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Abstract

We unify several seemingly different graph and digraph classes under one um-
brella. These classes are all, broadly speaking, different generalizations of interval
graphs, and include, in addition to interval graphs, adjusted interval digraphs, com-
plements of threshold tolerance graphs (known as co-TT graphs), bipartite interval
containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal
ray bigraphs. (The last three classes coincide, but have been investigated in different
contexts.) We show that all of the above classes are united by a common ordering
characterization, the existence of a min ordering. However, because the presence
or absence of reflexive relationships (loops) affect whether a graph or digraph has
a min ordering, to obtain this result, we must define the graphs and digraphs to
have those loops that are implied by their definitions. These have been largely ig-
nored in previous work. We propose a common generalization of all these graph
and digraph classes, namely signed-interval digraphs, characterized by the existence
of a compact representation, a signed-interval model, which is a generalization of
known representations of the graph classes. We show that the signed-interval di-
graphs are precisely those digraphs that are characterized by the existence of a min
ordering when the loops implied by the model are considered part of the graph.
We also offer an alternative geometric characterization of these digraphs. We show
that co-TT graphs are the symmetric signed-interval digraphs, the adjusted interval
digraphs are the reflexive signed-interval digraphs, and the interval graphs are the
intersection of these two classes, namely, the reflexive and symmetric signed-interval
digraphs. Similar results hold for bipartite interval containment graphs, bipartite
co-circular arc graphs, and two-directional orthogonal ray bigraphs. !
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Figure 1: An interval graph and corresponding interval model. There is an implicit loop
at each vertex.

1 Introduction

A digraph H is reflexive if each vv € E(H),v € V(H) (every vertex in H has a loop);
irreflexive if no vv € E(H) (no vertex in H has a loop); and symmetric if ab € E(H)
implies ba € E(H). In this paper, we shall consider both graphs and digraphs; we view
graphs as symmetric digraphs, by replacing each edge uv by the two arcs wv,vu. (In
particular, graphs can have loops, and irreflexive graphs are loopless. We do not consider
multiple edges.) However, in certain situations we view bigraphs, i.e., bipartite graphs
with a fixed bipartition, as oriented graphs, with all edges oriented from one part of the
bipartition to the other.

A graph H is an interval graph if it is the intersection graph of a family of intervals
on the real line, i.e., if there exists a family of intervals {[z,,y,]|v € V(H)} such that
wv € E(H) if and only if [z, yu] N [2y, o] # 0. The family of intervals is an interval model
of H. (See Figure 1.) Similarly, a graph is a circular-arc graph if it is the intersection
graph of a family of arcs on the circle.

A graph H is a threshold tolerance graph [34] if each vertex v can be assigned a weight
w, and a tolerance t, so that ab is an edge of H if and only if w, + w, > min(t,, ).
(When all ¢, are equal, this defines a better known class of threshold graphs [6].) Those
graphs that are the complements of threshold tolerance graphs, the co-threshold tolerance
graphs (“co-TT” graphs) have also been shown to be those graphs that are representable
with a generalization of an interval model, called a co-TT model. Details are given in the
next section.

A generalization of interval models to directed graphs is the class of adjusted-interval
digraphs [13], where each vertex has a source interval and a sink interval that share a
common left endpoint, and for two vertices z and y, xy is a directed edge if the source
interval of x intersects the sink interval of y. We discuss the model in more detail in the
next section; an illustration is given in Figure 4. An interval model can be seen as the
special case where the source interval for each vertex is equal to the sink interval for that
vertex, necessitating only one interval to represent both.

A submatriz of a matrix M is the result of deleting any set of rows and columns of
M, leaving the relative order of the remaining rows and columns intact. Henceforth, we
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Figure 2: A min ordering of a digraph is an ordering of its vertices such that neither of
the left two depicted submatrices ¥ (left-most matrix) and A (middle matrix) occurs in
the corresponding adjacency matrix; on the right, for comparison, is the matrix I'.

will let ¥ denote the matrix whose rows are 01 and 10 and let A denote the matrix whose
rows are 01 and 11 (See Figure 2). We note that these names are arbitrary, as we were
unfortunately not able to choose names that corresponded to the shape of the matrix, as
is the case for I'. Let M, A, and B be matrices. M is A-free if A is not the submatrix
of M induced by any subset of its rows and columns, and it is {A, B}-free if it is A-free
and B-free. A min ordering of a digraph H is a linear ordering < of the vertices of H, so
that ab € E(H),a't € E(H) and a < a/, b’ < b implies that abt/ € E(H) [13] (cf. also [19],

where min ordering is called an X -underbar enumeration).

In other words, a min ordering is an ordering of the vertices such that when the ordering
of rows and columns of the adjacency matrix matches this ordering, it is {3, A }-free.

