Bias in Search

- Algorithm Instance
 - Search Control
 - Determinism
 - Search Topology
 - Memory
 - Heuristic
 - Learning

- Problem Instance
 - Structural Features
 - Problem Distribution
 - Size
 - Difficulty

The Portfolio Approach

- Combines complementary or competing technologies to:
 - Hedge performance differences
 - Maintain robustness across uncertainty

- Drives innovation / insight by:
 - Focusing on the “weak” or “interesting”
 - Identifying strengths and weaknesses of existing approaches
We study a portfolio of classical planning systems

- to understand *why* / *when* one algorithm is favored over another.
- to link algorithm performance with problem structure

Portfolio Design

- **Problems**
- **Features**
- **Planners**

Time and Success Models

Set Cover

Ranking and Allocation

- Round Robin
- Serial
Portfolio Notes

- Portfolios typically *algorithm* focused
- Our work is *systems* focused

A key goal is to minimize search cost

We could also seek to maximize solution quality (we don’t do that … yet)

Modeling Questions

- What do we model?
 - features (static or dynamic)
 - target
- What do we evaluate?
- Which learning methods to apply?
- How much effort is involved?
Performance Models

- Will the planner succeed?
 - binary

- How long will the planner take?
 - discrete bins
 - log bins
 - regression

- Will the planner succeed within a given time?
 - binary plus log bin

Generating Performance Data

- 4726 Problems
- 29 Planners
- 57 Features
 - Domain/Problem (32)
 - Action Interaction (5)
 - Topological (20)

132328 rows
30 minutes each row
7.5 months of processing
Success Models

- Which features are critical
- Simple ML techniques average 96.8 %
- Best Advanced ML 96.59 % (new data)
- Findings:
 - expensive features not critical
 - simple techniques work well enough
 - “Train on old, test on new” generalizes

Runtime Models

- Binned time
- Log-binned time
- Continuous time (regression)
- Findings:
 - time models not as strong
 - heavy-tails and wide variance problematic
Portfolio Questions

- How to apply models in a portfolio?
- Do we include all planners?
- How do portfolio strategies compare?
 - Ranking the Systems
 - Allocating runtime to them
- Does the portfolio outperform any single system?

Portfolio Findings

- about half the systems are dominated
- running round robin is better than serially
- time models perform the same as random
- The current best portfolio:
 - solves more than the best planner
 - slightly faster than the average planner

(ICAPS 07 – W1)
Key contributions to date

- Planner and Problem Repository
 - 31 planners – 27 working – 86 versions
 - 4726 problems (300+ in the works)
 - 57 features (85 planner in the works)
- Some modeling / portfolio questions
 - We can build reasonably accurate models
 - A portfolio can put use these models

Along the way …

- Portfolio Literature Review
 - Perhaps you have some papers from fields outside my area of Planning and Scheduling
- Classical Planning Resources
 - Perhaps you know of or can link this work to another planner
Current Focus

- Linking problem structure with planner performance?
 - data and models rich with information
 - grouping problems based on performance
- Better runtime models
 - get a better handle on wide variance
- Using generated problems to test specific hypotheses

Linking Questions

- Do certain classes of planners perform similarly to one another?
 - Looked at Heuristic Search Planners
 - Found that performance of HSPs was significantly different than non-HSP planners

(ICAPS 07 – W2)
et al.

- Adele Howe: dissertation advisor
- Funding from CSU and NSF
- MEPS group: Landon Flom, Christie Williams
- CSU Student Group: Mark Rogers, Andrew Sutton, Crystal Redman, Artem Sokolov, Keith Bush, Laura Barbulescu, and others
- ICAPS 2005/6 attendees: Too many names
- The International Planning Competition, public planners and problems

Discussion

- Better time modeling
- Ideas for linking
- Possible *portfolio-like* systems from other disciplines
Portfolio Strategies

- Include only non-dominated planners
- Rank by:
 - Time (T) or Probability of Success (P)
 - Simon & Kadane (T/P)
 - Set Cover order
- Allocate by:
 - Model prediction or runtime distribution
- Run in Serial or in Round Robin