Objectives for this Class

Objectives for the next few lectures:

- Learning the basic mathematical concepts underlying polyhedral compilation
- Build a survival kit of mathematical results
- Get a good understanding of why and how things are done

What this class is not about:

- Non topic-related mathematics, advanced polyhedral maths
- Standard program optimization

Requirements: basic (linear) algebra concepts, basic compilation concepts
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 → Existing prototype tools
 ▶ PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, Omega, Loopo, . . .
 → GCC GRAPHITE (now in mainstream)
 → Reservoir Labs R-Stream, IBM XL/Poly
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 ➔ Existing prototype tools
 ▶ PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, Omega, Loopo, . . .
 ➔ GCC GRAPHITE (now in mainstream)
 ➔ Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
 ➔ Build and select a program transformation
Polyhedral Program Optimization: a Three-Stage Process

1 Analysis: from code to model
 → Existing prototype tools
 ▶ PoCC (Clan-Candl-LetSee-Pluto-Cloog-Polylib-PIPLib-ISL-FM)
 ▶ URUK, Omega, Loopo, . . .
 → GCC GRAPHITE (now in mainstream)
 → Reservoir Labs R-Stream, IBM XL/Poly

2 Transformation in the model
 → Build and select a program transformation

3 Code generation: from model to code
 → "Apply" the transformation in the model
 → Regenerate syntactic (AST-based) code
Today

Stage 1: from syntactic code to polyhedral representation
 ▶ Modeling iteration domains with polytopes

Underlying mathematical concepts:
 ▶ Convexity
 ▶ Polyhedra (bounded, rational, integer and parametric)
 ▶ Lattices

Next weeks: (1) data dependence, (2) scheduling, (3) optimization I, (4) optimization II, ...
Motivating Example [1/2]

Example

```c
for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
        A[i][j] = i * j;
```

Program execution:

1: A[0][0] = 0 * 0;
2: A[0][1] = 0 * 1;
3: A[0][2] = 0 * 2;
4: A[1][0] = 1 * 0;
5: A[1][1] = 1 * 1;
6: A[1][2] = 1 * 2;
7: A[2][0] = 2 * 0;
8: A[2][1] = 2 * 1;
Motivating Example [2/2]

A few observations:

- Statement is executed 9 times
- There is a different values for i, j associated to these 9 instances
- There is an order on them (the execution order)

Objective:
find a representation where these 3 characteristics are modeled
Exercise 1: Find a Representation

Find such a representation (not using polyhedra)
Exercise 1: Find a Representation

Find such a representation (not using polyhedra)

- One solution: instance graph (aka extended representation)
 - 1 node per executed instance
 - directed graph: reflect execution ordering
- Another: system of affine recurrence equations (SARE)
- ...

Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement
Exercise 2: Listing the Issues

Generalization: exhibit the key problems we can face for the modeling of 1 statement

- Memory consumption (compact representation)
- Parametric loop bound / unbounded loops
- non-unit loop strides
- conditionals
- ...

OSU
Summarizing the Problems

Step 1:
- Find a compact representation (critical)
- 1 point in the set ↔ 1 executed instance (to allow optimization operations, such as counting points)
- Can retrieve when the instance is executed (total order on the set)
- Easy manipulation: scanning code must be re-generated

Step 2:
- Deal with parametric and infinite domains
- Non-unit strides

Step 3:
- Generalized affine conditionals (union of polyhedra)
- Data-dependent conditionals
Overview of the Solution

- Iteration domain: set of totally ordered n-dimensional vectors
 - Iteration vector $\vec{x}_S = (i, j)$
 - Iteration domain: the set of values of \vec{x}_S

- Convenient approach: **polytopes** model sets of totally ordered n-dimensional vectors

- One condition: the set must be convex
Convexity [1/2]

Convexity is the central concept of polyhedral optimization

<table>
<thead>
<tr>
<th>Definition (Convex set)</th>
</tr>
</thead>
</table>
| Given S a subset of \mathbb{R}^n. S is convex iff, $\forall \mu, \lambda \in S$ and given $c \in [0, 1]$:
| $(1 - c) \cdot \mu + c \cdot \lambda \in S$ |

With words: drawing a line segment between any two points of S, each point on this segment is also in S.