We note that the matrix with rows 11 and 10, called ' in the literature [8, 32], is
obtained from the matrix A by reversing the order of both rows and columns. (See Figure
2.) It follows that a matrix has a I'-free ordering if and only if it has a A-free ordering.
(Each is the reverse ordering of the other.) We include both options to be able to match
the standard terminology in two different areas.

The presence or absence of loops (1’s on the diagonal of the adjacency matrix) can
affect whether the graph has a min ordering. It was pointed out in [13] that when loops
are added to every vertex of an interval graph, it has a {¥, A}-free ordering. (Equivalently,
its augmented adjacency matriz has a min ordering.) In other words, we consider interval
graphs to be reflexive. This quite naturally corresponds to the definition of interval
graphs, since each interval intersects itself. Similarly, the model of adjusted interval
digraphs implies that they are reflexive, since a vertex’s source interval intersects its sink
interval at their shared left endpoint.

In this paper, we observe that a co-TT model of a co-TT graph implies that some
vertices have loops and others do not. This issue has been ignored in the previous literature
on the class. In the present paper, we show that when the loops that are implied by
a co-TT model of the graph are included, it is min-orderable. Although an ordering
characterization, essentially equivalent to ours, was known [34], its relationship to min
orderings has not been previously recognized. By explicitly considering the loops, we were
able to view the ordering as a min-ordering, and thereby link co-TT graphs to the other
classes having a min ordering.
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The main goal of this paper is to promote a common generalization of all of these
classes by combining elements of adjusted interval models and co-TT models, to obtain
what we will call a signed-interval model of a digraph. We call the class of graphs that
are representable with a signed-interval model the signed-interval digraphs. We note
that we hyphenate the term signed-interval digraph in order to emphasize that it is the
intervals that are signed (positive or negative), as distinguished from signed graphs or
digraphs. The signed-interval model implies which vertices have loops and which do
not. We show that when the implied loops are included in the digraph, it has a min
ordering. We show that class of signed-interval digraphs is equal to the class of digraphs
that have a min ordering, giving a characterization of the min-orderable digraphs in terms
of representability with a signed-interval model.

When we view interval graphs and co-TT graphs as digraphs, we consider them to be
symmetric digraphs, i.e., each edge uv is replaced by the two opposite arcs uv and vu.
With this in mind, the classes of interval graphs, co-TT graphs, and adjusted interval
digraphs, are all subclasses of the class of signed-interval digraphs. We show that in fact
interval graphs are exactly the subclass of signed-interval digraphs that are symmetric
and reflexive, the co-TT graphs are the subclass that are symmetric, and the adjusted
interval digraphs are the subclass that are reflexive.

As mentioned earlier, we view bigraphs differently. A uniform orientation of bipartite
graph G is the digraph that results from selecting a bipartition{ A, B} of G’ and orienting
all of its edges from A to B. (The choice of which bipartition is taken is arbitrary.) Note
that the uniform orientations of bipartite graphs are precisely those irreflexive digraphs
where every vertex is a source or a sink. We will show that a uniform orientation of a
bigraph G is a signed-interval digraph if and only if G is the complement of a circular-arc
graph.



It follows from [11, 25, 29, 36] that the class of bipartite graphs that are complements
of circular-arc graphs is equal to the class of interval containment bigraphs and is also
equal to the class of two-directional orthogonal-ray bigraphs, defined below. We will call
uniform orientations of these bigraphs two-directional orthogonal-ray digraphs or 2DOR
digraphs, cf. Figure 3, remembering that the class has all these equivalent descriptions. We
emphasize once more that while interval graphs and co-TT graphs are viewed as symmetric
digraphs, these bigraphs (two-directional orthogonal-ray bigraphs, interval containment
bigraphs, and bipartite graphs that are complements of circular-arc graphs) are viewed
as uniform orientations of bipartite graphs.

Because the uniform orientations of these bipartite graphs are irreflexive, their uni-
form orientations are disjoint from the adjusted interval digraphs, hence disjoint from
the interval graphs. Because they are antisymmetric, their intersection with the co-TT
graphs is trivial: it is the class of edgeless, loopless digraphs, the only loopless digraphs
that are both symmetric and antisymmetric.

In Figure 3 we illustrate these relationships on a grid representing all digraphs, with the
top half being reflexive digraphs and the left half being symmetric digraphs. The central
rectangle, the region AU BUC U D, represents the class of signed-interval digraphs (i.e.,
min-orderable digraphs), while AU B and AU C represent adjusted-interval digraphs and
co-TT graphs, respectively. The small rectangle F represents the uniform orientations of
two-directional orthogonal-ray bigraphs. (It has a trivial intersection with the region C,
not shown in the figure, as noted in the preceding paragraph.)

