JOURNAL OF ALGORITHMS 16, 283-294 (1994)

An O(n?®) Divide-and-Conquer Algorithm for the
Prime Tree Decomposition of Two-Structures and
Modular Decomposition of Graphs

ANDRZEJ EHRENFEUCHT, HAROLD N. GABOW,
Ross M. McCoNNELL, AND STEPHEN J. SULLIVAN

Department of Computer Science, University of Colorado at Boulder,
Boulder, Colorado 80309

Received May 1992; accepted May 6, 1993

This paper presents a simple divide-and-conquer algorithm for computing the
prime tree decomposition of a two-structure. The algorithm runs in O(n?) time,
when 2 is the number of nodes of the two-structure. A directed or undirected
graph is a special case of a two-structure, and the restriction of the decomposition
to graphs is known as the modular decomposition or substitution decomposition.
The decomposition has applications in solving certain scheduling problems and a
number of problems on graphs and partial orders. Two algorithms with a compara-
ble time bound have previously been published for undirected graphs, but they
make use of elaborate data structures that limit their practical use, and they have
no easy generalization to directed graphs or two-structures. © 1994 Academic Press,

Inc.

1. INTRODUCTION

The adjacency array representation of a graph is a coloring of the set
{(x, y): x and y are nodes of G and x # y} with two colors, 0 and 1. A
two-structure [1, 2] is the generalization that allows an arbitrary coloring of
this set. A two-structure may thus be viewed as an edge-colored complete
directed graph. Graphs are a special case of two-structures, so all theo-
rems and algorithms presented in this paper for two-structures are imme-
diately applicable to graphs.

If g is a two-structure, dom{g) denotes its nodes. The substructure
induced in g by X € dom(g), denoted g|X, is the subgraph of g induced
by X, where the edges in g|X have the same color as they do in g. A node
x distinguishes nodes y and z if (x, y) and (x, z) are different colors, or if
(y, x) and (z, x) are different colors. A clan is a set X € dom(g) such

283

0196-6774 /94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

284 EHRENFEUCHT ET AL.

that no x € dom(g) — X distinguishes any two members of X. It is easily
seen that if two clans are disjoint, all edges from one of the clans to the
other are the same color. If R is a partition of the nodes of g, a system of
representatives from R is a set consisting of one node from each member of
R. If each member of R is a clan of g, then every system of representatives
induces the same substructure. This substructure is denoted g/R, and
completely specifies the colors of all edges that are not internal to a
member of R. The operation may be performed recursively on each
member of R by partitioning it into still smaller clans. The result is a
compact, hierarchical decomposition of the entire two-structure.

The prime tree family of a two-structure is such a hierarchical decompo-
sition, and it is unique. It is given by the family of prime clans: {X : X is a
nonempty clan of g, and for any clan Y, either YC X, X CY, or
XNY=g) If |X| > 1, the maximal-cardinality members of the prime
tree family that are proper subsets of |X/|, denoted children (X), are a
partition of X. Thus (g|X)/children (X), given for all X in the prime
tree family, completely represents the original two-structure. As is de-
scribed below, this family represents in a simple way all clans in the
two-structure, not just those that are members of the family. The number
of clans may be exponential in #, but this representation takes space that
is linear in a.

The prime tree family for the case of graphs was first described by
Gallai [3] and has since been rediscovered independently by different
researchers. Kelly [4] gives a survey of the history of the idea. The prime
tree family in the case of graphs is also known as the substitution
decomposition [5], the modular decomposition (6], and the X-join decompo-
sition [7], while the clans in the case of graphs are also known as closed sets
[3], modules [6), autonomous sets [5], partitive sets [8], clumps [9], and
stable sets [10]. The series-parallel decomposition of general series-parallel
partial orders [11] and the cotree decomposition of cographs [12] are
special cases of this decomposition. The decomposition is also closely
related to the split decomposition of Cunningham and Edmonds [13].

There is a large number of combinatorial problems on graphs and
partial orders whose solution may be facilitated by the prime tree family of
the graph or partial order. Examples include finding maximum-weight
cligues and maximum-weight matchings, minimum node colorings [14],
finding the dimension of a partial order [15), constructing perfect graphs
[14], finding whether a graph is a comparability graph [16], and solving
certain scheduling problems [17]. Mohring [5] gives a review.