Warning: when $\mathbb{K} = \mathbb{Z}$, we use another definition
Convexity [2/2]

Definition (Convex combination)

Given S a convex set. For any family of vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r \in S$, and any nonnegative numbers $\lambda_1, \lambda_2, \ldots, \lambda_r$ such that $\sum_{i=1}^{r} \lambda_i = 1$, then:

$$\vec{v} = \sum_{i=1}^{r} u_i \lambda_i \in S$$

\vec{v} is a convex combination of $\{\vec{u}_i\}$.
Convexity [2/2]

Definition (Convex combination)

Given S a convex set. For any family of vectors $\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_r \in S$, and any nonnegative numbers $\lambda_1,\lambda_2,\ldots,\lambda_r$ such that $\sum_{i=1}^{r} \lambda_i = 1$, then:

$$\vec{v} = \sum_{i=1}^{r} u_i \lambda_i \in S$$

\vec{v} is a convex combination of $\{\vec{u}_i\}$.

Exercise: Prove a statement surrounded by loops with unit-stride, no conditional and simple loop bounds has a convex iteration domain.
The Affine Qualifier

Definition (Affine function)

A function \(f : \mathbb{K}^m \to \mathbb{K}^n \) is affine if there exists a vector \(\vec{b} \in \mathbb{K}^n \) and a matrix \(A \in \mathbb{K}^{m \times n} \) such that:

\[
\forall \vec{x} \in \mathbb{K}^m, \quad f(\vec{x}) = A\vec{x} + \vec{b}
\]

Definition (Affine half-space)

An affine half-space of \(\mathbb{K}^m \) (affine constraint) is defined as the set of points:

\[
\{ \vec{x} \in \mathbb{K}^m \mid \vec{a}.\vec{x} \leq \vec{b} \}
\]
Polyhedron (Implicit Representation)

Definition (Polyhedron)
A set $S \in \mathbb{K}^m$ is a polyhedron if there exists a system of a finite number of inequalities $A\vec{x} \leq \vec{b}$ such that:

$$\mathcal{P} = \{\vec{x} \in \mathbb{K}^m \mid A\vec{x} \leq \vec{b}\}$$

Equivalently, it is the intersection of finitely many half-spaces.

Definition (Polytope)
A polytope is a bounded polyhedron.
Integer Polyhedron

Definition (\(\mathbb{Z}\)-polyhedron)

It is a polyhedron where all its extreme points are integer valued.

Definition (Integer hull)

The integer hull of a rational polyhedron \(\mathcal{P}\) is the largest set of integer points such that each of these points is in \(\mathcal{P}\).

For the moment, we will "say" an integer polyhedron is a polyhedron of integer points (language abuse)
Rational and Integer Polytopes

Example graph showing inequalities:

- $2x + 3y \leq 12$
- $-x + y \leq 1$
- $3x + 2y \leq 12$

LPopt: $c = (0; 1)$

Graph with points at $(1,1)$, $(2,2)$, $(3,2)$, $(4,1)$.
Returning to the Example

Modeling the iteration domain:

- Polytope dimension: set by the number of surrounding loops
- Constraints: set by the loop bounds

\[\mathcal{D}_R : \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \cdot \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{pmatrix} i \\ j \end{pmatrix} \geq \vec{0} \]

\[0 \leq i \leq 2, \quad 0 \leq j \leq 2 \]
Another View of Polyhedra

The dual representation models a polyhedron as a combination of lines L and rays R (forming the polyhedral cone) and vertices V (forming the polytope).

Definition (Dual representation)

\[P : \{ \bar{x} \in \mathbb{Q}^n \mid \bar{x} = L\lambda + R\mu + V\nu, \, \mu \geq 0, \, \nu \geq 0, \, \sum_i \nu_i = 1 \} \]

Definition (Face)

A face F of P is the intersection of P with a supporting hyperplane of P. We have:

\[\dim(F) \leq \dim(P) \]

Definition (Facet)

A facet F of P is a face of P such that:

\[\dim(F) = \dim(P) - 1 \]
Getting Some Intuition...

Exercise:

- Give the facets of D_S
- Give some faces of D_S

Example

```c
for (i = 0; i < 3; ++i)
    for (j = 0; j < 3; ++j)
        A[i][j] = i * j;
```
The Face Lattice
Some Equivalence Properties

Theorem (Fundamental Theorem on Polyhedral Decomposition)

If \mathcal{P} is a polyhedron, then it can be decomposed as a polytope \mathcal{V} plus a polyhedral cone \mathcal{L}.

Theorem (Equivalence of Representations)

Every polyhedron has both an implicit and dual representation.

- Chernikova’s algorithm can compute the dual representation from the implicit one
- The Dual representation is heavily used in polyhedral compilation
- Some works operate on the constraint-based representation (Pluto)
Some Useful Algorithms

- Compute the facets of a polytope
- Compute the volume of a polytope (number of points)
- Scan a polytope (code generation)
- Find the lexicographic minimum
Increasing the Expressiveness

Problems:

- Unbounded domains: use polyhedra!
- Parametric loop bounds: use parametric polyhedra!
- Non-unit loop bounds: normalize the loop!

