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Abstract

A module of an undirected graph is a set X of nodes such for each node x not in X , either
every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical
linear-space representation for the modules of a graph, called the modular decomposition. Closely
related to modular decomposition is the transitive orientation problem, which is the problem of
assigning a direction to each edge of a graph so that the resulting digraph is transitive. A graph
is a comparability graph if such an assignment is possible. We give O(n + m) algorithms for
modular decomposition and transitive orientation, where n and m are the number of vertices and
edges of the graph. This gives linear time bounds for recognizing permutation graphs, maximum
clique and minimum vertex coloring on comparability graphs, and other combinatorial problems
on comparability graphs and their complements. c© 1999 Published by Elsevier Science B.V.
All rights reserved

1. Introduction

A partial order may be viewed as a transitive directed acyclic graph. A comparabil-
ity graph is the graph obtained by ignoring the edge directions of a transitive directed
acyclic graph. It is well known that every partial order is the intersection of a set of
total (linear) orders [10]. A two-dimensional partial order is a partial order that is the
intersection of two linear orders, and a permutation graph is the corresponding compa-
rability graph. These classes of graphs and partial orders arise in many combinatorial
problems and have applications in scheduling theory. For a survey, see [18,24].
Let V (G) denote the vertices of a graph G. A module is a set X of vertices such that

for any x ∈ V (G)− X , either x is adjacent to every element of X or x is adjacent to
no element of X . The modular decomposition of G is an O(n)-space representation of
the modules of G, which may be exponential in number. The decomposition was �rst
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described in the 1960s by Gallai [16], and is also known as substitution decomposition
[24], prime tree decomposition [13,14,12], and X-join decomposition [20], sometimes
in a generalized context. For a survey, see [24].
The transitive orientation problem is the problem of orienting the edges of a compa-

rability graph so that the result is a partial order. If such an orientation is provided for
a comparability graph, a large number of combinatorial problems, such as maximum
clique and minimum vertex coloring, are solvable in linear time.
There have been a number of O(n4), O(n3), O(nm), and O(n2) algorithms for �nd-

ing modular decomposition [2,11,17,20,22,26,33], some of them for special cases or
generalizations of the problem. The cotree decomposition of cographs and the series–
parallel decomposition of series–parallel partial orders are special cases on graphs
and digraphs, respectively, for which linear-time solutions have been given [7,34].
O(n + m log n) [8] and O(n + m�(m; n)) [31] bounds for arbitrary undirected graphs
have recently been given. Here, we give a modi�cation of the algorithm of [31] that
eliminates the �(m; n) factor in the time bound for modular decomposition, giving a
linear time bound for the problem. A summary of the new algorithm was previously
given at [23]. Cournier and Habib [9] have since found a linear-time algorithm that
is general to directed, as well as undirected, graphs. Their algorithm is thus preferable
to the one we describe here if just the modular decomposition is desired. We have
found a way to modify our decomposition algorithm to give a linear time bound for
the transitive orientation problem, and we have not been able to do this with theirs.
The previous algorithms for transitive orientation took either O(n2) time [30], or

O(�m) time [17,19,27], where � is the maximum degree of any vertex in the graph.
A recent linear-time algorithm for the case where the comparability graph is also
triangulated (chordal) is given in [21]. (A graph is triangulated or chordal, if every
cycle on four or more vertices has a chord.)
Our algorithm produces a linear extension (topological sort) of the transitive orien-

tation, that is, a total ordering of the nodes such that whenever (a; b) is an undirected
edge, and b is a successor of a in the ordering, then the orientation of (a; b) in the
transitive orientation is from a to b. As with the algorithm of [30], our transitive ori-
entation algorithm fails to recognize when its input is not a comparability graph, and
instead produces a nontransitive orientation of the graph. Surprisingly, this shortcoming
is not an obstacle to many applications.
The following problems can be solved on comparability graphs in O(n + m) time

with the algorithm. A key element in many of the results is that if G is a graph whose
complement is a comparability graph, our algorithm can produce a linear extension
of a transitive orientation of the complement of G in time that is linear in the size
of G.
1. Recognition of permutation graphs and two-dimensional partial orders: Recogni-
tion of partial orders of dimension k, where k is greater than two, is NP complete
[35]. Recognition of two-dimensional partial orders clearly reduces to recognition
of permutation graphs. Previous O(n3) and O(n2) algorithms for the problems have
been given [4,27,30,29]. A graph G is a permutation graph if and only if both G
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and its complement are comparability graphs [18]. If G is a comparability graph,
we produce linear extensions of transitive orientations of G and its complement in
O(n + m) time. From these two linear extensions, we construct two linear orders
whose intersection gives G. If G is not a permutation graph, the algorithm pro-
duces two linear orders whose intersection fails to give G. It may be veri�ed in
time linear in the size of G whether the linear orders give G.

2. Recognition of cointerval graphs and interval graphs: A graph is an interval graph
if it is the intersection graph of a set of intervals on the line. A cointerval graph is
the complement of an interval graph. A cointerval graph is a comparability graph,
since one interval occurring before another is a transitive relation. For cointerval
graph recognition, we produce a linear extension of the transitive orientation of the
cointerval graph. From this, it is easy to construct a set of intervals that realize
the cointerval graph. If the graph is not a cointerval graph, we detect that it is not
possible to construct such a set of intervals. Since we have a linear time bound for
�nding a linear extension of a transitive orientation of the complement of a graph,
the same procedure gives linear-time interval graph recognition, though this bound
is already known for this problem [1].

3. Recognition of circular permutation graphs [28]: A circular permutation graph is
a graph where each vertex of G corresponds to a chord connecting two concen-
tric circles, and where two vertices are adjacent in the graph if and only if the
corresponding chords intersect each other. Using our bounds for transitive orien-
tation and permutation-graph recognition, R. Sritharan has obtained linear bounds
for recognition of circular permutation graphs [32].

4. Maximum clique and minimum vertex coloring in comparability graphs: Transi-
tively orient G and, using a depth-�rst traversal, label each node with the length of
the longest path originating at the node in the result. This gives a vertex coloring on
G. The size of a clique is a lower bound on the number of colors in any vertex col-
oring. If the longest path corresponds to a clique, then since the labeling is a vertex
coloring of the same size, the longest path and the labeling are a maximum clique
and minimum vertex coloring. If the longest path is not a clique, then the orientation
of the edges is not transitive, and the input graph is not a comparability graph.

5. Maximum independent set and minimum clique cover in co-comparability graphs:
A graph is a co-comparability graph if its complement is a comparability graph.
Using a linear extension of the transitive orientation of the complement of the
graph, we are able to label each node according to the length of the longest path
beginning at a node in the transitive orientation of the complement, in O(n + m)
time. The result then follows in the same way that it does for maximum clique
and minimum vertex coloring on comparability graphs.

2. Preliminaries

In this paper, we will consider only graphs that have no loops or multiple edges.
If G is a graph or digraph, the set of nodes of G is denoted V (G). If X and Y are
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disjoint subsets of nodes of G, an edge (x; y) such that x ∈ X and y ∈ Y is said to go
from X to Y . An edge goes between X and Y if it either goes from X to Y or from
Y to X . X has an outgoing edge if there is an edge that goes from X to V (G)− X .
If x ∈ V (G) then the neighbors of x, denoted NG(x) are the set {y : (x; y) is an edge
of G}. The nonneighbors of x are V (G) − NG(x) and denoted NG(x). If X ⊆V (G),
then the neighbors of X , denoted NG(X ), are given by

⋃{NG(x) : x ∈ X } − X . The
subscript G may be dropped when it is understood.
If G is a graph or digraph, a 2-edge is any pair (x; y) such that x; y ∈ V (G). The

color of a 2-edge (x; y) will be de�ned to be 1 if (x; y) is an edge of G, and 0 if it
is not. This is the coloring of the 2-edges given by the adjacency array representation
of G. A node x of G distinguishes or splits nodes y and z if (x; y) and (x; z) are
not the same color or (y; x) and (z; x) are not the same color. Alternatively, when x
distinguishes y and z, we may say that y and z disagree on x. A module is a set
X ⊆V (G) such that no node in V (G) − X distinguishes members of X . The trivial
modules are V (G) and the singleton subsets. It is easily seen that if two modules are
disjoint, all 2-edges that go between the modules are the same color.
If G is a graph or digraph, and X ⊆V (G), then the subgraph induced in G by X

is denoted G|X . If P is a partition of the nodes of G, a system of representatives
from P is a set consisting of one node from each member of P. If each member of
P is a module of G, then P is called a congruence partition [25], and all systems
of representatives induce isomorphic subgraphs. This subgraph is denoted G=P, and
completely speci�es the colors of all edges that are not internal to a member of P.

De�nition 2.1. Two sets overlap if they intersect and neither of them contains the
other. A decomposable set family F on a universe U is a set family with the following
properties [3,25]:
1. U and its singleton subsets are members of F.
2. Whenever X and Y are overlapping members of F, then X ∩Y , X ∪Y , X −Y , and
X�Y are also members of F, where � is the symmetric set di�erence X−Y ∪Y−X .