The lower half of the large rectangle corresponds to all digraphs that are not reflexive;
the small rectangle F belongs to the region of irreflexive digraphs (not marked in the
figure). Similarly, the right half of the larger rectangle corresponds to all digraphs that
are not symmetric, while E' lies in the region of antisymmetric digraphs (unmarked in the
figure). In fact, F is the intersection of the class of uniform bipartite digraphs (which are
irreflexive and antisymmetric) and the rectangle AU BUC U D.

A graph G is chordal if every cycle C' of length greater than three in G has a chord,
i.e., a non-loop edge not on C' whose endpoints are both in C'. A graph is strongly chordal
if every closed walk C' of even length greater than four has an odd chord, which is a
chord whose endpoints are an odd distance apart on C. Farber showed [8] that a graph
is strongly chordal if and only if its vertices can be ordered so that the corresponding
augmented adjacency matrix is I'-free.

Our characterization of interval graphs as the reflexive, symmetric signed-interval
digraphs is equivalent to the characterization stating that they are the reflexive min-
orderable graphs. Although the relationship of co-TT graphs to min orderings has not
previously been recognized, the equivalent orderings from [34] imply that co-TT graphs
are strongly chordal [34].

Min orderings are a useful tool for graph homomorphism problems. A homomorphism
of a digraph G to a digraph H is a mapping f : V(G) — V(H) such that f(u)f(v) € E(H)
whenever uv € E(G). Digraph homomorphism problems are a special case of constraint
satisfaction problems. A general tool for solving polynomial time solvable constraint
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Figure 4: An adjusted interval digraph and a corresponding adjusted interval model. The
source interval for each vertex is the upper one.

satisfaction problems are the so-called polymorphisms [4]. Without going into the tech-
nical details, we mention that min-orderings are equivalent to conservative semilattice
polymorphisms [13]. In particular, if a digraph H has a min ordering, there is a simple
polynomial-time algorithm to decide if a given input graph G admits a homomorphism
to a fixed digraph H [19, 26]. In fact, the algorithm is well known in the Al community
as the arc-consistency algorithm [4, 26]; it is easy to see that it also solves list homo-
morphism problems, where we seek a homomorphism of input G to fixed H taking each
vertex of G to one of a ‘list’ of allowed images [10, 11, 12, 13]. In fact, many (but not all)
homomorphism and list homomorphism problems that can be solved in polynomial time
can be solved using arc-consistency with respect to a min ordering.

2 Previous work

Interval graphs are important in graph theory and in applications, and are distinguished
by several elegant characterizations and efficient recognition algorithms [3, 10, 14, 16, 20,
31, 38]. One attempt to extend the concept to digraphs is given in [37], but many of
the desirable structural properties are absent. More recently, the more restricted class
of adjusted interval digraphs has been found to offer a nicer generalization of interval
graphs [13]. Recall that digraph H is an adjusted interval digraph if there are two families
of real intervals, the source intervals {[x,,y,||[v € V(H)} and the sink intervals and
{[xw, z]|v € V(H)} such that wv € E(H) if and only if the source interval for u intersects
the sink interval for v. (See Figure 4.) This differs from the class in [37] in that the left
endpoint, z,, must be shared by the two intervals [z,,y,| and [z, z,] assigned to v; they
are “adjusted.” An adjusted interval model of H is a set of source and sink intervals that
represent H in this way.

An interval model of an interval graph G can be viewed as two mappings {v — z,|v €
V(H)} and {v — y,|v € V(H)} such that z, < y, for each v € V(H), and such that
wv € E(H) if and only if y, < z, and y, < z; [z, y] is the interval corresponding to v.
The constraint x, < y, comes from the need for [z,,y,] to be an interval. The proposition
that two intervals intersect is the same as the proposition (z, < y, and z, < y,), since
this means that neither interval lies entirely to the right of the other.

A generalization of interval models is obtained by dropping the constraint z, < v,
for each v € V(H) in this formulation, while retaining the constraint that uv is and
edge if and only if z, <y, and x, < y,. Recall that a graph H is a threshold tolerance



graph [34] if each vertex v can be assigned a weight w, and a tolerance ¢, so that for
all a,b € V(H), ab is an edge of H if and only if w, + w, > min(t,, ). and the co-TT
graphs are the complements of threshold tolerance graphs. A graph H is a co-TT graph,
if there exist real numbers z,,y,,v € V(H), such that ab € E(H) if and only if x, < y,
and zj, <y, [18]. This differs from the definition of interval graphs in that it is no longer
required that z, < v, illustrating the motivation for dropping the constraint in this case.
(See Figure 5.) That these are precisely the co-TT graphs is easily seen by letting x, = w,
and y, = t, — w,. The two mappings v — z, and v — y,, are called the co-TT model of
H.