James, Stanton, and Cowan [18] give an early O(n*) algorithm for
computing the prime tree family for the case of undirected graphs.
Various O(n>) algorithms to construct the prime tree family for the cases
of partial orders and undirected graphs have since been given [7, 19, 20].

COMPUTING THE PRIME TREE FAMILY 285

Muller and Spinrad [6] give an O(n?) algorithm for undirected graphs, and
Spinrad [21] gives an O(n + ma(m, n)) algorithm for undirected graphs.
Both of these algorithms use elaborate data structures and apply only to
undirected graphs. Maurer [22] gives an O(n*) algorithm for the more
general case of directed graphs. Ehrenfeucht, Harju, and Rozenberg [23]
give an algorithm for arbitrary two-structures that runs in O(n?) time. The
algorithm presented here is quite simple, and gives the result for arbitrary
two-structures in O(n?) time.

2. PRELIMINARIES

In this section, we establish notation and give results from previous
papers that will be referred to in this paper. Let G be a directed graph.
The component graph for G [24] has one node for each strongly connected
component. If X and Y are two strongly connected components of G,
then (X,Y) is an edge in the component graph if there exist x € X and
y € Y such that (x, y) is an edge of G.

Let X and Y be finite sets. X and Y are overlapping if and only if
X—-Y, XNnY, and Y — X are all nonempty. A two-edge over X is an
ordered pair (x, y) such that x # y and x, y € X. In this paper, the term
edge refers to a two-edge. The set E,(X) is the set of all possible edges
over X, and a two-structure on domain X is a coloring of £,(X). An edge
(x, y) is symmetric if (y, x) is the same color. A two-structure is symmetric
if all of its edges are symmetric. X is a singleton set if | X| = 1. The nodes
of a two-structure g are known as its domain, denoted dom(g), and g is a
coloring of E,(dom(g)). Obviously, dom(g), &, and the singleton subsets
of dom(g) are clans of g; these are the trivial clans of g. In this paper,
clans will be assumed to be nonempty, except when otherwise stated.

Let g be a two-structure, and let R be a partition of dom(g) such that
every member of R is a clan of g. Let g’ be the two-structure g/R. If
X C dom(g’), its inverse image in g is the union of the members of R that
correspond to members of X. X is the image in g’ of its inverse image.

THeoreM 2.1 [1]. Ler g be a two-structure, and let X and Y be
overlapping clans of g. Then X N'Y, X U 'Y, and X ~ Y are clans of g.

The following is a restricted variant of Theorem 4.17 of [1]. See also [25]
for an earlier proof on graphs.

Tueorem 2.2. Let g be a two-structure and let R be a partition of
dom(g) into clans.

1. If X is a clan in g that has an image Y in g/R, then Y is a clan in
g/R. Moreover, if X is a prime clan in g, then Y is a prime clan in g /R.

286 EHRENFEUCHT ET AL.

2. If Yis a clan in g/R, then its inverse image, X, is a clan in g.
Moreover, if the members of R are prime clans in g and Y is a prime clan in
g/R, X is a prime clan in g.

The following is an immediate consequence of Lemma 4.10 in [1]. See
also [25] for an earlier proof on graphs.

LEMMA 2.3. Let g be a two-structure, and let X be a clan of g. Then the
clans of g|X are those clans of g that are subsets of X. Moreover, the prime
clans of g|X that are proper subsets of X are the prime clans of g that are
proper subsets of X.

DeriniTiON 2.4 [1]. Let g be a two-structure.

1. g is primitive if and only if it contains at least three nodes and all
clans in g are trivial,

2. g is complete if and only if all of its edges are the same color.

3. g is linear if and only if there exists a linear order (x, ..., X gom(gy)
of the elements of dom(g) such that the edges {(x,, x;): i <j} are the
same color, the edges {(x;, x;): i <} are the same color, and the colors of
these two sets are different.

It is clear that if g is complete, its clans are all subsets of dom(g), and if
it is linear, then its clans are the consecutive sets (sets of the form
{x;, X;11,..., x;}) in the linear order on its nodes.

TrHeorem 2.5 [2,25].

