Iterative Optimization in the Polyhedral Model: Part II, Multidimensional Time

Louis-Noël Pouchet1 Cédric Bastoul1 Albert Cohen1 John Cavazos2

1ALCHEMY group, INRIA Saclay / University of Paris-Sud 11, France
2Dept. of Computer & Information Sciences, University of Delaware, USA

June 9, 2008

ACM SIGPLAN 2008 Conference on Programming Languages Design and Implementation
Tucson, Arizona
Motivation

- New architecture → New high-performance libraries needed

- New architecture → New optimization flow needed

- Architecture complexity/diversity increases faster than optimization progress

- Traditional approaches lose performance portability...

We want a portable optimization process!
The Optimization Problem

- Architectural characteristics
 - ALU, SIMD, Caches, ...
- Compiler optimization interaction
 - GCC has 205 passes...
- Domain knowledge
 - Linear algebra, FFT, ...

Optimizing compilation process

Code for architecture 1
Code for architecture 2
......
Code for architecture N
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

Optimizing compilation process
locality improvement,
= vectorization,
parallelization, etc...

Code for architecture 1
Code for architecture 2
........
Code for architecture N
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

Optimizing compilation process

Code for architecture 1

Code for architecture 2

.......

Code for architecture N

parameter tuning,
= phase ordering,
etc...
The Optimization Problem

- Architectural characteristics: ALU, SIMD, Caches, ...
- Compiler optimization interaction: GCC has 205 passes...
- Domain knowledge: Linear algebra, FFT, ...

Optimizing compilation process

Pattern recognition, = hand-tuned kernel codes, etc...

Code for architecture 1
Code for architecture 2
Code for architecture N

INRIA Saclay / U. of Delaware
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

Optimizing compilation process

Code for architecture 1
Code for architecture 2
......
Code for architecture N

= Auto-tuning libraries
The Optimization Problem

Architectural characteristics
ALU, SIMD, Caches, ...

Compiler optimization interaction
GCC has 205 passes...

Domain knowledge
Linear algebra, FFT, ...

In reality, there is a complex interplay between all components

Our approach: build an expressive set of program versions

Code for architecture 1
Code for architecture 2
........
Code for architecture N
Iterative Optimization Flow

High-level transformations

Input code → Optimization 1 → Optimization 2 → Optimization N

Target code → Compiler

Program version = result of a sequence of loop transformation
Iterative Optimization Flow

Program version = result of a sequence of loop transformation
Iterative Optimization Flow

Program version = result of a sequence of loop transformation
Set of Program Versions

What matters is the **result of the application of optimizations**, not the optimization sequence.

All-in-one approach:

- **Legality**: semantics is always preserved
- **Uniqueness**: all versions of the set are distinct
- **Expressiveness**: a version is the result of an arbitrarily complex sequence of loop transformation
The Polyhedral Model in a Nutshell

- Arbitrarily complex sequence of loop transformations are modeled in a **single optimization step**: new scheduling matrix
- Granularity: each executed instance of each statement

\[\Theta : \begin{pmatrix} \vert & \vert \\ \vec{p} & \end{pmatrix} \]

```plaintext
for (i = ...; i < ...; ++i)
  S1(i);
for (i = ...; i < ...; ++i)
  S2(i);
```

- **First row** → all outer-most loops
The Polyhedral Model in a Nutshell

- Arbitrarily complex sequence of loop transformations are modeled in a single optimization step: new scheduling matrix
- Granularity: each executed instance of each statement

\[\Theta : (\begin{bmatrix} \vec{p} \\ \vec{r} \end{bmatrix}) \]

```plaintext
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S1(i,j);
```

```plaintext
for (i = ...; i < ...; ++i)
for (j = ...; j < ...; ++j)
S2(i,j);
```

- Second row → all next outer-most loops
The Polyhedral Model in a Nutshell

- Arbitrarily complex sequence of loop transformations are modeled in a single optimization step: new scheduling matrix
- Granularity: each executed instance of each statement

\[
\Theta : \begin{pmatrix}
\text{light blue} & \text{dark blue} \\
\text{pink} & \text{black}
\end{pmatrix}
\]

```
for (j = ...; j < ...; ++j)
S2(...,j);
for (i = ...; i < ...; ++i)
  for (j = ...; j < ...; ++j)
    S1(i,j);
    S2(i,j);
```
The Polyhedral Model in a Nutshell

- Arbitrarily complex sequence of loop transformations are modeled in a **single optimization step**: new scheduling matrix
- Granularity: each executed instance of each statement

\[
\Theta: \begin{pmatrix} \vec{i} & \vec{p} & c \end{pmatrix}
\]

for \((j = \ldots; j < \ldots; ++j)\)
\[
S2(\ldots,j);
\]

for \((i = \ldots; i < \ldots; ++i)\)
\[
S1(i,j);
\]

\[
S2(i,j);
\]

