Transformation Selection for Good Vectorization

Louis-Noël Pouchet
pouchet@cse.ohio-state.edu

Dept. of Computer Science and Engineering, the Ohio State University

November 2010

888.11
The Problem of Efficient Vectorization

- A loop is SIMDizable if it is sync-free parallel
 - If it is not, how to transform the code to make the inner loop(s) SIMDizable?

- But how many vector instructions are required to load/store data?
 - **Stride** of accesses is critical
 - Best scenario: stride is \{-1, 0, 1\} for all accesses
Stride-1 Memory Access

- Stride-1 implies 1 vector load per 4 elements to be accessed
- Non stride-1 implies up to 4 vector load per 4 elements

Focus on inner-most loops:
- stride: "distance" in memory of data accessed by two consecutive iterations
- Array size must be constant (but may be parametric)
Example

Original code

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N; ++j)
        for (k = 0; k < N; ++k)
            C[i][j] += A[i][k] * B[k][j];
```

Task 1: make the inner-most loop parallel
Example

Permute(k,i)

```
for (k = 0; k < N; ++k)
    for (j = 0; j < N; ++j)
        for (i = 0; i < N; ++i)
            C[i][j] += A[i][k] * B[k][j];
```

Strides (assume all arrays are of size $N \times N$):

- **C**: $C[i][j]$ stride is N
- **A**: $A[i][k]$ stride is N
- **B**: $B[k][j]$ stride is 0
Example

Permute(k,i) + PermuteLayout(C) + PermuteLayout(A)

```c
for (k = 0; k < N; ++k)
    for (j = 0; j < N; ++j)
        for (i = 0; i < N; ++i)
            C[j][i] += A[k][i] * B[k][j];
```

Strides (assume all arrays are of size $N \times N$):

- **C**: $C[i][j]$ stride is 1
- **A**: $A[i][k]$ stride is 1
- **B**: $B[k][j]$ stride is 0
Example

Permute(k,i) + Permute(i’,j)

Example

```c
for (k = 0; k < N; ++k)
    for (i = 0; i < N; ++i)
        for (j = 0; j < N; ++j)
            C[i][j] += A[i][k] * B[k][j];
```

Strides (assume all arrays are of size $N \times N$):

- **C**: $C[i][j]$ stride is 1
- **A**: $A[i][k]$ stride is 0
- **B**: $B[k][j]$ stride is 1
Stride of Memory Accesses:

Polyhedral Compilation Classes

Stride-1 with Data Layout Permutation

- Simply transpose the array in memory
- Requires to transpose the access functions to this array

Pros:
- Always legal transformation (1-to-1 mapping)
- Allow to work individually on each array

Cons:
- All memory references to this array must be transposed in the entire program (may kill stride-1 somewhere else)
- Array declaration not necessarily accessible
Stride of Memory Accesses:

Stride-1 with Loop Permutation

- Permute loops in a loop nest (aka interchange)
- The access function gets permuted to mirror the loop permutation change

Pros:
- Allow to work locally on an inner-most loop
- Flexible: different permutations possible for different loops

Cons:
- Not always legal!
- Spans at once all references in the inner-most loop
A (Slightly) More Complex Example

Original code

```
for (k = 0; k < N; ++k)
    for (i = 0; i < N; ++i)
        for (j = 0; j < N; ++j)
            C[i][j] += A[i][k] * B[k][j] / D[j][i];
    for (j = 0; j < N / 2; ++j)
        D[k][j] += F[k][j];
```

Strides (assume all arrays are of size $N \times N$):

- **C**: $C[i][j]$ stride is 1
- **A**: $A[i][k]$ stride is 0
- **B**: $B[k][j]$ stride is 1
- **D**: $D[j][i]$ stride is N
- **D**: $D[k][j]$ stride is 1
A (Slightly) More Complex Example

PermuteLayout(D)

Example

```c
for (k = 0; k < N; ++k)
    for (i = 0; i < N; ++i)
        for (j = 0; j < N; ++j)
            C[i][j] += A[i][k] * B[k][j] / D[i][j];
    for (j = 0; j < N / 5; ++j)
        D[j][k] += F[k][j];
```

Strides (assume all arrays are of size $N \times N$):

- **C**: $C[i][j]$ stride is 1
- **A**: $A[i][k]$ stride is 0
- **B**: $B[k][j]$ stride is 1
- **D**: $D[j][i]$ stride is 1
- **D**: $D[k][j]$ stride is N
Observations From the Example

- Is it profitable to permute the layout of D?
 - Maybe: there are 5 times less accesses to $D[j][k]$
 - Depends on the architecture / vector implementation

- Is this loop order the best?

- Is there any loop transformation which could help here?
 - What about loop distribution?
 - Impact of distribution-enabling transformations?

We need a systematic cost model!
Cost Model for Vectorization

Trifunovic et al., PACT’09

▶ Search space: loop permutations
▶ In a nutshell:
 ▶ To each possible permutation corresponds transformed access functions
 ▶ Compute a vectorization cost for all possibilities
 ▶ Select the best one, implement the corresponding permutation

▶ Cost model:
 ▶ Naive execution time estimate
 ▶ Non stride-1: needs multiple loads per vector register
 ▶ Stride-0: needs splat
 ▶ Stride-1: 1 load per vector register
Cost Estimation

Definition (Cost estimation for a polyhedral statement)

\[
\text{cost}(\mathcal{D}_S, \Theta^S) = \frac{|\mathcal{D}_S|}{VF} \cdot \sum c_{\text{vector_numerical_ops}} \\
+ \sum_{m \in \mathcal{W}_S} \left(c_a + \frac{|\mathcal{D}_S|}{VF} \cdot (c_{\text{vectstore}}) \right) \\
+ \sum_{m \in \mathcal{R}_S} \left(c_a + \frac{|\mathcal{D}_S|}{VF} \cdot (c_{\text{vectload}} + c_s) \right)
\]

Where \(VF \) is the vector length, and the different \(c \) are vector costs.
Cost of Non Stride-1 Loads

- It is a function of the stride of the access, noted δ_dv
- Captured in the c_s term:

$$c_s = \begin{cases}
 c_0 & : \delta_dv = 0 \\
 0 & : \delta_dv = 1 \\
 \delta_dv \cdot c_1 + (\delta_dv - 1) \cdot c_2 & : \delta_dv > 1
\end{cases}$$

- c_1 is the cost of a vector load
- c_2 is the cost of a vector extract (odd or even)
Different Cost Components

- Scheduling-invariant metrics:
 - c_a: cost of unaligned operations
 - $c_{\text{vector_numerical_ops}}$: cost of vector numerical operations
 - $c_{\text{vectstore}}, c_{\text{vectload}}$: cost of an individual load/store op

- Scheduling-sensitive metrics:
 - c_S (aka stride load factor)

- Code generation-dependent metrics:
 - None here
Observations

Limitations:

▶ What about reuse?

▶ What about data locality estimation?

▶ What about coupling with other transformations?
 ▶ How to integrate fusion/distribution?
 ▶ What about complementary transformations for fusion?
 ▶ A real research problem here :-)}