(1) If X is a prime clan of g and |X| > 1, children (X)) is a partition of
X;
(2) Each clan of a two-structure g is a union of siblings in the prime tree
family of g;
(3) If X is a prime clan of g such that |X| > 1, X is of one of the
following types:
primitive, no union of more than one and less than all of its children
is a clan of g;
complete, every union of a subfamily of its children is a clan of g;
linear, there exists a linear ordering on its children such that the union
of a subfamily is a clan of g if and only if the subfamily is consecutive
in that ordering.

A direct proof of Theorem 2.5 appears in [2], but the theorem is a
special case of earlier results, given in Section II1.4 of [25], which apply to
set families satisfying certain algebraic properties that follow from Theo-
rem 2.1 and the fact that dom(g) and its singleton subsets are clans. Such

COMPUTING THE PRIME TREE FAMILY 287

families arise in a number of other contexts. See also [26] for an earlier
study of such families, which are called point-partitive hypergraphs.

CoroLLArY [2]. If X is a member of the prime tree family, then
(glX)/children (X) is either primitive, linear, or complete.

By Theorem 2.5, we may represent all clans of g as follows. Create one
node to represent each prime clan. If x represents a prime clan X,
establish an edge from x to y whenever y represents a member of
children (X). We will call this data structure ptf(g). In ptf(g), the leaf
descendants of a node x give the prime clan X it represents. In addition,
if |X] > 1, one may label x as primitive, linear, or complete, and supply
the appropriate ordering of its children if it is linear. If x is complete, its
color is the color of the edges connecting its children. If x is linear, its
colors are the two colors of edges connecting its children.

We seek to compute ptf(g). For ease of notation, when x is a node of
ptf(g) that represents a prime clan X, we will view x and X as synony-
mous.

3. THE ALGORITHM

In this section, we give an algorithm that computes ptf(g) for symmetric
two-structures. Since undirected graphs are symmetric two-structures, they
are covered. Later, we will give the minor modification needed when the
two-structure may have asymmetric edges. We will assume that the two-
structure is given as an adjacency array, and that if the two-structure has &
edge colors, they are given in the adjacency array as integers from zero to
k-1

DeriniTiON 3.1. Let v be a node of dom(g); G(g, v) denotes a graph
whose nodes are given by dom(g) — {v}. There is an edge in G(g, v) from
node x to node y if x distinguishes y and v in g. M(g, v) denotes the
family of maximal clans of g that do not contain v. That is, X € M(g, v)
iff X is a clan, and for every clan Y such that X C Y, Y contains v.

G(g,v) is trivially computed in O(n?) time. M(g, v) is a partition of
dom(g) — {v}, and it may be computed with Algorithm 3.1, variants of
which have appeared repeatedly in related contexts, for example, {16]. The
prime tree family of an arbitrary two-structure is then computed with
Algorithm 3.2.

ALGORITHM 3.1. Compute M(g,v).

Maintain a family L of partition classes, and for each partition class, S,
maintain a set Z(S) of “unprocessed outsiders.” Initially, there is one

288 EHRENFEUCHT ET AL.

partition class § = dom(g) — {v} in L, with Z(S) = {v}

While L contains a class S such that Z(S) is nonempty
Remove § from L
Let w be an arbitrary member of Z(S).
Partition S into the maximal subsets that are not distinguished by w
For each resulting subset W
Make W a member of L
Let Z(W) = (5§ — W)U Z(S) — {w)}

ALGorITHM 3.2. Compute the prime tree family for a symmetric two-struc-
ture, g.

ptf(g)
Select a node v of g and compute M(g, v) using Algorithm 3.1
Let g’ = g/M(g,v) U {{t}]),
Let {¢v'} be the image of {v} in g’
Let G’ = G(g’,v")
Let G” be the component graph of G’
Create a tree node ¢
u:=t
While G” is not empty
Create a tree node w and make it a child of u
Remove a sink from G”; Let F be the corresponding members of
M(g, v)
If |[F| > 1, u is primitive, else u is complete
For each member X of F
compute ptf(g|X) recursively
If u and the root of ptf(g|X) are both complete and the same
color then
make the children of ptf(g|X) be children of u;
else make ptf(g|X) be a child of u
u=w
return (¢)

4, CorRRECTNESS AND TIME BOUND FOR ALGORITHM 3.1

LemMa 4.1. Let g be a two-structure, and let v € dom(g). Then
M(g, v) U{{v)} is a partition of dom(g).

