Overview of Today’s Lecture

Outline:

▶ Follow-up on \(\mathbb{Z} \)-polyhedra
▶ Data dependence
 ▶ Dependence representations
 ▶ Various analysis
 ▶ Data dependence algorithm in Candl/PoCC/Pluto

Mathematical concepts:

▶ Affine mapping
▶ Image, preimage by an affine mapping
▶ Cartesian product of polyhedra
Affine Function and Lattices (Reminder)

Definition (Affine function)

A function \(f : \mathbb{K}^m \to \mathbb{K}^n \) is affine if there exists a vector \(\vec{b} \in \mathbb{K}^n \) and a matrix \(A \in \mathbb{K}^{m \times n} \) such that:

\[
\forall \vec{x} \in \mathbb{K}^m, \quad f(\vec{x}) = A\vec{x} + \vec{b}
\]

Definition (Lattice)

A subset \(L \) in \(\mathbb{Q}^n \) is a lattice if is generated by integral combination of finitely many vectors: \(a_1, a_2, \ldots, a_n \) (\(a_i \in \mathbb{Q}^n \)).

\[
L = L(a_1, \ldots, a_n) = \{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z} \}
\]

If the \(a_i \) vectors have integral coordinates, \(L \) is an integer lattice.

Example: \(L_1 = \{ 2i + 1, 3j + 5 \mid i, j \in \mathbb{Z} \} \) is a lattice.
Image and Preimage

Definition (Image)

The image of a polyhedron $P \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \rightarrow \mathbb{Z}^m$ is a \mathbb{Z}-polyhedron P':

$$P' = \{ f(\bar{x}) \in \mathbb{Z}^m \mid \bar{x} \in P \}$$

Definition (Preimage)

The preimage of a polyhedron $P \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \rightarrow \mathbb{Z}^m$ is a \mathbb{Z}-polyhedron P':

$$P' = \{ \bar{x} \in \mathbb{Z}^n \mid f(\bar{x}) \in P \}$$

We have $\text{Image}(f^{-1}, P) = \text{Preimage}(f, P)$ if f is invertible.
Relation Between Image, Preimage and \mathbb{Z}-polyhedra

- The image of a \mathbb{Z}-polyhedron by an unimodular function is a \mathbb{Z}-polyhedron.

- The preimage of a \mathbb{Z}-polyhedron by an affine function is a \mathbb{Z}-polyhedron.

- The image of a polyhedron by an affine invertible function is a \mathbb{Z}-polyhedron.

- The preimage of a \mathbb{Z}-polyhedron by an affine function is a \mathbb{Z}-polyhedron.

- The image by a non-invertible function is **not** a \mathbb{Z}-polyhedron.
Returning to the Example

Exercise: Compute the set of cells of A accessed

Example

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        A[2i + 3][4j] = i * j;
```

- $\mathcal{D}_S: \{i, j \mid 0 \leq i < N, i \leq j < N\}$
- Function: $f_A : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
- $\text{Image}(f_A, \mathcal{D}_S)$ is the set of cells of A accessed (a \mathbb{Z}-polyhedron):
 - Polyhedron: $Q : \{i, j \mid 3 \leq i < 2N + 2, 0 \leq j < 4N\}$
 - Lattice: $L : \{2i + 3, 4j \mid i, j \in \mathbb{Z}\}$
Data Dependence

Definition (Bernstein conditions)

Given two references, there exists a dependence between them if the three following conditions hold:

- they reference the same array (cell)
- one of this access is a write
- the two associated statements are executed

Three categories of dependences:

- RAW (Read-After-Write, aka flow): first reference writes, second reads
- WAR (Write-After-Read, aka anti): first reference reads, second writes
- WAW (Write-After-Write, aka output): both references writes

Another kind: RAR (Read-After-Read dependences), used for locality/reuse computations
Purpose of Dependence Analysis

- Not all program transformations preserve the semantics
- Semantics is preserved if the dependence are preserved

- In standard frameworks, it means reordering statements
 - Statements containing dependent references should not be executed in a different order
 - Granularity: usually a reference to an array

- In the polyhedral framework, it means reordering statement instances
 - Statement instances containing dependent references should not be executed in a different order
 - Granularity: a reference to an array cell
Illustrations

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = A[i + N][j];
```