Let F be a decomposable set family de�ned on universe U . Suppose no two mem-
bers of F overlap. Then the transitive reduction (Hasse diagram) of the subset relation
on F is a rooted tree that has one leaf for each member of U . If we create a data
structure with one node x for each X ∈ F, the leaf descendants of the node give X ,
and they may be listed in O(|X |) time by traversing the subtree rooted at x. We will
call such a tree a union tree on G. The union tree represents F in O(|U |) space. We
will refer interchangeably to a node of the union tree and the set it represents.
If T is a union tree on universe U , the family of children of a node X in T will

be denoted childrenT (X ). A subfamily of childrenT (X ) is nontrivial if it consists of
at least two, but not all, of its members.
Central to this paper is the observation that a union tree may be used to represent

an arbitrary decomposable family in O(|U |) space. Let the strong members of a
decomposable set family be those that overlap no other member.



R.M. McConnell, J.P. Spinrad /Discrete Mathematics 201 (1999) 189–241 193

Theorem 2.2 (M�ohring [25]). The strong members of a decomposable set family F

on universe U de�ne a union tree, T; on U . For each strong member X of F; one
of the following cases applies:
1. X is degenerate: the union of any subfamily of childrenT (X ) is a member of F;
2. X is prime : no union of any nontrivial subfamily of childrenT (X ) is a member of

F.

An arbitrary decomposable set family may be represented by constructing the union
tree of Theorem 2.2 and labeling the nodes degenerate or prime. This labeled union
tree will be called the decomposition tree for the family.

Theorem 2.3 (M�ohring [25]). The family of modules of an undirected graph is a
decomposable set family.

The modular decomposition of an undirected graph G is precisely the decomposition
tree for the family of modules of G, and will be denoted MD(G). The strong members
of the family of modules are called strong modules.
A graph is prime if it has no nontrivial modules, and degenerate if every subset of

its nodes is a module. A graph is degenerate i� all of its 2-edges are the same color,
that is, if the graph is either complete or edgeless. Prime and degenerate graphs are
the only kinds of graphs that have decomposition trees of height 1; the root of a prime
graph’s decomposition tree is labeled prime while the root of a degenerate graph’s tree
is labeled degenerate.
The following two theorems show that modules are preserved under some types of

mappings of nodes of one graph to another.

Theorem 2.4 (M�ohring [25]). If P is a congruence partition on an undirected graph
G; then the union of a family F of classes in P is a module in G if and only if the
corresponding set of nodes of G=P is a module in G=P.

Theorem 2.5 (M�ohring [25]). If X is a module of an undirected graph G; then the
modules of G that are subsets of X are given by the modules of G|X . The strong
modules of G that are proper subsets of X are given by the strong modules of G|X .

Let U be a strong module of G, and let T be the modular decomposition of G. By
Theorems 2.4 and 2.5, if U is labeled degenerate in T , then (G|U )=childrenT (U ) is
degenerate, and if U is labeled prime in T , then (G|U )=childrenT (U ) is prime. If U
is labeled degenerate, it is either a 1 node which means U=childrenT (U ) is complete,
or a 0 node, which means U=childrenT (U ) is edgeless.

Theorem 2.6. Let G be a graph and let T be its modular decomposition. If U and
W are parent and child in T and both degenerate, then one of them is a 0 node and
one is a 1 node.
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Theorem 2.7 (Corneil et al. [6]). In every prime undirected graph G there exist four
nodes {a; b; c; d} such that the edges of G|{a; b; c; d} = {(a; b); (b; c); (c; d)}.

Such an induced subgraph G|{a; b; c; d} is called a P4, and a P4 is the only prime
undirected graph on four or fewer nodes. By Theorems 2.4 and 2.5, the subgraph
induced by a system of representatives from the children of a prime node of MD(G)
is a prime graph, while a system of representatives from the children of a degenerate
node is either a complete or an edgeless graph. Thus, by Theorem 2.7, a graph has a P4
i� its modular decomposition has prime nodes. If there is no P4 in the graph, the graph
is known as a cograph, and the modular decomposition, which consists exclusively of
degenerate nodes, is often called its cotree [6].

3. The modular decomposition algorithm

A decomposition tree T on the nodes of G is an M tree if the modules of G are a
subfamily of the decomposable family it represents. Note that the set represented by a
node of an M tree does not overlap any module of G. If T1 and T2 are decomposition
trees, then we will say T2 is stronger than T1 if the decomposable family it represents
is a subfamily of the one that T1 represents. MD(G) is clearly the strongest possible
M tree. The algorithm works by starting with a weak M tree called a P4 tree [31]
and computing a sequence of increasingly stronger M trees until MD(G) is obtained.
We distinguish three classes of M trees that characterize T during di�erent phases of
the re�nement.
M1: Internal nodes are labeled prime or degenerate, and for each degenerate node U ,

there exists system of representatives from childrenT(U ) that induces a degenerate
subgraph in G.

M2: Internal nodes are labeled prime or degenerate, and for each degenerate node U ,
the members of childrenT(U ) are modules in G|U and (G|U )=childrenT(U ) is
degenerate.

M3: Same as M2, but with the additional constraint that every node of T is a module
in G.

By Theorem 2.3, MD(G) is the unique M3 tree on G. We give a linear algorithm to
compute this tree from an M2 tree and linear algorithm to compute an M2 tree from
an M1 tree.
Computing an M3 tree from an M2 tree is straightforward; the algorithm is given

in Section 3.2. In [31], a linear algorithm is given that computes a P4 tree, which is
an M1 tree. Thus, the only di�cult step is computing an M2 tree from an M1 tree,
T . To do this, we perform a sequence of operations on T that remove members of
the decomposable set family it represents, subject to the invariant that T continues to
be an M1 tree. Such a strategy eventually leads to an M2 tree. The basic operations
are to change a node’s label from degenerate to prime, and to insert a new node that
is a union of some of the children of a degenerate node. Each of these operations
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must obviously restrict the decomposable set family represented by the tree, and if it
is done carefully, all modules of G remain members of the new family. We will call
this operation a re�nement of U. A re�nement of T is obtained by a sequence of
re�nement operations on its nodes.

Remark 3.1. Any M tree obtained by re�ning an M1 tree is also an M1 tree.

3.1. Basic procedures

It is an easy exercise to verify that if there are no degenerate nodes in an M tree,
then just having a label on each node of the tree indicating whether it is a module in G
allows one to produce the modular decomposition by simply discarding the nonmodules
from the family of sets that make up the nodes of the tree. From this observation, we
see that we need additional information only about children of degenerate nodes. In
this section we show the following:
• How to label nodes of an M tree as to whether they are modules.
• How to label all children of degenerate nodes with a list of graph vertices that split
them.
The �rst step can be computed directly on any M tree (or even any union tree) on

V (G). The second step requires us to produce a slightly stronger variant of the given
M tree before computing the lists, in order to ensure that the sum of cardinalities of
the computed lists is O(n+ m).
A directed tree whose internal nodes are labeled prime or degenerate represents a

decomposable set family on its leaves; each internal node becomes identi�ed with the
set of leaf descendants it has, and its labeling as prime or degenerate tells which unions
of its children are members of the family. If the tree has nodes that have only one
child, the decomposable set family represented by the tree is still de�ned, but the nodes
with only one child have no e�ect on the family represented by the tree. In this section,
the data structure will occasionally develop an internal node that has only one child.
In this case, we will perform a contraction to restore the tree to its canonical form.
The obvious operation is de�ned formally as follows:

De�nition 3.2. Let u be an internal node of a directed tree that has only one child, c.
A Contraction on u is de�ned as follows: If u has a parent p, then move c and the
subtree rooted at it to be a child of p, and remove u from the tree. If u has no parent,
then remove it from the tree and let c be the new root.

De�nition 3.3. Assume that T is a union tree on graph G and that the vertices of G
are numbered in the order in which they are encountered in a depth-�rst traversal of
T . It follows that for any X ∈ T , X is given by an interval [MIN (X ) : : : MAX (X )] on
the numbering of vertices. Let low(X ) and high(X ) give the lowest- and highest-
numbered vertices of G that distinguish members of X . Thus, X is a module i�
min(X )6low(X )6high(X )6max(X ). Let SN (X ) denote the strong neighbors of X ,
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that is, those vertices that are adjacent to every element of X . These are all given
inductively as follows. For each i ∈ V (G), SN ({i}) = N (i), low(i) = high(i) =
MIN (i) = MAX (i) = i, and W (i) = ∅. For each internal node X of T :
• SN (X ) = ⋂{SN (Y ) : Y ∈ childrenT (X )},
• W (X ) = ⋃{SN (Y ) : Y ∈ childrenT (X )} − SN (X )},
• MIN (X ) = min{MIN (Y ) : Y ∈ childrenT (X )},
• MAX (X ) = max{MAX (Y ) : Y ∈ childrenT (Y )},
• low(X ) = min{{low(Y ) : Y ∈ childrenT (X )} ∪W (X )},
• high(X ) = max{{high(Y ) : Y ∈ childrenT (X )} ∪W (X )},

Though we might like to make a list for each X of all nodes not in X that distinguish
members of X , the sum of cardinalities of such lists can exceed O(n+ m), so this is
not possible in linear time. However, observe that the nodes that distinguish members
of X are given by

⋃{W (Z) : Z is a descendant of X } − X .
Since all of these terms are de�ned by induction on the height of a node in the tree,

we may compute them with a postorder traversal with the following procedure:

Procedure Modules (G; T ) [31]

Input: An undirected graph G and an arbitrary union tree T on G

Result: A list for each X ∈ T that gives SNG(X ) and, if X is not a module, a
vertex x ∈ V (G)− X that splits X .