Proof. 1f a node w # v is not in any member of M(g, v), then there is
no clan containing w but excluding v, contradicting the fact that {w} is
such a clan. Suppose w is in two members, X and Y, of M(g,v). The
union of X and Y is a clan that does not contain v, since one contains the
other or else they overlap, in which case their union is a clan by Theorem

COMPUTING THE PRIME TREE FAMILY 289

2.1. They cannot both be maximal clans not containing v, contradicting
membership of both of them in M(g, v). Thus, each node of dom(g) — {v}
is a member of exactly one set in M(g,v). M(g,v) is a partition of
dom(g) — {v}, and the lemma follows. O

LemmMa 4.2. Algorithm 3.1 computes M(g, v).

Proof. The algorithm clearly maintains the following invariant: For
each partition class S, a member x of dom(g) — S may distinguish
members of S only if it is a member of the outside list for S. The
algorithm terminates when every outsider list is empty, hence, when each
partition class is a clan. Conversely, if a clan of g does not contain v, it is a
subset of the initial member of L, and its members cannot be split into
different partition classes by any outsider. Thus, its members are all in the
same final partition class. Since each final partition class is a clan that
does not contain v, and each maximal clan that does not contain v is a
final partition class, the final partition classes must be the maximal clans
that do not contain v, by Lemma 4.1. O

DeriniTiON 4.3. Let g be a two-structure, and let R be a partition of
dom(g). The edges that are exposed by R are the set {(u, v): u, v € dom(g)
and u and v are not in the same partition class of R}.

LemMma 4.4. Let g be a two-structure, let v € dom(g), and let k be the
number of edges exposed by M(g,v) U {{v}}. The number of operations
required by Algorithm 3.1 is O(k).

Proof. Maintain all sets L and their outsider sets as linked lists. A setS
may be partitioned with an outsider w in O(|S}) time as follows. Use a
two-phase bucket sort. In the first phase, bucket sort the members of §
according to the color of the edges from w to those members. In the
second phase, bucket sort each of the resulting nonempty buckets accord-
ing to the colors of the edges from those members to w. Charge the cost of
the partition to the edges connecting w and the members of S. Charge the
cost of having originally inserted w on the outsider set for § to one of
these edges. Since w is not on any of the new outsider sets, these edges do
not receive any further charges in later iterations, so they are each charged
constant cost over all executions. Only exposed edges receive charges.
Thus, the costs of performing all partitions and maintaining all lists is
o(k). O

5. CorRRECTNESS AND TIME BOUND FOR ALGORITHM 3.2

LemMma 5.1. Let g be a two-structure, and let v € dom(g), where
|dom(g)| > 1. Let U # {v} be a proper ancestor of {v} in ptf(g), and let W

290 EHRENFEUCHT ET AL.

be U’s child that contains v:

1. If (g|U)/children (U) is primitive, each of U’s children, other
than W, is a member of M(g,v).

2. If (glU)/children (U) is complete, the union of all of U’s children
except W is a member of M(g,v).

3. If (g|lU)/children (U) is linear, the union of children of U that are
before W in the linear order is a member of M(g,v) or empty. The same is
true of any children after W.

There are no members of M(g, v) other than those given by the abouve rule
when it is applied to all ancestors of v.

Proof. Follows from Theorem 2.5. O

THEOREM 5.2. Let g' = g/(M(g,v) U ({v))). If g is symmetric, then the
clans of g' that contain the image of {v} are prime in g', and their inverse
images in g give the ancestors of {v} in the prime tree family of g.

Proof. Suppose U is a proper ancestor of {v} in the prime tree family
of g and W is its child that contains v. By Lemma 5.1, U and W are the
inverse images of sets of nodes of g’. By Theorem 2.2, their images ing’
are prime in g’. If g is symmetric, U is complete or primitive, so by
Theorem 2.2 and Lemma 5.1, the image of U is the smallest clan of g’
that contains the image of W. Applying this argument to all ancestors U of
{v} shows that all clans of g’ that contain the image of {¢v} are the images
of the ancestors of {¢} in the prime tree family of g. O

LemMma 5.3, Let g be a two-structure, and let X be the set of nodes
reachable from node x in G(g, v). The set dom(g) — X is the largest clan of
g that contains v and excludes x.