One view of a co-TT model is that there are now intervals whose ‘beginning,” x,,
may come after their ‘end,” y,. In other words, we may have ‘intervals’ [z,,y,] with
Yy < T,. We may view a co-TT model as consisting of intervals [z, y,],v € V(H), some
of which are oriented in the positive direction (have x, < y,) and others are oriented in
the negative direction (have x, > y,). We speak of positive or negative intervals, and
positive or negative vertices that correspond to them. (In the literature [15, 18, 23, 34],
the direction is denoted by colors of the intervals: positive intervals, and vertices, are
colored blue, and negative intervals, and vertices, are colored red.)

The definition of adjacency in a co-TT model implies that two positive vertices are
adjacent if and only if they intersect; in particular, each positive vertex has a loop.
Two negative vertices are never adjacent; in particular negative vertices have no loops.
Finally, a positive vertex u corresponding to a positive interval [a, b] and a negative vertex
v corresponding to a negative interval [c, d] are adjacent if and only if [d, ¢] is contained
in [a,b] (ie.,a<d<c<b).

We emphasize that our definition of co-TT graphs differs from the standard definition
[15, 18, 34]. In the standard definition, the condition ab € E(H) <= z, < yyand 2, < y,
is applied only for a # b, ignoring the issue of loops. We generalize the condition to the
case where a = b, which can require that some of the vertices have loops. Thus, a graph
under the standard interpretation is co-TT if and only if with a suitable addition of loops
it is co-TT under our definition above. It is not necessary to know a co-T'T model of the
graph in order to convert a co-T'T graph without loops into one satisfying our definition
in linear time. The closed neighborhood of a vertex x, denoted N[z], consists of x and
its neighbors. Two vertices are true twins if they have identical closed neighborhoods. A
vertex is simplicial if its closed neighborhood induces a complete subgraph. It was shown
in [18] that if a graph H is co-TT (in the standard sense), then it has a co-TT model
with negative intervals for all simplicial vertices without true twins and all other intervals
positive. Thus, there is an easy translation between the co-TT graphs as defined here and
the standard irreflexive co-TT graphs, namely, loops may be placed on all vertices other
than simplicial vertices that have no true twins. A linear-time algorithm is given in [15]
for performing this operation.

Note that the interval graphs are those co-T'T graphs that have a co-TT model where
all vertices are positive. In other words, they are the reflexive co-TT graphs.

Adjacency on a set of intervals can also be defined by interval containment. A graph
is a containment graph of intervals [17] if there is a family of intervals {[z,, y,||v € V(H)}
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Figure 5: A co-TT graph and a corresponding co-TT model; ab is an edge since 1 < 10
and 3 < 8, ad is an edge since 1 < 2 and 7 < 8. However, bd is not an edge: although
7 <10, 3 is not less than or equal to 2. The example of this figure is one of the well-known
minimal graphs that are not interval graphs, illustrating that the interval graphs are a
proper subclass of the co-TT graphs.

on the real line such that uwv € E(H) if and only if one of [z,,y,| and [z,, y,| contains the
other. A graph is a containment graph of intervals if and only if it and its complement
are both transitively orientable, thus if and only if it is a permutation graph [17].

A concept related to interval graphs for bipartite graphs is as follows. A bipartite
graph H with parts A, B is an interval bigraph if there are intervals {[x,, y.],a € A}, and
{[xp, ys),b € B}, such that fora € Aand b € B, ab € E(H) if and only if [z,, ya| N[z, ys] #
(). Such a set of intervals is known as an interval bigraph model of the graph. For this
paper, a more relevant class is a bipartite version of this concept. A bipartite graph H
with parts A, B is an interval containment bigraph [21, 29] if there are sets of intervals
{I,|la € A}, and {Jy|b € B}, such that ab € E(H) if and only if J, C I,. These graphs have
been independently studied from the point of view of another geometric representation,
defined as follows [36]. A bipartite graph H with parts A and B is called a two-directional
orthogonal ray bigraph if there exists a set {U,,a € A} of upwards vertical rays, and a set
{Ry,b € B} of horizontal rays to the right such that ab € E(H) if and only if U, N R, # 0.
It is known that a bipartite graph is an interval containment bigraph if and only if its
complement is a circular arc graph [11, 29] (and thus if and only if it is a two-directional
orthogonal ray bigraph).

Matrices that can be permuted to avoid small submatrices have been of much interest
[1, 30, 32]. This of course corresponds to characterizations of digraphs by forbidden
ordered subgraphs [7, 24]. Our focus is on {X, A}-free matrices. A relationship between
this and the previous work is described in Section 6.
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Figure 6: A signed-interval digraph and a corresponding signed-interval model. The
source interval for each vertex is the upper one. There is a loop at a because its positive
source interval intersects its positive sink interval. There is an edge from a to b because
a’s positive source interval contains b’s negative sink interval, an edge from b to ¢ because
b’s positive source interval intersects ¢’s positive sink interval, and an edge from d to ¢
because d’s negative source interval is contained in ¢’s positive sink interval.