Number the nodes of G in the order in which they are encountered in a depth-
�rst traversal of T . Do a two-pass radix sort the edges of the graph to get the
adjacency lists sorted according to this order. This ordering will be maintained
on the SN lists. Initialize MIN (i); MAX (i); low(i); high(i) = i, SN (i) = N (i) and
W (i) = ∅ for each leaf i of T .

For each internal node X in a postorder traversal of T
Let {Y1; Y2; :::; Yk} be the children of X
SN (X ) := SN (Y1);W (X ) := ∅
For i := 2 to k do
W (X ) := W (X ) ∪ (SN (X )�SN (Yi))
SN (X ) := SN (X ) ∩ SN (Yi)

Compute MIN (X ); MAX (X ); low(X ); high(X ) as described by their de�nition
If MIN (X )¿ low(X ) then label X with splitting node low(X )
Else if MAX (X )¡ high(X ) then label X with splitting node high(X )
Label X as a module

There are O(n) nodes in the tree, since each node has at least two children. The
degree sum of all SN lists is O(m) since the degree sum of SN lists of leaves is O(m)
and |SN (X )|61=2∑{|SN (Yi)| : Yi ∈ childrenT (X )} for each inner node X . The time
spent in the inner loop may be charged to elements of SN lists of children of X since
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all SN lists are in the same sorted order, giving an O(n + m) bound for the running
time and on the sum of cardinalities of all computed lists.

Remark 3.4. When a vertex x is inserted in W (X ) in the �rst line of the inner loop,
it is either adjacent to Yi and nonadjacent to Yi−1 or vice versa. Thus, for arbitrary
a ∈ Yi−1 and b ∈ Yi, a and b are a certi�cate that X disagrees on x.

We now show how to compute a re�nement of an M tree on which for each node
Y whose parent is degenerate, Y is labeled with a full list of vertices of V (G) − Y
that it disagrees on.

Procedure Splitters(G; T ) [31]:

Input: a graph G and an M1 tree T on G

Result: A re�nement T and a list of splitting
nodes for each child of a degenerate node of the re�nement

Run Modules (G; T ) using T as the union tree and G as the graph.
For each degenerate node X in T
Relabel X prime
Create a new tree node z labeled degenerate
For each child Y of X such that low(Y )¿MIN (X ) and high(Y )6MAX (X )
Move Y to be a child of z

If z now has children then
Make z a child of X

If z is now the only child of X then
Contract X out of the tree to avoid development of chains

If z has only one child then
Contract z out of the tree

Let Tr denote the state of T at this point

For each degenerate node U in Tr
For each child Y of U in Tr do
Let T (Y ) be the subtree of Tr rooted at Y

Let T ′(Y ) be T (Y ) minus subtrees rooted at degenerate nodes of T (Y )
Let Disagree(Y ) :=

⋃{W (Z) : Z is a descendant of Y in T ′(Y )}
For each i ∈ Disagree(Y )
If MIN (Y )6i6MAX (Y ) then

Remove i from Disagree(Y )
Recompute MIN (X ), MAX (X ); low(X ); high(X ) for each node of Tr

Any union of children of X that did not become children of z in Tr fails to be
a module, since each of these children is split by a node lying outside of X . Thus,
changing X to be a prime node with child z preserves the property that Tr is still an
M tree. It remains an M1 tree by Remark 3.1.
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Tr has the important property that for any Y;W such that Y and W are children of
degenerate nodes and Y is an ancestor of W , then all nodes that split W reside inside
Y . This follows from the fact that W was not split by any node outside its parent in
the input tree, otherwise it would have been turned into a child of a prime node in
the �rst for loop. Thus, nodes that split W are irrelevant to computation of nodes
that split Y . This allows T ′(Y ), rather than T (Y ), to be searched for nodes that split
Y . T ′(Y ) may be discovered and visited by depth-�rst traversal starting at Y . Each
node of T lies in T ′(Y ) for at most one child Y of a degenerate node, so for any
Z ∈ T , W (Z) is examined at most once over all iterations. Initial Disagree lists may
be generated by concatenating the relevant lists; this results in Disagree lists where the
same node may appear more than once, which is all that is needed for our purposes.
The lists can be sorted and purged of duplicate members in O(n+m) time by using a
collective radix sort of the members of all lists, using disagree-list number and vertex
number as sort keys.

3.2. Constructing the modular decomposition from an M2 tree

Recall that the three main steps of the algorithm are constructing an M1 tree, �nding
an M2 tree given an M1 tree, and �nding the modular decomposition from an M2 tree.
In this section we describe the last of these steps.

Lemma 3.5. Let T be an M2 tree for an undirected graph G. A set W of nodes of
G is a strong module if and only if either:
1. W is a member of T that is a module;
2. It is a maximal union of children of a degenerate node X that is not distinguished
by any node in V (G)− X .

Proof. Every non-trivial module of G is a union of children of two or more children
of some node U in T . (If a module of G is a node of T , then it is the union of all
of the children of that node.) Suppose W is a maximal union of children of U that is
a module of G. If W overlaps a module X of G, then X is also a union of children
of U , since T is an M tree. W ∪ X is also a module since the modules of G are a
decomposable family, contradicting the maximality of W . Thus, W overlaps no module
of G and must be a member of MD(G). If U is prime in T , then W = U , W is prime
in MD(G), and its children in MD(G) are each a subset of a child of U in T . If U
is degenerate in T , W is a module in G|U , so by Theorem 2.5, W is degenerate in
MD(G) and its children in MD(G) are the children of U that it contains. In either
case, there is no proper subset of W that is a union of children of U and a member
of MD(G).

Remark 3.6. Given an initialized set of n buckets and a set of sorted adjacency lists
whose sum of cardinalities is k, one may produce a grouping of the lists into maximal
groups of identical lists in O(k) time. The algorithm is a variant of radix sort. Partition
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the lists into buckets according to the elements in their �rst position, keep a list of
which buckets are currently in use, collect them from the buckets in use, reinitialize
the buckets, remove the �rst element from each adjacency list, and then recurse on
each of the sets of lists from a common bucket.

The following algorithm gives the modular decomposition, given an M2 tree.

Function Decomp (G; T )

Input: An undirected graph G and an M2 tree T corresponding to G

Output: The modular decomposition of G

Execute Modules (G; T ), to �nd which members of T are modules in G. These are
members of MD(G) since their status as a member of an M tree means that they
can overlap no other module of G. Any other member of MD(G) is a nontrivial
union of children of a degenerate node of T . For each degenerate node, U , purge
the nodes lying in the interval of node-numbers occupied by U from the SN lists
for children of U . Partition the children of U that are modules of G according to
their remaining SN lists, using the algorithm of Remark 3.6. The union of each
set of children that is not distinguished by the sort is a member of MD(G).

Insert a node in T for each member of MD(G) that is not a member of T . Purge
T of those members that are not modules. Return the result.

By Lemma 3.5, Decomp (G; T ) computes the members of MD(G). If a member of
MD(G) is a member of the M2 tree, its classi�cation as prime or degenerate is the
same as it is in the M2 tree, by Theorem 2.5. Otherwise, it is a union of more than one
child of a degenerate node in the M2 tree, and is thus degenerate, by Theorem 2.5. For
the time bound, we have already established that the strong adjacency lists of children
may be traversed a constant number of times in Modules (G; T ) without violating the
O(n+m) time bound. The purge and the partition steps adds two additional traversals
of the lists, so Decomp takes O(n+ m) time.