Proof. 1f there is an edge from x to y in G(g, v) then (x, y) and (x, v)
are different colors or (y, x) and (v, x) are different colors, which means
that any clan containing ¢ and excluding x must also exclude y. If y is
excluded from the clan, then the same argument shows that any node
reachable from y on a single edge must also be excluded from the clan.
Transitively, every node reachable from x on any path must be excluded
from the clan. To see that dom(g) — X is, in fact, a clan, we observe that
the nodes in dom(g) — X are not reachable in G{(g, v) from any node in
X, which means that for any node z in X and any node u in dom(g) — X,
(z,u) and (z,v) are the same color and (u, z) and (v, z) are the same
color. Transitively, for any two nodes u and w in dom(g) — X, (z, u) and
(z,w) are the same color and (u, z) and (w, z) are the same color. Thus,
dom(g) — X is a clan. O

COMPUTING THE PRIME TREE FAMILY 291

CororLARY. Let X be a set corresponding to a sink in the component
graph of G(g,v). Then dom(g) — X is a maximal-cardinality clan that
contains v and that is not equal to dom(g).

ProrosiTiON 5.4. Let g be a two-structure, let v € dom(g), and let
X Cdom(g) — {v}). Let g =g | (dom(g) — X). Then G(g',v) is the sub-
graph induced in G(g,v) by dom(g) — (X U {v}).

THeOREM 5.5 [2). Let g be a two-structure, and let W be a child of U in
ptf(g). If U and W are both complete, the color of the edges connecting
children of W is different from the color of the edges connecting children of
U. If U and W are both linear, the pair of colors of edges connecting children
of W is different from the pair of colors connecting children of U.

The correctness of Algorithm 3.2 now follows. Algorithm 3.2 clearly
returns the correct result whenever |dom(g)| = 1. Let the inductive
hypothesis be that it returns the correct result whenever {dom(g)| < k.
Suppose that |dom(g)| = k. Let W be the child of dom(g) in ptf(g) that
contains v, and let g’ = g/(M(g, v) U {{t}}). By Theorem 5.2, there is a
unique maximal clan of g’ that is a proper subset of dom(g’) and that
contains the image of {v}. Thus, by the corollary to Lemma 5.3, there is a
unique sink in the component graph for G(g’,v'). By Theorem 5.2,
W = dom(g’') — UF. The characterization of U as primitive or complete
is correct, by Lemma 5.1. By the inductive hypothesis, the recursive call
produces the correct tree for g|X, so by Lemma 2.3 and Theorem 5.5, the
main routine correctly attaches all siblings of W and their descendants as
children of dom(g). By Proposition 54 and Lemma 2.3, subsequent
iterations of the main loop of Algorithm 3.1 are computationally equiva-
lent to a recursive call to Algorithm 3.1 on g|W. By the inductive
hypothesis, they produce the subtree of ptf(g) rooted at W. Thus, Algo-
rithm 3.1 produces the correct result when |dom(g)| < k. Inductively, it
produces the correct result for all symmetric two-structures. 0O

For the time bound, let k¥ be the number of edges exposed by M(g, v)
U {{v}). If the two-structure has only one node, we may charge the cost of
returning the trivial decomposition to the node. Otherwise, by Lemma 4.4,
computing M(g, v) requires O(k) time, so we may charge this cost to the
exposed edges. Let g’ = g/(M(g, v) U {{r})}). The number of nodes of g’
is O(k'/?). Computing G(g',v") and the component graph of G(g',v")
takes O(k) time, as does the cost of identifying and removing sinks from
the component graph. These costs may be charged to the exposed edges at
constant cost per edge. In recursive calls, we use the same charging
scheme on edges exposed in those calls. Each recursive call generated
from the main procedure occurs on the substructure induced by a single
member of M(g, v), and thus, the edges charged in one recursive call are

292 EHRENFEUCHT ET AL.

disjoint from those charged in either the main procedure or any other
recursive call. It follows that all costs are charged to the edges at constant
time per edge, giving the O(n?) time bound on the algorithm.