3 Signed-interval digraphs and min orderings

We have now seen extensions of interval graphs in two different directions. First, taking
two (adjusted) intervals instead of just one interval extends them to a class of digraphs.
Second, by admitting negative intervals extends them to a broader class of (symmetric)
graphs. Both these generalizations have proved very fruitful [10, 13, 15, 28, 18, 23, 34].

We now define a new class of digraphs that unifies these extensions, by assigning
a source vertex and a sink vertex to each vertex, as in the adjusted interval model,
and allowing these intervals to be either positive or negative, as in the co-TT model. In
particular, a signed-interval model is obtained in by assigning, for each v € V/(H), a source
interval [,,y,] and a sink interval [x,, z,|, such that it is not required that y,, z, > z,,
and wv € E(H) if and only if z, < z, and x, < y,. A graph is a signed-interval digraph
if it can be modeled in this way. (See Figure 6.) The model can be viewed as three
mappings from V(H) to the real line, v — x,,v — y,, and v — z,. Since it is possible
that z, >y, and/or x, > z,, each of [x,, y,] and [z,, z,] can be negative or positive. Since
the source interval and sink interval for v share the endpoint x,, we retain the property
that the intervals are adjusted.

Let H be a signed-interval digraph and consider a signed-interval model of H given
by the ordered pairs (I, J,) of intervals where I, = [z,,y,] and J, = [z,, 2,]. For o, €
{+, —}, we say a vertex v is of type («, ) if I, is an a-interval and J, is a S-interval. The
subdigraph of H induced by (+, 4)-vertices is an adjusted interval digraph. The (—, —)-
vertices of H form an independent set. The arcs between the (+, —)- and (—, —)-vertices
form a 2DOR digraph. The arcs between the (—,+)- and (—, —)-vertices also form a
2DOR digraph. Similar properties hold for the other parts and their connections.

It has previously been recognized that interval graphs, adjusted interval digraphs, and
two-directional orthogonal ray digraphs have min orderings when care is taken to specify



u 10000

e lelell

Figure 7: A matrix in a {X, A}-free ordering; v is the last out-neighbor O(u) of u in the
ordering and y is the last in-neighbor I(z) of x in the ordering. The absence of an edge
from u to x would violate the ordering property, since rows u,y and columns x, v would
contain one of the matrices X, A, cf. Figure 2.

which vertices have loops and which do not [10, 13, 25, 36].

The main result of this section is the following.

Theorem 3.1. A digraph admits a min ordering if and only if it is a signed-interval
digraph.

Before embarking on the proof we offer an alternate definition of a min ordering.
Consider any linear ordering < of V/(H). To this ordering, we prepend an initial element
«, which is a place holder and not a vertex. Thus, a < x for each vertex x. Suppose
the adjacency matrix is ordered according to <. For a vertex u, we denote by O(u) the
last vertex v (in the order <), such that v is an out-neighbor of u, or « if a has no out-
neighbor. (See Figure 7.) Similarly, for each vertex z, we denote by I(x) the last vertex
y such that y is an in-neighbor of x, or « if a has no in-neighbor.

Proposition 3.2. A linear ordering < of V(H) is a min ordering of a digraph H if
and only if the following property holds:

ur € E(H) if and only if u < I(z) and x < O(u).

Proof. (See Figure 7.) Suppose first that < is a min ordering of H with « prepended. If
ur € E(H), then by the definition of O(u), I(z) we have v < I(x) and z < O(u). On
the other hand, let v < I(z) and x < O(u). Note that if u = I(x) or = O(u) we have
ur € E(H) also by definition. Therefore it remains to consider vertices u,x such that
u<y=I(x)and z < v = O(u). Then wv,yr € E(H) and the min ordering property
implies that uz € E(H). This proves the property.

Conversely, assume that < is a linear ordering of V(H) with « prepended and that
the property holds for <. We claim it is a min ordering of H. Otherwise some ab €
E(H),d't € E(H),a < da',b/ < b would have at/ ¢ E(H). This is a contradiction, since
we have a < a’ < I(0') and b’ < b < O(a). O

We proceed to prove the theorem.
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Proof. Suppose < is a min ordering of a digraph H with « prepended. We represent
cach vertex v € V(H) by the mappings v — v,v — O(v),v — I(v). In other words,
v is represented by the two intervals [v, O(v)] and [v, I(v)]. It follows from Proposition
3.2 that ab € E(H) if and only if @ < I(b) and b < O(a). Thus, H is a signed-interval
digraph.