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vec{i})</td>
<td>reversal</td>
</tr>
<tr>
<td>(\vec{p})</td>
<td>skewing</td>
</tr>
<tr>
<td>(c)</td>
<td>interchange</td>
</tr>
<tr>
<td>(\vec{i})</td>
<td>fusion</td>
</tr>
<tr>
<td>(\vec{p})</td>
<td>distribution</td>
</tr>
<tr>
<td>(c)</td>
<td>peeling</td>
</tr>
<tr>
<td>(c)</td>
<td>shifting</td>
</tr>
</tbody>
</table>
Previous Contributions

Previous work (CGO’07, Part I, One-Dimensional Time):

- Focus on Static Control Parts (SCoP)
 - SCoP: Consecutive set of statements with affine control flow
- Complete framework for one-dimensional schedules
- Efficient search space construction, efficient traversal

- Drawbacks in applicability
- Drawbacks in expressiveness

We previously solved a simpler problem...
New Contributions

Dealing with multidimensional schedules:

- **Applicability on any Static Control Parts**
- Increased expressiveness

- **Design of scalable traversal methods**
 - Dedicated genetic algorithm
 - Dedicated heuristic
Deeper In The Method

Multidimensional schedules: high expressiveness, complex problem

- combinatorial expression of legality
- heuristic needed: greedy selection of dependences + ordering
 (see Some Efficient Solutions to the Affine Scheduling Problem, Part II: Multidimensional Time, Feautrier, 1992)
- Code generation friendly bounds on the schedule coefficients
- multiple polytopes to traverse
- large and expressive spaces (up to 10^{50})
- partial enumeration (mandatory): completion mechanism + subspace partitioning
- shape the space: optimized polytope projection (required) + constrained dynamic scan
Observations on the Performance Distribution

> Extensive study of 8x8 Discrete Cosine Transform (UTDSP)

> Search space analyzed: 66 × 19683 = 1.29 × 10^6 different legal program versions
Observations on the Performance Distribution

- Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
- Search space analyzed: $66 \times 19683 = 1.29 \times 10^6$ different legal program versions
Observations on the Performance Distribution

- Take one specific value for the first row
- Try the 19863 possible values for the second row

INRIA Saclay / U. of Delaware
Observations on the Performance Distribution

- Take one specific value for the first row
- Try the 19863 possible values for the second row
- Very low proportion of best points: < 0.02%
Observations on the Performance Distribution

- Performance variation is large for good values of the first row
Observations on the Performance Distribution

- Performance variation is large for good values of the first row
- It is usually reduced for bad values of the first row
Scanning The Space of Program Versions

The search space:

- Performance variation indicates to partition the space
- Non-uniform distribution of performance
- No clear analytical property of the optimization function

→ Build dedicated **heuristic** and **genetic operators** aware of these **static** and **dynamic characteristics**
Dedicated Heuristic

- Multidimensional version of the heuristic presented in Part I
- Discover 80%+ of the performance improvement in less than 50 runs for small kernels

- Feedback directed, yet deterministic
- Leverages our knowledge about performance distribution
- Relies on the completion algorithm to instantiate the full version

- But unsatisfactory results for larger programs...
Dedicated GA Operators

Mutation

- Performance distribution is not uniform
- Tailored to focus on the most promising subspaces
- Preserves legality (closed under affine constraints)

Cross-over

- Row cross-over
 \[(\text{blue}) + (\text{brown}) = (\text{brown})\]

- Column cross-over
 \[(\text{red} + \text{yellow}) + (\text{green} + \text{gray}) = (\text{green} + \text{gray})\]

- Both preserve legality
Dedicated GA Results

GA converges towards the maximal space speedup
Experimental Results [1/3]

Performance improvement for AMD Athlon64

Baseline: gcc -O3 -ftree-vectorize -msse2
Experimental Results [2/3]

Performance improvement for ST231

baseline: st200cc -O3 -OPT:alias=restrict -mauto-prefetch
Experimental Results [3/3]

Looking into details (hardware counters+compilation trace):

- **Better activity** of the processing units

- Best version may **vary significantly for different architectures**

- Different source code may **trigger different compiler optimizations**

→ Our method is a portable optimization process
Conclusion

- Scalable algorithms (GA and heuristic) to traverse the space, with dedicated pruning and search strategies

- Part I + Part II: applicability observed on various compilers (GCC, ICC, Open64) and architectures (x86_32, x86_64, MIPS32, ST231 VLIW)

- Tunable framework: open to other search space construction strategies

- Take-home message:
 - All-in-one: legality, uniqueness, expressiveness
 - Generic and portable approach for high-level transformation selection
Tuning: Distribute and Tile

- Focus on fuse/distribute legality affine constraints (presented algorithm with additional constraints)

- Use PLuTo as a tiling / parallel backend

- **Driven by program versions**

- Excellent performance gains (research report coming soon...)

INRIA Saclay / U. of Delaware