6. THE GENERALIZATION OF ALGORITHM 3.2 FOR ARBITRARY
TwoO-STRUCTURES

Algorithm 6.1 gives the generalization of Algorithm 3.2 for arbitrary
two-structures. For the correctness, note that when asymmetric edges are
allowed, case 3 of Lemma 5.1 can no longer be excluded. Because of this,
Theorem 5.2 is no longer true. Instead, we make use of the following.

LemMA 6.1. Let g be a two-structure, let v be a node of g, and let W be
the child of dom(g) in ptf(g) that contains v. Let g' = g/(M(g,v) L {v}}),
let v' be the image of vin g', and let W' be the image of W. Let G" be the
component graph of G(g',v'), and let X' be the nodes of g’ that correspond
to the sinks of G". Then W’ = dom(g’) — X'.

Proof. By Lemma 5.1, W has an image in g, and by Theorem 2.2, W’
is prime in g’. By Theorem 2.2, if the root of ptf(g) is primitive, W’ is the
unique maximal clan of g’ that contains ¢’ and that is not equal to
dom(g’). If the root of ptf(g) is complete, then by Theorem 2.2 and
Lemma 5.1, W’ has only one sibling in ptf{g’), so it is again the unique
maximal clan of g’ that contains ¢’ and that is not equal to dom{(g’). In
either case, Lemma 6.1 is true by the corollary to Lemma 5.3. If the root
of ptf(g) is linear, then by Theorem 2.2 and Lemma 5.1, W’ has one or
two siblings in ptf(g’). If it has one sibling, it is the unique maximal clan of
g’ that contains ¢’ and that is not equal to dom(g’), so again, the lemma is
true. Otherwise, the union of W' and either of these siblings is thus a
maximal clan of g’ that contains ¢ and is not equal to dom(g’). Thus, each
of these siblings is a sink of G”, by the corollary to Lemma 5.3. These are
the only sinks of G”, since W' is prime in g’. Thus, the lemma is true in
this case also. D

The proof of correctness of Algorithm 6.1 is similar to the one for
Algorithm 3.2: Algorithm 6.1 clearly returns the correct result whenever
|dom(g)| = 1. Let the inductive hypothesis be that it returns the correct
result whenever |dom(g)| < k. Suppose |dom(g)| = k. Let W be the
child of dom(g) in ptf(g) that contains v, and let g’ = g/(M(g,v) U {{t}}).
Let X’ be the nodes of g’ that correspond to the sinks of G”. By Lemma
6.1, W is the inverse image of dom(g’) — X'. The characterization of u as
primitive is correct, by Lemma 5.1. If there are two sinks in G”, u is linear,

COMPUTING THE PRIME TREE FAMILY 293

Otherwise, it is linear or complete. Which case holds may be found by
examining whether an edge such as (v, x) that connects its children is
symmetric. By the inductive hypothesis, the recursive call produces the
correct tree for g|X, for each X € M(g,v), so by Lemma 2.3 and
Theorem 5.5, the main routine correctly attaches all siblings of W and
their descendants as children of dom(g). By Proposition 5.4 and Lemma
2.3, subsequent iterations of the main loop of Algorithm 6.1 are computa-
tionally equivalent to a recursive call to Algorithm 6.1 on g|W. By the
inductive hypothesis, they produce the subtree of ptf(g) rooted at W.
Thus, Algorithm 6.1 produces the correct result when |dom(g)| < k.
Inductively, it produces the correct result for all two-structures. O

The proof of the O(n?) time bound for Algorithm 6.1 is identical to the
one for Algorithm 3.2.

ALGORITHM 6.1. Compute the prime tree family for an arbitrary two-
structure.

ptf(g)
Select an arbitrary node v of g and compute M(g, v)
Let g’ = g/(M(g,v) U {{v})),
Let {¢'} be the image of {v} in g’
Let G’ = G(g’,v")
Let G” be the component graph of G’
Create a tree node ¢
Let u =1t
While G” isn’t empty
Create a tree node w and make it a child of «
Remove all sinks of G”; Let F be the corresponding members of
M(g,v)
If only one sink was removed from G” and |F| > 1, u is primitive;
Else select an arbitrary node x from a member of F
If (v, x) and (x, v) are the same color, u is complete
Else u is linear
For each member X of F
compute ptf(g]X) recursively
If u and the root of ptf(g|X) are both complete and the
same color or both linear and the same colors
then make the children of ptf(g|X) be children of u;
else make ptf(g|X) be a child of «
u=w

294

17.
18.
19.
20.
21.
22.
23.
24,

25.