Conversely, suppose we have the three mappings v — z,,v — y,,v — 2z, from V(H)
to the real line, such that ab € F(H) if and only if 2, < 2, and x;, < y,. Without loss of
generality we may assume the points {x,|v € V(H)} are all distinct. Then we claim that
the left to right ordering of the points xz, yields a min ordering < of H, with a real point
preceding these points corresponding to «. (Specifically, we define a < b if and only if z,
precedes xp.) Consider now ab € E(H),a't € E(H), with a < a/,b’ < b. This means that
To < Ty < zy and xy < zp < ¥y,, whence we must have ab/ € E(H). O

In the construction of the proof, a vertex v is assigned a positive source interval if
O(v) > v and a negative one otherwise, and a positive sink interval if I(v) > v and a
negative one otherwise. By Proposition 3.2, if both of v’s intervals are positive, v requires
a loop, and it cannot have a loop if at least one of its intervals is negative.

4 An alternate geometric representation of signed-
interval digraphs

Digraphs that admit a min ordering have another geometric representation. Let C be a
circle with two distinguished points (the poles) N and S, and let H be a digraph. Let
I,,v € V(H) and J,,v € V(H) be two families of arcs on C such that each [, contains
N but not S, and each J, contains S but not N. We say that the families I, and J, are
consistent if they have the same clockwise order of their clockwise ends, i.e., the clockwise
end of I, precedes in the clockwise order the clockwise end of I, if and only if the clockwise
end of J, precedes in the clockwise order the clockwise end of .J,. Suppose two families
I,,J, are consistent; we define an ordering < on V(H) where a < b if and only if the
clockwise end of I, precedes in the clockwise order the clockwise end of I; we call < the
ordering generated by the consistent families I,, .J,. Note that < is a total order on V(H).

A bi-arc model of a digraph H is a consistent pair of families of circular arcs, I,,, J,,v €
V(H), such that ab € E(H) if and only if I, and J, are disjoint. A digraph H is called a
bi-arc digraph if it has a bi-arc model.

Theorem 4.1. A digraph H admits a min ordering if and only if it is a bi-arc digraph.

Proof. Suppose [, J, form a bi-arc model of H. We claim that the ordering < generated
by I,,J, is a min ordering of H. Indeed, suppose a < a' and &/ < b have ab,d't/ € E(H).
Then I, spans the area of the circle between N and the clockwise end of I,, and J,
spans the area of the circle between S and the clockwise end of Jy. (See Figure 1.) This
implies that I, and Jy are disjoint: indeed, the counterclockwise end of I, is blocked from
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S

Figure 8: Illustration for the proof of Theorem 4.1

reaching Jy by J, (since ab € F(H)), and the counterclockwise end of .J,, is blocked from
reaching I, by I, (since a'b’ € E(H)). (The clockwise ends are fixed by the ordering <.)

Conversely, suppose < is a min ordering of H. We construct families of arcs I,, and J,,,
with v € V(H), as follows. The intervals I, will contain N but not S, the intervals .J, will
contain S but not N. The clockwise ends of I, are arranged in clockwise order according
to <, as are the clockwise ends of J,. The counterclockwise ends will now be organized
so that I, J,,v € V(H), becomes a bi-arc model of H. For each vertex v € V(H), we
define O(v) and I(v) as in the proof of Theorem 1. Then we assign the counterclockwise
endpoint of I, to be N if v has no out-neighbors, or else extend I, counterclockwise as
far as possible without intersecting Jo(,), and assign the the counterclockwise endpoint
of each J, to be S if v has no in-neighbors, or else extend J, counterclockwise as far
as possible without intersecting Ij(). We claim this is a bi-arc model of H. Clearly, if
b > O(a), then I, intersects .J, by the construction, and similarly for a > I(b) we have
Jp intersecting I,. This leaves disjoint all pairs I,, J, such that a < I(b) and b < O(a);
since aO(a), I(b)b € E(H), the definition of min ordering implies that ab € E(H), as
required. O

Corollary 4.2. The following statements are equivalent for a digraph H.

e H has a min ordering
e H s a signed-interval digraph

e H is a bi-arc digraph. O

5 Bipartite graphs

Definition 5.1. A bipartite graph G is a signed-interval bigraph if some uniform
orientation H of G is a signed-interval digraph.

We will show below that if some uniform orientation of a bipartite graph G is a signed-
interval digraph, then so is every uniform orientation. If G is a signed-interval bigraph,
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then a signed-interval model of a uniform orientation H of GG gives a representation of G-
ab is an undirected edge of GG if and only if one of ab and ba is an edge of H.