3.3. Constructing an M1 tree

In this section, we give a de�nition of the P4 tree, which may be constructed in
linear time and which satis�es the de�nition of an M1 tree [31].
If a graph G has no induced P4 (i.e., G is a cograph), the P4-tree is equal to the

cotree for G. If a P4 is found in G, we use the P4 to divide the graph into a number
of pieces as follows.
Let the vertices a, b, c, d form a P4 in G. We partition the vertices of G into the

following sets.
(1) A = N (b)− N (c)− N (d),
(2) B = (N (a) ∩ N (c))− N (d),
(3) C = (N (b) ∩ N (d))− N (a),
(4) D = N (c)− N (b)− N (a),
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(5) U = (N (a) ∩ N (b) ∩ N (c) ∩ N (d)) ∪ (N (a) ∩ N (b) ∩ N (c) ∩ N (d)),
(6) E = V − A− B− C − D − U .
The set A gets its name from the fact that, like a, any vertex in A will form a P4

together with b, c, and d. The sets B, C, and D have a similar relationship to b, c,
and d respectively. The set U consists of vertices that do not distinguish a, b, c, and
d, while E contains all other vertices.
The following procedure de�nes a P4-tree for a graph G. In general, a single graph

G can have many nonisomorphic P4-trees, and a single P4-tree can represent many
nonisomorphic graphs.

Function Createtree (G)

Input: An undirected graph G

Output: A P4 tree corresponding to G

if Gis acograph then T = cotree (G)
else

let (a; b); (b; c); (c; d) be a P4 in G;
TA := Createtree(G|A);
TB := Createtree(G|B);
TC := Createtree(G|C);
TD := Createtree(G|D);
TE := Createtree(G|E);
select x ∈ {a; b; c; d}
T := Createtree(G|(U ∪ {x}));
Let p be the leaf of T that corresponds to {x}
Label p a P4 node
for i = A; B; C; D; E do

make Ti a child of p;
return T ;

Consider all the nodes not labeled prime to be degenerate (these are nodes created
by the Cotree algorithm). By Theorem 4 of [31], every module of G is either a P4
node or a union of children of a cotree node in the P4 tree. Thus, when P4 nodes are
considered prime and cotree nodes are considered degenerate, the tree is an M tree. It
is also shown in [31] that there exists a system of representatives from the children of
any degenerate node that induce either a complete or an edgeless subgraph. We will
call such nodes 1 and 0 nodes, respectively. This ensures that the P4 tree is an M1
tree. However, it is not necessarily true that every system of representatives induces
such a subgraph, so the tree is not necessarily an M2 tree.

3.4. Finding an M2 tree, given an M1 tree

In this section, we give an algorithm that computes an M2 tree from an M1 tree
in linear time. Since we have given an algorithm above for computing the modular
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decomposition from an M2 tree, and the implementation of Createtree given in [31]
gives an M1 tree in linear time, this step completes the decomposition algorithm.
The algorithm proceeds by adding nodes while preserving the invariant that the tree
continues to be an M1 tree. Eventually and M2 tree is obtained. Only degenerate nodes
of an M1 tree may violate the conditions needed for the tree to be an M2 tree, so
once a prime node is produced, it is largely ignored thereafter.
Let G be a directed graph. The component graph for G has one node for each

strongly connected component [5]. If X and Y are two strongly connected components
of G, then (X; Y ) is an edge in the component graph if there is an edge of G that goes
from X to Y . The strongly connected components and the component graph may be
computed in O(n+ m) time [6].

De�nition 3.7. Let T be an M1 tree on graph G, and let U be a degenerate node of T .
The graph G(G;U; T ) = (childrenT (U ); E), where E = {(X; Y ) : X; Y ∈ childrenT (U )
and X is split by a vertex of G that is contained in Y}. The graph Gc(G;U; T ) is the
component graph of G(G;U; T ).

Remark 3.8. Suppose X is a union of a set X of children of a degenerate node U
of an M1 tree T . We will say that X has an outgoing forcing edge if there exist
Y; Z ∈ childrenT (U ) such that Y ∈ X, Z 6∈ X and (Y; Z) is an edge of G(G;U; T ). In
this case, X is not a module of G if it has an outgoing forcing edge, since Y ⊆X is
split by a graph vertex contained in Z ⊆V (G)− X .

We will refer to G(G;U; T ) as a forcing graph, since the existence of an edge (Y; Z)
in it indicates that Z is forced to be contained in any module that contains Y . We now
give an algorithm for computing a re�ned M tree and a set of forcing graphs for its
degenerate nodes.

Procedure ForcingGraphs (G; T )

Input: A graph G and a corresponding M1 tree T

Result: A re�nement Tr of T that is also an M1 tree and a labeling of each
degenerate node U of Tr with G(G;U; Tr).

Run Splitters (G; T ) to �nd a re�nement Tr of T that is labeled with Disagree lists

For each degenerate node U of Tr in postorder
For each child Y of U
For each member z of Disagree(Y )
Find the sibling Z of Y that contains z
Install (Y; Z) as a directed edge in G(G;U; Tr) if it is not
already an edge in G(G;U; Tr)

The correctness follows from the de�nition of G(G;U; T ) and the correctness of
Splitters. For the time bound, note that �nding the sibling of Y that contains z is a
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FIND operation in a sequence of UNIONs and FINDs that occur during the postorder
traversal. There are O(m) such FINDs because the Disagree lists collectively have O(m)
size. There are O(n) UNION operations, since the graph has n nodes and we work only
with siblings in the tree during each postorder traversal. Since Tr is predetermined in
advance of the UNIONs and FINDs, the Gabow and Tarjan UNION −FIND operations
may be applied [15] for an O(n+ m) bound.
For any M1 tree T , every module of G is a union of children of some node U in G.

From Remark 3.8, it follows that no module of G may overlap any strong component
of G(G;U; T ), and no proper subset of a strong component may be a union of members
of the strong component. Thus, if for each strong component of G(G;U; T ), a new node
is added to T , the resulting tree is still an M tree. By Remark 3.1, it is an M1 tree.
The component graph Gc(G;U; T ) now de�nes a forcing graph on the new children
of U in the re�ned tree, and this graph is again a forcing graph in the sense that no
union of the new children of U is a module if it has an outgoing edge in this graph,
by Remark 3.8. However, Gc(G;U; T ) has the property of being acyclic, which we will
use below. The following algorithm takes advantage of this observation to create an
M1 tree that has an acyclic forcing graph on the children of each degenerate node.

Procedure SCC (G; T )

Input: An M1 tree T

Result: A re�nement of T that is an M1 tree, and where each degenerate node is
labeled with a forcing graph on its children that is acyclic.

Call ForcingGraphs (G; T ) to get a re�nement Tr of T that is labeled with forcing
graphs;

For each degenerate node U in Tr do
Find the strongly connected components of G(G;U; Tr)
Find the component graph Gc(G;U; Tr)
For each strongly connected component C of G(G;U; Tr)
If C contains more than one child of U
Create a new child r of U in Tr
For each child X of U in C

Move X and its subtree from a child of U to a child of r
{Gc(G;U; Tr), is a graph on U ’s new children, which are called SCC nodes}
Label U with Gc(G;U; Tr)

The algorithm for computing strongly connected components runs in linear time [5].
Thus, the time bound for the operation is linear in the size of the forcing graphs, which
is O(n+ m), since they were created by ForcingGraphs.

Lemma 3.9. Let T be an M1 tree on graph G. A module X of G is either a node
of T or the union of a set X of children of a degenerate node U such that X is a
module in G(G;U; T ) that has no outgoing edges in G(G;U; T ).
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Proof. That X has no outgoing edges in G(G;U; T ) follows from Remark 3.8. Other-
wise, suppose X is not a module in G(G;U; T ). There exists Z ∈ childrenT (U ) −X

such that in G(G;U; T ), Z has an edge to some, but not all, members of X. Let
X1; X2 ∈ X such that (Z; X1) is an edge of G(G;U; T ) and (Z; X2) is not. Since (X1; Z)
and (X2; Z) are not edges neither X1 nor X2 disagrees in G on any member of Z .
However, there exist z1; z2 ∈ Z that disagree in G on nodes of X1 but not on nodes of
X2. It follows that X1 ∪ X2 disagrees either on z1 or on z2, so X cannot be a module,
a contradiction.

Note that a module of a directed graph G that has no outgoing edges in G must be
a union of strong components of G that form a module in the component graph for
G. From this observation, we get the following corollary to Lemma 3.9.

Corollary 3.10. Let T be an M1 tree on graph G. Any module of G is either a node
of T or the set of leaf descendants of a module of Gc(G;U; T ) for some degenerate
node U of G.

By Corollary 3.10, we may further re�ne the tree produced by SCC by adding nodes
that discard from the tree’s decomposable family only sets that either have outgoing
edges or fail to be a module in G(G;U; T ). The following procedure makes use of this
idea to produce a further re�nement of the tree produced by SCC. Note the comments,
which de�ne the terms ‘driver’ and ‘passenger’.

Procedure PQ (G; T )

Input: An M1 tree T on graph G

Result: A re�nement of T that is an M1 tree.

Call SCC (G; T ) to get a re�nement Tr of T in which every degenerate node of
Tr is a degenerate node of T . Give a labeling of each degenerate U ∈ Tr with
Gc(G;U; T ).