Conditionals:

- Those which preserve convexity: ok! (add affine constraints)
- Problem remains for the others...
Parametric Polyhedra

Definition (Parametric polyhedron)

Given \tilde{n} the vector of symbolic parameters, \mathcal{P} is a parametric polyhedron if it is defined by:

$$\mathcal{P} = \{ \bar{x} \in \mathbb{K}^m \mid A\bar{x} \leq B\tilde{n} + \tilde{b} \}$$

- Requires to adapt theory and tools to parameters
- Can become nasty: case distinctions (QUAST)
- Reflects nicely the program context
Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: PolyLib [Wilde et al]
- Compute the volume of a polytope (number of points): Barvinok [Claus/Verdoolaege]
- Scan a polytope (code generation): CLooG [Quillere/Bastoul]
- Find the lexicographic minimum: PIP [Feautrier]
Practicing Your Knowledge

Find the iteration domain for the following programs:

Example

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[3i + j] = K;
```

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < i; ++j)
        A[j] = 0;
```
Practicing Again!

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < i; ++j)
        if (i > M)
            A[j] = 0;
```

Example

```c
for (i = 0; i < N; i += 2)
    for (j = 0; j < N; ++j)
        A[i] = 0;
```

Example

```c
for (i = 0; i < N; i += 2)
    for (j = 0; j < N; ++j)
        if (i % 3 == 1 && j % 2 == 0)
            A[i] = 0;
```
Generalized Conditionals

Case distinction:

- **Conjunctions** (a && b)
- **Disjunctions** (a || b)
- **Non-affine** (i * j < 2)
- **Data-dependent** (a[i] == 0)
Relation with Operations on Polyhedra

Considering conjunctions:

Definition (Intersection)

The intersection of two convex sets P_1 and P_2 is a convex set P:

$$P = \{ \vec{x} \in K^m | \vec{x} \in P_1 \land \vec{x} \in P_2 \}$$

Considering disjunctions:

Definition (Union)

The union of two convex sets P_1 and P_2 is a set P:

$$P = \{ \vec{x} \in K^m | \vec{x} \in P_1 \lor \vec{x} \in P_2 \}$$

The union of two convex sets may not be a convex set.
Generalized Conditionals

Case distinction (with a, b two affine expressions):

- Conjunctions (a && b) → OK! Convexity preserved
- Disjunctions (a || b) → Use a list of iteration domains
- Non-affine (i * j < 2) → Use affine hull (loss of precision)
- Data-dependent (a[i] == 0) → Use predicates + affine hull [Benabderrahmane]
Exercises:

Polyhedral Compilation Foundations - #1

Polyhedra in Use [1/2]

Exercise: Compute the footprint of A

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
```

Example

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```
Polyhedra in Use [2/2]

Exercise: Compute the set of cells of A accessed

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
```

Example

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```
Lattices

Definition (Lattice)
A subset L in \mathbb{Q}^n is a lattice if it is generated by integral combination of finitely many vectors: a_1, a_2, \ldots, a_n ($a_i \in \mathbb{Q}^n$). If the a_i vectors have integral coordinates, L is an integer lattice.

Definition (\mathbb{Z}-polyhedron)
A \mathbb{Z}-polyhedron is the intersection of a polyhedron and an affine integral full dimensional lattice.
Pictured Example

Example of a \mathbb{Z}-polyhedron:

- $Q_1 = \{i, j \mid 0 \leq i \leq 5, 0 \leq 3j \leq 20\}$
- $L_1 = \{2i + 1, 3j + 5 \mid i, j \in \mathbb{Z}\}$
- $Z_1 = Q_1 \cap L_1$
Complex Example

Computing the set of cells of A accessed

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```

- $D_S: \{i, j \mid 0 \leq i < N, i \leq j < N\}$
- Function: $f_A : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
- Image(D_S, f_A) is the set of cells of A accessed (a \mathbb{Z}-polyhedron):
 - Polyhedron: $Q : \{i, j \mid 3 \leq i < 2N + 2, 0 \leq j < 4N\}$
 - Lattice: $L : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
Quick Facts on \mathbb{Z}-polyhedra

- Iteration domains are in fact \mathbb{Z}-polyhedra with unit lattice
- Intersection of \mathbb{Z}-polyhedra is not convex in general
- Union is complex to compute
- Parametric lattices are challenging!
- Can count points, can optimize, can scan

- Implementation available for most operations in PolyLib
Some Interesting Problems

- Write generalized loop normalization algorithms
 - Stride normalization
 - while loop / do loop conversion
 - Conditional normalization
- ...

OSU