Note that a signed-interval bigraph is not necessarily a signed-interval digraph in
the sense given previously. For signed interval bigraphs we must first assign a uniform
orientation before considering whether the adjacency matrix has a {X, A}-free ordering.
Once it is assigned, the rows and columns of the nonempty elements of the matrix are
disjoint, which implies that so the rows and columns can be ordered independently.

The bi-adjacency matriz of a bipartite graph GG with parts A, B has its ¢, j-th entry
equal to 1 if and only if the i-th vertex in A is adjacent to the j-th vertex in B. Note
that for this interpretation it is not required that the matrix be square.

Definition 5.2. A 0-1 matriz has a bipartite min ordering if it has an independent
permutation of rows and columns that is {3, A}-free.

Lemma 5.3. t A bipartite graph G = (A, B, E) is a signed-interval bigraph if and only
if its bi-adjacency matrix has a bipartite min ordering.

Proof. Let C be a bi-adjacency matrix of a bipartite graph G, where A is its rows and B
is its columns. Let H be a uniform orientation of G from A to B. An n X n adjacency
matrix M for H can be obtained by moving the rows of A to the first |A| rows of M,
the columns of B in the last |B| columns, and placing zeros elsewhere. Permuting the
columns in A, does not change M, since they only contain zeros. Similarly, permuting
the rows in B does not change M.

Suppose an independent permutation m4 of rows and 7w of columns of C' produces
a {X, A}-free matrix. The symmetric permutation w4 of both rows and columns of A
and a symmetric permutation g of both rows and columns of B produces a {X, A}-free
ordering of M.

Conversely, suppose H is a signed-interval digraph. There is a symmetric permutation
of rows and columns of its adjacency matrix M that is {3, A}-free. Moving the rows in
A to the first |A| positions without changing their relative order and moving the columns
of |B| to the last |B| positions without changing their relative order gives a {¥, A}-free
independent permutation of C' in the first |A| rows and last |B| columns. O

Theorem 5.4. The following statements are equivalent for a bipartite graph H.
e H is a signed-interval bigraph;
e H s a two-directional orthogonal ray bigraph,

e the complement of H is a circular arc graph

e H is an interval containment bigraph.

Proof. The equivalence of the last three classes follows from a combination of results
from [11, 25, 29, 36]. We complete the theorem by showing the equivalence, for bipartite
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graphs, of the signed-interval bigraphs and the two-directional orthogonal ray bigraphs.
(Cf. also [25] where the third statement is shown equivalent to the existence of a min
ordering.)

Suppose H has a signed-interval model given by the three mappings v — z,,v —
Yy, — 2, such that ab € F(H) if and only if z, < 2, and =, < y,. We construct a
two-directional ray model for H as follows. For each a € A, we take an upwards vertical
ray starting in the point P, with z-coordinate equal to y, and with y-coordinate equal
to x,. For each b € B, we take a horizontal ray to the right, starting in the point @,
with x-coordinate x;, and y-coordinate z,. Now P, intersects @)y if and only if z;, < y, and
Tq < 2, 1ee., if and only if ab € E(H) as required.

Now suppose that H has a two-directional model, i.e., upwards vertical rays U,,a € A,
and horizontal rays to the right Ry, b € B, such that ab € E(H) if and only if U, N R, # (.
We will prove that H has a min ordering, whence it is a signed-interval digraph by
Theorem 3.1. We will define the orders < on A and on B as follows. Assume the starting
point of the vertical ray U, has the (z,y)-coordinates (u,,v,), and the starting point of
the horizontal ray R, has the (z,y)-coordinates (7, sp), for a € A, and b € B. It is easy
to see that we may assume, without loss of generality, that all u,,a € A, and r,,b € B
are distinct, and similarly for v,,a € A and s;,b € B. We define a < ¢’ in A if and only if
Vg < v, and define b < V' in B if and only if r, < ry. We show that this is a min ordering
of the bipartite digraph H. Otherwise, some ab € E(H),a't € E(H),a < a/,1 < b have
ab ¢ E(H). There are two possibilities for ab’ ¢ E(H); either u, < ry or ug, > Ty, v, > Sy
In the former case, U, N Ry = 0, in the latter case Uy N Ry = 0, contradicting the
assumptions. O

6 Special cases

We now explore what min orderings look like in the special cases we have discussed,
namely reflexive graphs, reflexive digraphs, undirected graphs, and bipartite graphs. The
results are all corollaries of Theorem 3.1 and Proposition 3.2.

Corollary 6.1. A reflexive digraph H is a signed-interval digraph if and only if it is
an adjusted interval digraph. O

Next we focus on symmetric digraphs, i.e., graphs.

Corollary 6.2. A reflexive graph H is a signed-interval digraph if and only if it is an
interval graph. A graph H is a signed-interval digraph if and only if it is a co-TT graph.