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        B[i][j] = A[i][j];
```
An Intuitive Dependence Test Algorithm

Idea: compute the sets associated to the Bernstein conditions

Given two references a and b to the same array:

- Compute $W_a': Image(f_a, D_a)$ if a is a write, \emptyset otherwise
- Compute $R_a: Image(f_a, D_a)$ if a is a read, \emptyset otherwise
- Compute $W_b': Image(f_b, D_b)$ if b is a write, \emptyset otherwise
- Compute $R_b: Image(f_b, D_b)$ if b is a read, \emptyset otherwise

- If $W_a \cap R_b \neq \emptyset \lor W_a \cap W_b \neq \emptyset \lor R_a \cap W_b \neq \emptyset$ then $a \delta b$
A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program
A (Naive) Dependence Test Algorithm

Exercise: Write a dependence test algorithm for a program

- Create the Data Dependence Graph, with one node per statement
- For all pairs \(a, b \) of distinct references, do
 - If \(a \) and \(b \) reference the same array, do
 (i) Compute \(W_a, R_a, W_b, R_v \)
 (ii) If \(W_a \cap R_b \neq \emptyset \lor W_a \cap W_b \neq \emptyset \lor R_a \cap W_b \neq \emptyset \) then
 Add an edge between the statement with the reference \(a \) and the statement with the reference \(b \) in the DDG
Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only statements

Exercise: Compute this set, from W_a and R_b (RAW dependence)
Connection with Statement Instances

Objective: get the set of instances which are in dependence, not only statements

Exercise: Compute this set, from W_a and R_b (RAW dependence)

- Idea: $Preimage(f_a, W_a \cap R_b)$ gives the set of instances
- Must generalize to multiple references, we lose convexity (unions)
Some Terminology on Dependence Relations

We categorize the dependence relation in three kinds:

- **Uniform dependences:** the distance between two dependent iterations is a constant
 - ex: $i \rightarrow i + 1$
 - ex: $i, j \rightarrow i + 1, j + 1$

- **Non-uniform dependences:** the distance between two dependent iterations varies along the execution
 - ex: $i \rightarrow i + j$
 - ex: $i \rightarrow 2i$

- **Parametric dependences:** at least a parameter is involved in the dependence relation
 - ex: $i \rightarrow i + N$
 - ex: $i + N \rightarrow j + M$
Data Dependence Analysis

Objective: compute the set of statement instances which are in dependence

Some of the several possible approaches:

▶ Compute the transitive closure of the access function
 ▶ Problems: transitive closure is not convex in general, and not even computable in many situations

▶ Compute an indicator of the distance between two dependent iterations
 ▶ Problems: approximative for non-uniform dependences

▶ dependence cone: do the union of dependence relations
 ▶ Problems: over-approximative as it requires union and transitive closure to model all dependences in a single cone

▶ Retained solution: dependence polyhedron, list of sets of dependent instances
Dependence Polyhedron [1/3]

Principle: model all pairs of instances in dependence

Definition (Dependence of statement instances)
A statement S depends on a statement R (written $R \rightarrow S$) if there exists an operation $S(\vec{x}_S)$ and $R(\vec{x}_R)$ and a memory location m such that:

1. $S(\vec{x}_S)$ and $R(\vec{x}_R)$ refer to the same memory location m, and at least one of them writes to that location,
2. x_S and x_R belongs to the iteration domain of R and S,
3. in the original sequential order, $S(\vec{x}_S)$ is executed before $R(\vec{x}_R)$.
Dependence Polyhedra:

Dependence Polyhedron [2/3]

1. **Same memory location**: equality of the subscript functions of a pair of references to the same array: \(F_S \vec{x}_S + a_S = F_R \vec{x}_R + a_R \).

2. **Iteration domains**: both \(S \) and \(R \) iteration domains can be described using affine inequalities, respectively \(A_S \vec{x}_S + c_S \geq 0 \) and \(A_R \vec{x}_R + c_R \geq 0 \).

3. **Precedence order**: each case corresponds to a common loop depth, and is called a dependence level.

 For each dependence level \(l \), the precedence constraints are the equality of the loop index variables at depth lesser to \(l \): \(x_{R,i} = x_{S,i} \) for \(i < l \) and \(x_{R,l} > x_{S,l} \) if \(l \) is less than the common nesting loop level. Otherwise, there is no additional constraint and the dependence only exists if \(S \) is textually before \(R \).

 Such constraints can be written using linear inequalities: \(P_{l,S} \vec{x}_S - P_{l,R} \vec{x}_R + b \geq 0 \).
Dependence Polyhedron [3/3]

The dependence polyhedron for $R \rightarrow S$ at a given level l and for a given pair of references f_R, f_S is described as [Feautrier/Bastoul]:

$$
\mathcal{D}_{R,S,f_R,f_S,l} : D \left(\begin{array}{c} \vec{x}_S \\ \vec{x}_R \end{array} \right) + d = \begin{bmatrix} F_S & -F_R \\ A_S & 0 \\ 0 & A_R \\ PS & -P_R \end{bmatrix} \left(\begin{array}{c} \vec{x}_S \\ \vec{x}_R \end{array} \right) + \begin{bmatrix} a_S - a_R \\ c_S \\ c_R \\ b \end{bmatrix} \geq 0
$$

A few properties:

- We can always build the dep polyhedron for a given pair of affine array accesses (it is convex)
- It is exact, if the iteration domain and the access functions are also exact
- It is over-approximated if the iteration domain or the access function is an approximation
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
  for (j=1; j<=n; ++j)
    if (i<=n-j+2)
      s[i] = ...
```
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_S and \vec{p}

```c
for (i=0; i<n; ++i) {
    s[i] = 0;
    for (j=0; j<n; ++j)
        s[i] = s[i] + a[i][j]*x[j];
}
```