For each degenerate node U of Tr
Let FC be the current children of U
For each X ∈ F in topological order, from sink to source do
Mark X as a representative
Create a new tree node p, label it prime, mark it as a ‘P’ node, and make
it a child of U

Move X and its subtree to be a child of p
{X is the driver of p}
Create a new tree node q, label it degenerate, mark it as a “Q” node, and
make it a child of p

For each edge (X; Y ) of Gc(G;U; T ) do
If Y marked as a “representative”
Unmark Y as a representative
Let Z be the current child of U that contains Y
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Move Z and its subtree to be a child of p
{Z is a ‘passenger’ of p}

If q has no children then
Remove q from the tree
{Consider X to be its own ‘driver’}

Contract p or q in T if it has only one child

Finding the topological sort of a directed acyclic graph takes time linear in the size
of the graph [5]. The invariant is maintained that the representative of a child W of
U is either W or a child of W , so identifying W given its representative takes O(1)
time. Thus, all operations on U take time that is linear in the size of Gc(G;U; T ). The
sum of sizes of the Gc(G;U; T ) graphs over all degenerate nodes U is O(n+m), since
they are computed with a linear-time algorithm (SCC). A linear-time bound for PQ
thus follows.

Lemma 3.11. The tree produced by PQ is an M1 tree whenever its input tree is an
M1 tree.

Proof. By Remark 3.1, it su�ces to show that it is an M tree. Adopt as an inductive
hypothesis that the tree is an M tree at the beginning of an iteration of the outer loop.
The hypothesis is true before the �rst iteration, since the tree produced by SCC is an
M tree.
Let P and Q be the �nal sets represented by p and q after an iteration of the outer

loop. To show that the inductive hypothesis holds at the end of the loop, it su�ces to
show that no module overlaps P or Q, since Q is degenerate, P has only two children,
and P and Q are the only new tree nodes added to the M tree by the iteration.
Let C be the set of children of U at the beginning of the iteration of the loop. Q is

the union of members of C whose representatives are pointed to by X in Gc(G;U; T ).
Let M be a module of G. If it contains U then it does not overlap P or Q. If M
is contained in a member of C then it does not overlap P or Q. By the inductive
hypothesis, in any remaining case M is a union of a subfamily C′ of members of C.
By Corollary 3.10 it is the union of a module M of Gc(G;U; T ).
Suppose M does not contain X . It contains the representatives of the members of C′.

If some member C of C′ is contained in Q, then the representative of C is pointed to
by X in Gc(G;U; T ). Since M is a module of Gc(G;U; T ), all nodes of Gc(G;U; T ) that
are contained in M are pointed to by X . In particular, all representatives of members
of C′ are pointed to by X . Thus, every member of C′ is contained in Q. We conclude
that if M does not contain X it is contained in Q, hence in P, and it can overlap
neither Q nor P.
Suppose M contains X . X has an outgoing edge to the representative of each member

of C that is contained in Q. Thus, M must contain Q, and since it contains X , it
contains P. Again, it overlaps neither P nor Q.
In all cases, the inductive hypothesis applies at the end of the iteration.
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We now give the �nal algorithm for turning an M1 tree into an M2 tree:

Procedure M1M2 (G; T )

Input: An undirected graph G and an M1 tree T on G

Result: A re�nement of T that is an M2 tree

Run PQ(G; T ) to get a re�nement T1 of T
Run SCC(G; T1) to get a re�nement T2 of T
Return T2

A linear time bound follows immediately from the bounds for PQ and SCC. We
now show that the tree it computes is an M2 tree

Lemma 3.12. Suppose U is a degenerate node in M1 tree T . Suppose A and B are
two sets of children of U such that no member of A ×B or B ×A is an edge of
G(G;U; T ). Then every member of ∪A×∪B is an edge of G or else every member
of ∪A× ∪B is a nonedge of G.

Proof. There is a system of representatives from children of U that forms a complete
or empty graph. Without loss of generality, suppose it is a complete graph. For any
A ∈ A and B ∈ B, A agrees in G on each member of B and vice versa because neither
(A; B) nor (B; A) is an edge of G(G;U; T ). Since there exists representatives a ∈ A
and b ∈ B such that (a; b) is an edge of G, every member of A× B is an edge of G.
Since A and B are arbitrary in A and B, respectively, every member of ∪A×∪B is
an edge of G.

Lemma 3.13. If M1M2 inputs an M1 tree T on an undirected graph G, it returns
an M2 tree.

Proof. The algorithm returns an M1 tree if its parameter is an M1 tree, since we
have shown that this holds for each of the procedures it calls. It remains to show that
children of degenerate nodes of T2 satisfy the requirements of an M2 tree.
When SCC is called directly from M1M2, SCC calls ForcingGraphs, which pro-

duces an M1 tree that we will denote Tr . We prove the lemma by showing that for
any degenerate node U in Tr , each connected component of G(G;U; Tr) is strongly
connected. Since the strongly connected components become the children of U in the
tree T2 returned by M1M2, there are no edges of G(G;U; Tr) connecting children of
U in T2. By Lemma 3.12, the children of U satisfy the requirements of an M2 tree.
To show this result, we show that whenever (A; B) is an edge of G(G;U; Tr) then

(B; A) is also an edge of G(G;U; Tr). PQ calls SCC, which calls ForcingGraphs. Let
Tf be the re�nement of T returned by this call to ForcingGraphs. Gc(G;U; Tf) is
the forcing graph that PQ traverses in reverse topological order when it processes a
degenerate node U . Let (X; Y ) be an edge of Gc(G;U; Tf), and let Y ′ be the sibling
of X that contained Y at the time when X was reached in the topological traversal of
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Gc(G;U; Tf). If there is also an edge of G(G;U; Tf) from X to the representative of
Y ′, then the tree node P created at that point becomes the least common ancestor of
(X; Y ). Since P is prime and prime nodes are not further re�ned, the least common
ancestor of (X; Y ) remains prime in T2. If there is no edge from X to the representative
of Y ′, then Y ′ disagrees on X . We conclude that if the least common ancestor in T1
of (X; Y ) is degenerate, then the child A of that ancestor that contains X is split by
the child B that contains Y , and vice versa.
Conversely, if two children of a degenerate node in T1 are not connected by any

such edge (X; Y ), then each of them agrees on the other.
Summarizing, if one child A of a degenerate node of T1 disagrees on a vertex of

G that is contained in one of its siblings, B, then B also disagrees on a vertex of G
that is contained in A. When a forcing graph is computed on any re�nement of T1, its
connected components are strongly connected.

4. The transitive orientation algorithm

An undirected graph may be considered to be a special case of a directed graph,
where each undirected edge (a; b) is represented by two directed edges (a; b) and
(b; a). Let G = (V; E) be this representation. Finding a transitive orientation consists
of selecting F ⊂E such that (V; F) is transitive, and such that (a; b) ∈ F i� (b; a) 6∈ F .
De�ne the binary relation � on E as follows [18]: (a; b)�(a′; b′) i� either a = a′

and (b; b′) 6∈ E or b = b′ and (a; a′) 6∈ E. Our algorithm is based on the well-known,
obvious observation that if (a; b)�(c; b), then (a; b) ∈ F if and only if (c; b) ∈ F . Let
�∗ denote the reexive transitive closure of �. F is an equivalence class in �∗ [18].
This proof of the following is a straightforward application of the � observation;

the reader is referred to [18].

Theorem 4.1 (Golumbic [18]). A prime comparability graph has only two transitive
orientations, where one is obtained from the other by reversing the directions of all
the edges.

Let T be the modular decomposition of a comparability graph G that is not prime.
A transitive orientation may be obtained by computing for each U ∈ T a transitive
orientation of (G|U )=childrenT (U ). If A and B are children of U , then the members of
(A×B)∩E are in the transitive orientation of G if and only if (A; B) is in the transitive
orientation of (G|U )=childrenT (U ). If the modular decomposition is available, then
transitively orienting G reduces to the problem of transitively orienting these quotients,
all of which are either complete graphs, empty graphs, or prime comparability graphs.
The �rst two cases are trivial. (A transitive orientation of an empty graph is empty.
Any total order on the nodes of a complete graph is a valid transitive orientation of it.)
Thus, if the modular decomposition of a comparability graph is provided, the problem
reduces to �nding a transitive orientation of a prime quotient. The proof is again an
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application of the � observation; the reader is referred to [18]. Given the linear time
bound for modular decomposition, the following is immediate:

Theorem 4.2. Transitive orientation of arbitrary comparability graphs is no harder
than transitive orientation of prime comparability graphs.

Henceforth, we will assume without loss of generality that the graph G that we are
to orient is prime.
We now describe an operation called vertex partitioning, which is central to our

algorithm. The algorithm inputs a partition P of vertices of G, and repeatedly selects
a pivot vertex x and re�nes P by splitting partition classes that do not contain x into
subclasses that are entirely adjacent or entirely nonadjacent to x. Edges from x to any
of these classes then become irrelevant to future splitting operations, so they are then
removed.

VertexPartition (G;P)

Inputs: A prime graph G=(V; E) and a partition P of vertices of G such that
P¿ 1 and every member of P is nonempty.