Proof. Consider an interval model or co-TT model of H, given by the mappings v —
Ty, UV —> Yy, setting the third mapping v — 2z, with each z, = y,, yields a signed-interval
digraph model of H. Conversely, assume H is a graph, i.e., a symmetric digraph, that is
a signed-interval digraph. Let < be a min ordering of H; we again have O(v) = I(v) for
all vertices v. We claim that the mappings v — z, = v,v — y, = O(v) define a co-TT
model. Indeed, from Proposition 3.2 we have ab € E(H) if and only if a < O(b) = y;, and
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b < O(a) = y,, as required. If, in addition, H is reflexive, then O(v) = I(v) > v, and
{[v,O(v)],v € V(H)} is an interval model. O

Corollary 6.2 gives a novel way to understand the relationship between these classes.

By Corollary 6.2, a graph is an interval graph if and only if there is an ordering of
vertices such that its augmented adjacency matrix is {3, A}-free. Also, by Corollary 6.2,
a graph is a co-TT graph if and only if there is an ordering of vertices such that its
adjacency matrix with some assignment of 0’s and 1’s to the elements of the diagonal is
{¥, A}-free. (One way to find such an assignment of 0’s and 1’s is the one given in [18].)
Recall again that Farber proved [8] that a graph is strongly chordal if and only if there
is an ordering of its vertices such that the corresponding augmented adjacency matrix is
I-free. A comparison of all these statements offers a way to understand the relationship
between interval graphs, co-TT graphs, and the broader class of strongly chordal graphs.

7 Algorithms and characterizations

Interval graphs are known to have elegant characterization theorems [14, 31|, cf. [16,
38] and efficient recognition algorithms [3, 5, 20]. Thus, one might hope to be able to
obtain similar results for their generalizations and digraph analogues. This is true for all
the generalizations described in this paper, at least to some degree. In this section we
summarize what is known.

The prototypical characterization of interval graphs is the theorem of Lekkerkerker
and Boland [31]. In our language, it states that a reflexive graph H is an interval graph
if and only if it contains no asteroidal triple and no induced Cy or Cs. An asteroidal
triple consists of three non-adjacent vertices such that any two are joined by a path
not containing any neighbors of the third vertex. An equivalent characterization by the
absence of a slightly less concise obstruction is given in [13]. A reflexive graph H is an
interval graph if and only if it contains no invertible pair. An invertible pair is a pair of
vertices u, v such that there exist two walks of equal length, P from u to v, and @) from
v to u, where the i-th vertex of P is non-adjacent to the (i 4 1)-st vertex of @ (for each
i), and also two walks of equal length R, S from v to u and u to v respectively, where
the i-th vertex of R is non-adjacent to the (i + 1)-st vertex of S (for each i). It is not
difficult to see that an asteroidal triple is a special case of an invertible pair. A number of
variants of the definition of an invertible pair have arisen [13, 15, 23, 25|, and they have
proved useful to give characterization theorems for various classes. It is proved in [13] that
a reflexive digraph is an adjusted interval digraph if and only if it contains no directed
invertible pair. A directed version of an invertible pair is defined in [13] in a manner
similar to the above definition of an invertible pair. With yet another labeled version of
an invertible pair, we have the following obstruction characterization of co-TT graphs: a
graph is a co-TT graph if and only if it contains no labeled invertible pair, which follows
from the characterization in [15] in terms of an interval ordering from [33]. For bipartite
graphs, an analogous bipartite version of an invertible pair yields the following result.
A bipartite graph is a two-directional orthogonal ray bigraph if and only if it contains
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no bipartite invertible pair, [25]. In fact, in [11] a stronger version is shown: there is a
bipartite analogue of an asteroidal triple, called an edge-asteroid, and a bipartite graph is
a two-directional orthogonal ray bigraph if and only if it contains no induced 6-cycle and
no edge-asteroid. Bipartite graphs that contain no edge-asteroids are characterized in [23].
Finally, in [28], there is an obstruction characterization for signed-interval digraphs, which
is a little more technical than just an invertible pair, [28].

There is a long history of efficient algorithms for the recognition of interval graphs,
many of them linear time, starting from [3] and culminating in [5]. A polynomial time
algorithm for the recognition of adjusted interval digraphs is given in [13]. It is not known
how to obtain a linear time, or even near-linear time algorithm. An O(n?) algorithm for
the recognition of two-directional orthogonal ray bigraphs follows from Theorem 5.4 and
[33]. A more efficient algorithm in this case is also not known. On the other hand, an O(n?)
algorithm for the recognition of co-TT graphs has been given in [15]. The obstruction
characterization in [28] yields a polynomial-time algorithm for the recognition of signed-
interval digraphs; in other words, to recognize whether a digraph has a min ordering.
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