$$f_s(\vec{x}_S) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \vec{x}_S \ 1 \end{pmatrix}$$

$$f_a(\vec{x}_S) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \vec{x}_S \ 1 \end{pmatrix}$$

$$f_x(\vec{x}_S) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{pmatrix} \vec{x}_S \ 1 \end{pmatrix}$$
Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of \vec{x}_S and \vec{p}
- Data dependence between S1 and S2: a subset of the Cartesian product of \mathcal{D}_{S1} and \mathcal{D}_{S2} (exact analysis)

```c
for (i=1; i<=3; ++i) {
  s[i] = 0;
  for (j=1; j<=3; ++j)
    s[i] = s[i] + 1;
}
```

\[
\mathcal{D}_{S1} \delta \mathcal{D}_{S2} := \begin{bmatrix}
1 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 3
\end{bmatrix} \begin{pmatrix} i_{S1} \\ i_{S2} \\ s_{S2} \\ 1 \end{pmatrix} \geq 0
\]

$S1$ iterations \rightarrow i

$S2$ iterations \rightarrow j
A Dependence Polyhedra Construction Algorithm

1. Initialize reduced dependence graph with one node per program statement
2. For each pairs of statements R, S do
3. For each pairs of distinct references f_R, f_S to the same array, do
4. If R, S does not share any loop, $min_depth = 0$ else $min_depth = 1$
5. For each level l from min_depth to nb_common_loops, do
6. Build the dependence polyhedron $\mathcal{D}_{R,S,f_R,f_S,l}$
7. If $\mathcal{D}_{R,S,f_R,f_S,l} \neq \emptyset$ then
8. If f_R is a write and f_S is a read, $type = RAW$
9. If f_R is a write and f_S is a write, $type = WAW$
10. If f_R is a read and f_S is a write, $type = WAR$
11. If f_R is a read and f_S is a read, $type = RAR$
12. $add_edge(R, S, \{l, \mathcal{D}_{R,S,f_R,f_S,l}, type\})$
The PolyLib Matrix Format

All our tools use this notation (Candl, Pluto, Cloog, PIPLib, etc.)

Given \(D_{R,S} \):

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0
\end{bmatrix}
\cdot
\begin{pmatrix}
i_R \\
i_S \\
j_S \\
n \\
1
\end{pmatrix}
\geq 0
\]

It is written:

\[
\begin{bmatrix}
0 & 1 & -1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 1 & 0
\end{bmatrix}
\cdot
\begin{pmatrix}
i_R \\
i_S \\
j_S \\
n \\
1
\end{pmatrix}
\geq 0
\]

On the first column, 0 stands for = 0, 1 for ≥ 0
Practicing

Exercise: Give all dependence polyhedra

Example

```plaintext
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = A[i + 1][j + 1];
```

Example

```plaintext
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        B[i][j] = A[i][j];
```
Connection with Parallelism

- A dependence is loop-carried if 2 iterations of this loop access the same array cell
- If no such dependence exists, the loop is parallel
- A parallel loop can be transformed arbitrarily
- OpenMP free parallelization or vectorization is possible

Example

```cpp
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        C[i][j] = 0;

for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        for (k = 0; k < N; ++k)
            C[i][j] += A[i][k] * B[k][j];
```
Practicing Parallelism

Exercise: Give all parallel loops

Example

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        A[i][j] = i * j;
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        B[i][j] = A[i][j];
```

Example

```c
for (t = 0; t < L; ++t)
    for (j = 1; j < N - 1; ++j)
```
Visual Intuition

- Synchronization-free parallelism means "slices" in the dependence polyhedron

- The shape of the independent slices gives an intuition of which loop of the program are parallel

- Transforming the code may expose (more) parallelism possibilities

- Be careful of multiple references: must do the union of the dependence relations
Other Techniques for Dependence Analysis

- Scalars are a particular case of array \((c = c[0]) \)
- **Privatization**: a variable is written before it is read (use-def chains)
- **Renaming**: two privatized variables having the same name
- **Expansion**: remove dependences by increasing the array dimension
- Transform program to Single-Assignment-Form (SSA)

- Scalar privatization / renaming / expansion is implemented in Candl
- Maximal static expansion is efficient but difficult!
Hands On!

Demo of Clan + Candl
A First Intuition About Scheduling

Intuition: the source iteration must be executed before the target iteration

Definition (Precedence condition)

Given Θ_R a schedule for the instances of R, Θ_S a schedule for the instances of S. Then, $\forall \langle \bar{x}_R, \bar{x}_S \rangle \in D_{R,S}$:

$$\Theta_R(\bar{x}_R) \prec \Theta_S(\bar{x}_S)$$

Next week: scheduling and semantics preservation (Farkas method, convex space of legal schedules, tiling hyperplane method)