While not every member of P is a singleton class do
Select a pivot vertex x
Let X be the member of P that contains x
Select a subfamily Q of classes of P− X
For each Y ∈ Q

Let Ya := Y ∩ N (x)
Let Yn := Y − Y ∩ N (x)
Let P = (P− {Y}) ∪ {Ya; Yn}
If Ya = ∅ then P := P− {Ya}
If Yn = ∅ then P := P− {Yn}
Let E := E − ({x} × Ya)
{ elements of Y × {x} may remain in E}

Let a pivot sequence denote a sequence of choices of x and Q. The removal of
{x} × Ya from E is inserted in the code to make it easier to obtain the time bound.
It has no e�ects on how future pivots re�ne P. To see this, note the removal of
{x} × Ya does not a�ect whether a future pivot on a node other than x splits a subset
of V (G). In any future re�nement of P, each partition class is either a subset of Ya
or of V (G) − Ya. The removal of {x} × Ya does not a�ect whether a future pivot on
x splits an arbitrary subset of V (G) − Ya. Since x cannot split members of Ya either
before or after the removal, it does not a�ect whether a future pivot on x splits an
arbitrary subset of Ya.
If P contains a nonsingleton set U , then U is not a module, since G is prime.

U disagrees on some x ∈ V (G) − U , so x can be used as a pivot to split U , thus
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further re�ning P. We conclude that there always exists a pivot sequence that causes
the algorithm to halt.

De�nition 4.3. The degree of a pivot on vertex x is
∑

Y∈Q |N (x) ∩ Y |.

Lemma 4.4. The degree sum of any pivot sequence is O(m)

Proof. The degree of a pivot is equal to the number of edges deleted from E during
the pivot.

To maintain the partition classes, we keep each partition class as doubly linked lists
of vertices, where each vertex in the list has a pointer to the list’s header. When class
Y is split by a pivot on vertex x into two classes Ya and Yn, remove the elements from
Y that are adjacent to x, insert them in a new list corresponding to Ya, and relabel
these vertices of Ya with pointers to the header of Ya’s list. The remainder of Y ’s list
is left alone; it now represents Yn. Once the members of Ya have been identi�ed, the
cost of modifying the data structures to reect Y ’s split is O(|Ya|). Maintaining these
data structures thus takes O(m) time over any pivot sequence by Lemma 4.4, so we
may ignore it from here on. The data structures give us the following:

Remark 4.5. At any time during VertexPartition, we may �nd the current class that
contains a given vertex in O(1) time.

A pivot operation looks up an element y in x’s adjacency list, looks up the partition
class Y that contains y, determines whether Y ∈ Q, and, if so, moves y to the list Ya
that corresponds to Y . It then repeats this lookup on other elements in x’s adjacency
list. The pivot operation is correct as long as the lookup is performed on every member
of x’s adjacency list that lies in a member of Q. The simplest pivot, called a universal
pivot, sets Q = P − {X } and performs the lookup on every y in x’s adjacency list.
Clearly, a universal pivot takes O(|N (x)|) time.
We now show that linear-time transitive orientation of a prime comparability graph G

reduces to �nding a strategy for selecting x and Q that guarantees that VertexPartition
halts in O(n+ m) time. We will call such a strategy a pivot selection strategy.

Procedure TransitiveOrientation (G)

Input: a prime comparability graph G

Output: A list of vertices that gives a topological sort of a
transitive orientation of G

Select an arbitrary v ∈ V (G)
L = OrderedVertexPartition(G; v)
Let u be the vertex in the rightmost class of L
L = OrderedVertexPartition(G; u)
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Procedure OrderedVertexPartition(G; v)

Input: A prime graph G = (V; E) and a vertex v

Output: If v is an arbitrarily selected vertex, the output is an ordering of V (G)
such that the last node in the ordering is a source or sink in any transitive orien-
tation of G. If v is a source or sink, then the output ordering is a linear extension
of the transitive orientation of G.

Let L be an ordered list of partition classes
Initialize L = ({v}; V − {v})
While not every member of L is a singleton class do
Select a pivot vertex x
Let X be the partition class containing x
Select a subfamily Q of classes of L− X
For each Y ∈ Q

Let Ya := Y ∩ N (x)
Let Y := Y − Y ∩ N (x)
If Y appears after X in L then
Insert Ya immediately following Y in L

Else
Insert Ya immediately preceding Y in L

Remove Y from L if Y is empty
Remove Ya from L if Ya is empty
Let E := E − ({x} × Y )

Lemma 4.6. The time bound for OrderedVertexPartition is no greater than that for
VertexPartition.

Proof. The initial partition assumed by OrderedVertexPartition is a special case of
that assumed by VertexPartition. Thus, the only signi�cant di�erence between the
two procedures is that OrderedVertexPartition requires us to determine which of Yn
or Ya should go before the other in L. Maintain the invariant that a subinterval of
(1; 2; : : : ; n) is associated with each partition class by labeling it with the �rst and
last elements in the subinterval. Initially, (2; 3; : : : ; n) is associated with V − {v}, and
(1) is associated with {v}. By looking up the interval corresponding to x’s current
class, it can be determined in O(1) time whether x’s class occurs before or after Y
in L, and thus whether Ya must be inserted before or after Y in L. To restore the
correct labeling on members of L, associate either the �rst or last |Ya| elements of Y ’s
interval with Ya, depending on whether Ya goes before Y in L. Associate the remainder
of the interval with the remaining portion of Y . All of this takes O(|Ya|) time, so it
adds time proportional to the degree sum of the pivot sequence, which is O(m) by
Lemma 4.4.

Lemma 4.7. TransitiveOrientation is correct.
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Proof. We must show that if the parameter v to OrderedVertexPartition is arbitrary,
then the �nal partition class in the returned list gives a source or sink in a transitive
orientation of G, and if v is a source or sink, the returned list gives a topological sort
of a transitive orientation.
Suppose v is arbitrary. Let Y denote the rightmost class at some point during the

partitioning operation, and let y be an arbitrary element of Y . Let E(Y; y) = {(z; y) :
(z; y) ∈ E(G) and z 6∈ Y}. Adopt as an inductive hypothesis that all edges in E(Y; y)
are in a common equivalence class induced by �∗. Suppose a pivot on some vertex z
splits Y into two nonempty sets. Then, z is adjacent to the new rightmost class Y ′ =
Y ∩N (z). Suppose that y is also a member of Y ′. For any (w; y) ∈ E(Y ′; y)−E(Y; y),
w ∈ Y − N (z). Thus, (z; y)�(w; y), proving that the inductive hypothesis holds for
E(Y ′; y). The truth of the inductive hypothesis when the procedure halts shows that
the sole member of the rightmost class must be a source or a sink in any transitive
orientation of G.
Suppose v is a source or a sink. That is, suppose that all edges (v; x) of G are in a

single equivalence class of �∗ and all edges (x; v) are in a single equivalence class of
�∗. This time, adopt as an inductive hypothesis that all edges of G that go from an
earlier to a later partition class in P are in a single equivalence class. This is true of
the initial partition ({v}; V −{v}). Suppose a class X is split by a pivot vertex z. The
edges of G that are subsets of X ∩ N (z)× X − N (z) are each � related to an edge in
{z}×X ∩N (z). The ordering of X ∩{z} and X −N (z) thus ensures that the inductive
hypothesis still applies after the split. The truth of the inductive hypothesis when
the procedure halts demonstrates that P is a linear extension of a transitive orientation
of G.

Summarizing Theorem 4.2 and Lemmas 4.6 and 4.7, we have the following:

Theorem 4.8. Transitive orientation of a comparability graph is no harder than
VertexPartition.

Hereafter, we address the problem of obtaining a linear-time implementation of
VertexPartition. Before giving the details, we consider some of the consequences of
the claim that such an implementation exists.
We must �rst consider that when the transitive orientation algorithm is applied to a

prime graph that is not a comparability graph, it produces an orientation of its edges
that is not transitive. Like the O(n2) algorithm of [30], the algorithm fails to recognize
whether G is, in fact, a comparability graph. In contrast, previous O(n2:38) [31] and
O(�m) algorithms [18] perform both the orientation and the recognition, and these
bounds remain the best so far for the recognition problem. The usefulness of such an
algorithm comes from the fact that it makes it possible to solve a number combinatorial
problems on comparability graphs where recognition is not necessary. The algorithm
either provides a certi�cate that its answer to the problem is correct, or it demonstrates
that the input graph is not a comparability graph. It fails to recognize comparability
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graphs only because it may provide a solution and certi�cate even when the input
graph is not a comparability graph.
Finding a maximum clique and a minimum vertex coloring in a comparability

graph. Suppose an orientation F of the edges of G is given by our algorithm. It is an
easy exercise to color each vertex according to the length of the longest directed path
that begins at it in (V; F), using a postorder operation during a depth-�rst search of
(V; F) [18]. This gives a coloring of the nodes of the input graph such that no two
adjacent nodes have the same color. If G is a comparability graph, then the longest
path in the graph (V; F) is a clique of G because of the transitivity of F . This gives a
clique and a coloring of the graph, where the clique has the same number of nodes as
the number of colors in the coloring. Since all of the nodes of any clique must have
di�erent colors, this gives a certi�cate that the clique is maximum clique and that the
vertex coloring is a minimum one. If the input graph is not a comparability graph, the
algorithm still produces an orientation F of G that is not transitive. If the longest path
is a clique, then the algorithm has provided a certi�cate that it is a maximum clique
and that the coloring is a minimum one, without ever recognizing that the input graph
is not a comparability graph. If, however, the longest path does not correspond to a
clique of G, then some transitive edge is missing and the algorithm has recognized
that the input graph could not have been a comparability graph.
Transitive orientation of the complement of a co-comparability graph. The follow-

ing lemma shows that one may compute a representation of the transitive orientation
of a complement of a co-comparability graph in O(n + m) time given a linear-time
pivot selection strategy. This is somewhat surprising in view of the fact that direct
examination of the complement of any graph requires 
(n2) time. The key is that it
is possible to orient the complement of G by producing a compact representation of it
(i.e. a linear extension of it) and by examining only the edges of G. This result is a
key element in the remaining results described in this section.