26.

EHRENFEUCHT ET AL.

REFERENCES

A. EHReNFEUCHT AND G. RozenBERG, Theory of 2-structures. Part 1. Clans, basic
subclasses, and morphisms, Theoret. Comput. Sci. 70 (1990), 277-303.

A. EHReNFEUCHT AND G. RozZENBERG, Theory of 2-structures. Part 2. Representations
through labeled tree families, Theoret. Comput. Sci. 70 (1990), 305-342.

T. Gavrral, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967),
25-66.

D. Kerry, Comparability graphs, in “Graphs and Order” (1. Rival, Ed.), pp. 3-40,
Reidel, Boston, 1985.

R. H. MoHRING, Algorithmic aspects of comparability graphs and interval graphs, in
“Graphs and Order” (I. Rival, Ed.), pp. 41-101, Reidel, Boston, 1985.

J. H. MiLLER AND J. SpiNrAD, Incremental modular decomposition, J. Assoc. Comput.
Mach. 36 (1989), 1-19.

M. Hasis aNp M. C. Maurer, On the X-join decomposition for undirected graphs,
Discrete Appl. Math. 1 (1979), 201-207.

M. C. Gorumsic, “Algorithmic Graph Theory and Perfect Graphs,” Academic Press,
New York, 1980.

A. BLass, Graphs with unique maximal clumpings, J. Graph Theory 2 (1978), 19-24.
L. N. SuevriN anD N. D. FiLirrov, Partially ordered sets and their comparability
graphs, Siberian Math. J. 11 (1970), 497-509.

J. Varpes, R. E. Tarian, anp E. L. LawLEr, The recognition of series-parallel
digraphs, SIAM J. Comput. 11 (1982), 299-313.

D. G. CornEIL, Y. PErL, L. K. STEWART, A linear recognition algorithm for cographs,
SIAM J. Comput. 14 (1985), 926-934.

W. H. CunNiNGHAM aND J. EDMONDS, A combinatorial decomposition theory, Canad.
J. Math. 32 (1980), 734-765.

B. BoLLosas, “Extremal Graph Theory,” Academic Press, New York, 1978.

T. HiracucHi, On the dimension of partially ordered sets, Sci. Rep. Kanazawa Univ. 1,
77-94.

J. SeinraD, On comparability and permutation graphs, SIAM J. Comput. 14 (1985),
658-670.

J. B. Sipney, Optimal sequencing by modular decomposition, Oper. Res. 34 (1986), 606.
L. O. James, R. G. StanTOoN, anp D. D. Cowan, Graph decomposition for undirected
graphs, in “3rd South-Eastern Conf. Combinatorics, Graph Theory and Computing”
(F. Hoffman and R. B. Levow, Eds.), pp. 281-290, Utilitas Math., Winnipeg, 1972.

B. Buer anD R. H. MOHRING, A fast algorithm for the decomposition of graphs and
posets, Math. Oper. Res. 8 (1983), 170-184.

C. L. McCreary, “An Algorithm for Parsing a Graph Grammar,” Ph.D. thesis,
University of Colorado, Boulder, 1987.

J. SeiNrRAD, P, trees and substitution decomposition, Discrete Appl. Math. 39 (1992),
263-291.

M. C. MAURER, “Joints et decompositions premiéres dans les graphes,” These 3&¢me
cycle, Université de Paris VI, 1977.

A. EHRENFEUCHT, T. HARJU, AND G. ROZENBERG, Incremental construction of 2-struc-
tures, Discrete Math., to appear.

T. H. CorMEN, C. E. LEISERSON, AND R. L. Rivest, “Algorithms,” MIT Press,
Cambridge, MA, 1990.

R. H. MoHrING AND F. J. RADERMACHER, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Ann. Discrete Math. 19
(1984), 257-356.

M. CueiN, M. Hagis, AND M. C. MAURER, Partitive hypergraphs, Discrete Math. 37
(1981), 35-50.

