1500 byte segments,
–  100ms RTT
–  10 Gb/s throughput

•  What is the required window size?
–  Throughput = .75 W/RTT

•  (probably a good formula to remember)

–  Requires window size W = 83,333 in-flight
segments

Example (Cont.)
•  10 Gb/s throughput requires window size W = 83,333

in-flight segments
•  TCP assumes every loss is due to congestion

–  Generally safe assumption for reasonable window size.
•  (Magic) Formula to relate loss rate to throughput:

Throughput of 10 Gb/s with MSS of 1500 bytes gives:
–  ➜	 L = 2·10-10

 i.e. can only lose one in 5,000,000,000 segments!
•  We need new versions of TCP for high-speed nets

(topic for later discussion)

Throughput =

What’s Next
•  Read Chapter 1, 2, 3, 4.1-4.3, and 5.1-5.2
•  Next Lecture Topics from Chapter 6.4 and 6.5

–  Congestion Control

•  Homework
–  Due Friday in recitation

•  Project 3
– Posted on the course webiste