Theorem 4.9. Let G be a co-comparability graph. Any pivot selection strategy that
causes VertexPartition to halt in O(n+m) time on an arbitrary prime graph can be
used to produce a linear extension of a transitive orientation of G in O(n+m) time.

Proof. Let T be the modular decomposition tree. T is also the decomposition tree for
the complement G of G. Thus, the decomposition tree for G may be given in time
proportional to the size of G. Proceeding as before, we order children of degenerate
nodes of T arbitrarily, and order children of each prime node U of T according to a
linear extension of a transitive orientation of (G|U )=childrenT (U ). The leaf ordering
of the tree then gives a linear extension of a transitive orientation of G.
To stay within the O(n + m) bound, we observe that (G|U )=childrenT (U ) is the

complement of (G|U )=childrenT (U ), and we must compute a linear extension of its
transitive orientation in time proportional to the size of (G|U )=childrenT (U ).
The problem thus reduces to �nding a linear extension of the transitive orienta-

tion of the complement of a prime co-comparability graph in linear time. We run
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Transitive-Orientation on the prime graph using the linear-time pivot selection strat-
egy, but change the IF-ELSE statement in the inner loop of OrderedVertexPartition
to read:

If Y appears after X in P then
Insert Ya immediately preceding Y in P

Else
Insert Ya immediately following Y in P

In the OrderedVertexPartition procedure, the treatment of edges and nonedges is
everywhere symmetric, except in this IF-ELSE statement. The statement given here
reverses their roles, so the correctness on the complement of the graph follows from
this symmetry.

Maximum independent set and minimum clique cover in co-comparability graphs. A
graph is a co-comparability graph if its complement is a comparability graph. Examples
of co-comparability graphs are interval graphs and permutation graphs.
Given a linear extension of a transitive orientation of the complement of G, which

we have shown is possible given a linear-time pivot selection strategy, we label each
node v with the length of the longest path in this oriented complement that begins at
v. Let F be a transitive orientation of G. We proceed by �nding a minimum vertex
coloring of the complement of G. The color of a vertex v is again the length of
the longest path beginning at v in F . Working inductively, this is again one plus the
maximum color number of successors of v in F . However, since |F | can be much
larger than O(n+m), there is no time to examine all the successors of v in F . Process
vertices in the reverse of the order given by the linear extension of G, that is, starting
at the vertex that corresponds to a sink of the transitive orientation. Adopt the inductive
assumption that when vertex v is reached, each successor x of v in the linear extension
resides in some bucket number i, where i gives the length of the longest path that
begins at x. Mark all vertices that are adjacent to v in G. Then examine vertices in
descending order in the buckets until an unmarked vertex is found; this is a successor
of v in F that resides in the highest bucket of any successor of v in F . The number
of the bucket in which v must be inserted is one plus the number of the bucket of
that vertex. Insert v in its bucket and unmark the neighbors of v. The time marking,
unmarking, examining marked nodes during the descent through the buckets is charged
to edges incident to v in G. Only one unmarked node is found; the cost of examining
it is charged to v.
Recognition of permutation graphs and two-dimensional partial orders. We now

show that given an O(n + m) pivot selection strategy for VertexPartition, we may
recognize permutation graphs in O(n+m) time. We use the well-known characterization
that G is a permutation graph i� G and its complement G are both transitively orientable
[27]. This is the �rst o(n3) algorithm that makes use of this; the approach is only
possible because of Theorem 4.9.



R.M. McConnell, J.P. Spinrad /Discrete Mathematics 201 (1999) 189–241 213

Compute a linear extension F of the transitive orientation of G, and linear extension
F on the transitive orientation of G. Let R be the following total order: if (x; y) is
an edge of G, then xRy if (x; y) ∈ F , and if (x; y) is not an edge of G then xRy if
(x; y) ∈ F . Next, let R′ be the following total order: if (x; y) is an edge of G then xRy
is de�ned as before, and if (x; y) is not an edge of G then xRy if (y; x) 6∈ F . R and
R′ are a realizer for the permutation graph [18].
We have shown that we may obtain linear extensions of F and F in linear time if

we have linear-time pivot selection strategy. Given F and F , R and R′ may then be
computed with the following O(n + m) procedure. The rank of a node v in R is one
1+N1+N2, where N1 is the number of neighbors of v that precede v in F , and N2 is
the number of nonneighbors of v that precede v in F ′. N1 may be found by counting
the number members of v’s adjacency list that precede v in the linear extension of F .
N2 may be found by counting the number of members of v’s adjacency list that precede
v in the linear extension of F ′, and then subtracting this result from the total number of
vertices of G that precede v in the linear extension of F ′. Thus, �nding the rank of v in
R takes O(|N (v)|) time. Finding the rank of v in R′ can be accomplished in O(|N (v)|)
time by repeating the operation on the reverse of the linear extension of F ′. Repeating
this for each vertex v gives the O(n+m) algorithm for �nding the rank of every vertex
in R and in R′; bucket sorting vertices according to their ranks gives R and R′.
R and R′ always constitute a realizer for a permutation graph G′. G′ = G if and

only if G is a permutation graph. This can be easily checked in O(n + m) time by
computing adjacency lists one node x at a time in the permutation graph corresponding
to R and R′, and comparing the adjacencies immediately to those of x of G, and halting
immediately if a discrepancy is detected.
Recognition of interval and cointerval graphs: A cointerval graph is a comparabil-

ity graph, since one interval coming before another is a transitive relation. Produce a
linear extension of its transitive orientation, and order left endpoints according to how
many neighbors of a vertex come before the vertex in the linear extension. Similarly,
order the right endpoints based on how many neighbors come after. The interleaving
of these two lists to create a set of intervals that realizes the graph is trivial. If the
input graph is not known to be a cointerval graph, then performing this operation
and then checking whether the resulting intervals realize the graph gives a linear-time
recognition algorithm.
Because of Theorem 4.9, essentially the same algorithm gives a novel approach to

interval graph recognition, although the time bound is not new [1]. Produce a linear
extension of the complement of the graph, and order left endpoints by counting how
many nonneighbors of a vertex come before the vertex in the linear extension. This
is obtained by subtracting the number of neighbors that come before it from the total
number of vertices that come before it. Similarly, the right endpoints can be ordered
based on how many nonneighbors come after. The remaining steps are identical to
those for cointerval graph recognition.
Prime graph recognition. This problem is solved by computing modular decompo-

sition. Here, we show that VertexPartition alone su�ces. Let us say that a call to
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OrderedVertexPartition fails if some non-singleton subset A of V − {v} is a mod-
ule, since it can never separate members of the module into two di�erent partition
classes. The following shows that VertexPartition gives a test of whether a graph is
prime.

Theorem 4.10. An arbitrary graph is prime i� it is connected and neither call to
OrderedVertexPartition fails in TransitiveOrientation.

Proof. If the graph is not connected, each connected component is a module, so it is
not prime. If a call to VertexPartition (G; v) fails, then there is a nontrivial module
of G that is a subset of V (G)− {v}, and the graph is not prime.
Suppose that neither call to VertexPartition fails. The forcing relation on edges

of G is de�ned even when G is not a comparability graph. If the subgraph induced
by a module contains an edge e, it contains all edges that are forced by e. The �rst
call to VertexPartition demonstrates that any nonsingleton module contains v. The
second demonstrates that it contains x. Any nonsingleton module contains (v; x), and
any module that contains (v; x) contains all edges of the graph, hence all nodes of the
graph, since if G is connected then its edges span V (G). V (G) is the only nonsingleton
module.

4.1. O(n+ m log n) transitive orientation and a simple primality test

Before giving the linear-time transitive orientation algorithm, we show that an O(n+
m log n) bound may be obtained quite easily with VertexPartition. This gives a simple
O(n + m log n) test of whether G is prime by Theorem 4.10. If G is prime, then the
test supplies its transitive orientation directly, without resorting to a general modular
decomposition algorithm. If G is not prime, then the procedure gives O(n + m log n)
transitive orientation by Theorem 4.2, but it is �rst necessary to compute the modular
decomposition with an O(n+ m log n) algorithm.
The procedure uses only universal pivots. The rule for selecting a pivot vertex is

that any vertex may be selected as long as the class that currently contains it is at most
half as large as the class that contained it the last time it was used for partitioning. The
potential danger in placing this restriction is that the rule might prevent any vertex from
being selected before each partition class is a singleton. To show that this does not
happen when G is prime, let X be a largest partition class at the point in the execution
where no pivot vertex may be selected anywhere in G without violating the rule. Each
node x ∈ V (G) − X has been used as a pivot at least once since the last time x was
in a common partition class X ′ with the members of X , since the class that currently
contains x is at most half as large as X ′. It follows that X is a module. If G is prime,
X is a singleton set, and since it is a largest partition class, the procedure halts only
when all classes are singletons. On the other hand, if OrderedVertexPartition fails, G
is not prime, and P cannot be reduced to singleton sets, so the procedure halts while
P contains nonsingleton members.
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To implement the observation, mark each partition class with a ‘previous size’ label
that is initially in�nity, and put each partition class on a list of ‘eligible classes’, which
contains only classes whose cardinalities are at most half their ‘previous size’ label.
Remove a partition class X from the list of eligible classes. Change X ’s ‘previous
size’ label to be |X |. Pivot once on each member of X . Whenever a partition class
Y is split, copy Y ’s ‘previous size’ label to the two new classes it splits into, and
insert either or both of them in the list of ‘eligible classes’ if they are at most half
the size of their ‘previous size’ label. Since each time a universal pivot is performed
on an arbitrary vertex x, the partition class that contains x is half as large as the
partition class that contained it the last time there was a pivot on x. Thus, there
are O(log n) universal pivots on each vertex x, which each take O(1 + |N (x)|) time.
Since

∑
x∈V (G) N (x) is O(m), this gives an O((n+ m) log n) bound. Prime graphs are

connected, so n = O(m) and the bound reduces to O(m log n). Combining this with the
time for modular decomposition, which allows us to perform the transitive orientation
on a prime graph is O(n+ m), we get an O(n+ m log n) for transitive orientation of
arbitrary comparability graphs.

5. Linear-time transitive orientation

To get a linear time bound for the problem, we work on the time bound for Vert-
exPartition and use an approach that is based on the following idea. Run the modular
decomposition algorithm on the prime graph G that we want to orient. We know that
G is prime, but the decomposition algorithm determines this independently. Then if
we run VertexPartition on G, suppose that at some point a set Y is a nonsingleton
member of P. The decomposition algorithm returned a result that claims that there
exists a pivot vertex x ∈ V (G)− Y that splits Y . There must have been some point in
the algorithm’s execution where it acquired the information from G that allows it to
draw this conclusion about Y . If we could recall the point in its execution where this
occurred, we would be led to such an x, and we would have a pivot vertex that splits
Y . Repeating the process eventually re�nes P until it consists of singletons. If we look
up each step in the decomposition algorithm at most a constant number of times in the
process, the transitive orientation algorithm should be linear, since the decomposition
algorithm is linear.
Through the M trees it creates, the decomposition algorithm leaves an extensive

record of when it drew inferences about subsets of V (G) failing to be modules. The
algorithm works primarily by inserting new nodes to an existing M1 tree or changing
the label of an existing node from prime to degenerate. Each such operation excludes
more sets from the family of possible modules represented by the tree without including
any sets that were previously excluded. Thus, the insertion of a node into an M tree
or the changing of a node’s label from prime to degenerate corresponds to a precise
statement by the algorithm that certain subsets of V (G) are not modules. If Y is one
of these subsets, then the vertices of G that justi�ed the insertion of U during the
execution of the decomposition algorithm must lead to a pivot that splits Y .



216 R.M. McConnell, J.P. Spinrad /Discrete Mathematics 201 (1999) 189–241

A node U of an M tree is split if it intersects more than one partition class. The
structure of an M tree makes it easy to keep track of its split nodes as P evolves.
Below, we develop a procedure called Newsplits for this. After U is split, any partition
class that is neither disjoint from U nor contained in U is among the subsets of V (G)
that cannot be modules. Thus, the vertices of G that justi�ed the insertion of U contain
a set of pivots that re�ne P so that all members of P are contained in U or disjoint
from it. If U is labeled prime, then all partition classes that are contained in U are
contained in a child of U . We ‘process’ U by performing these pivots.
A partition class Y is consistent with an M tree if it is either a node of the M tree

or a union of children of a degenerate node of the M tree. Y is inconsistent with the
M tree otherwise. A partition P of nodes of G is consistent with an M tree if each
partition class is consistent with the tree.
Let T be one of the M trees that appears during the decomposition algorithm, such

as the P4 tree, the M2 tree, or one of the intermediate trees that appears during the
re�nement of the P4 tree to get the M2 tree. We proceed by giving what we call
a restarting procedure. A restarting procedure processes split nodes of T until no
unprocessed split nodes remain. At that point, P is consistent with T . We must then
perform one or more pivots outside the restarting procedure. Selection of these pivots
is facilitated by P’s consistency with T . This further re�nes P, resulting in new split
nodes of T that have not been processed, and in new partition classes that may be
inconsistent with T . We start the restarting procedure again on T , and it produces a
further re�nement of P, halting only when P is again consistent with T . Each time
around, P is further re�ned. The process is repeated until P consists of singleton sets.
We are able to charge all operations on T in a way that demonstrates that the total
time spent inside all calls to the restarting procedure is O(n+ m).

De�nition 5.1. A procedure is a restarting procedure on M tree T if it halts only
when P is consistent with T . The procedure may be started up again if other pivots
make P inconsistent with T again. A linear restarting procedure is one which may
be restarted O(n + m) times without spending more than O(n + m) total time inside
the calls to it.

Here is a summary of how we proceed:
1. We assume �rst the existence of a hypothetical linear-time restarting procedure
on the M2 tree, and use the assumption to derive a linear-time implementation
of VertexPartition. This reduces the problem of performing transitive orientation in
linear time to the problem of developing a linear restarting procedure on the M2 tree.

2. We assume the existence of a linear-time restarting algorithm on the P4 tree and
use this assumption to derive a linear-time restarting algorithm on the M2 tree.
This reduces the problem of performing transitive orientation in linear time to the
problem of developing a linear restarting procedure for the P4 tree.

3. We give a linear-time restarting algorithm on the P4 tree without making any prior
assumptions, thus completing the result.
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5.1. Performing partial pivots

In addition to universal pivots, we use two types of pivots called internal pivots and
external pivots, which we now describe.

De�nition 5.2. A set W of vertices of G is isolated if every member of P that inter-
sects W is contained in W . Sets U and W are separated if no partition class intersects
both of them.

Remark 5.3. If T is an M tree, then after a restarting algorithm on T halts, every split
node of T is isolated.

We sort all adjacency lists in the order in which nodes appear as leaves of an M
tree T for which we intend to write a restarting procedure. This may be accomplished
in O(n + m) time by radix sorting all edges of G with the �rst node as primary sort
key and the second node as secondary sort key. Let W be a node of the tree. W ∩N (x)
is now a consecutive interval in x’s adjacency list. Since the algorithm makes use of
restarting procedures on more than one tree, a separate adjacency-list representation of
the graph is required for each tree.

De�nition 5.4. Let ord(x; T ) give the order of vertex x in the leaf numbering of leaves
of an M tree T . Let W be a node of T . Since the algorithm uses more than one tree,
we will generalize MIN (W ) and MAX (W ) from De�nition 3.3, and let MIN (W; T ) =
min{ord(a; T ) : a ∈ W}, and MAX (W; T ) = max{ord(a; T ) : a ∈ W}. If x is a vertex
of G, let start(W; x; T ) and �nish(W; x; T ) denote pointers to the beginning and end of
the interval occupied by W ∩ N (x) in x’s sorted adjacency list that corresponds to T .
The T parameter may be dropped from any of these expressions when the tree under
consideration is understood.

We will assume that in each M tree T that we work with, each node W is labeled
with MIN (W; T ) and MAX (W; T ). The labeling may be accomplished in O(n) time in
a postorder traversal of the tree.
Let x; X;P;Q refer to the variables by those names in VertexPartition. Suppose W

is split. Then it is isolated when T ’s restarting procedure halts. We may let Q be the
set of members of P− X that intersect W . If we have a pointer to the interval in x’s
adjacency list occupied by W , then we can clearly perform the pivot operation using x
and Q in O(|N (x)∩W |) time, by simply ignoring everything outside of I and applying
the universal pivot algorithm to this reduced segment of the adjacency list. We call
such a pivot an internal pivot because it splits only partition classes that are contained
in W . For the pivot to be ‘legal’, W must be isolated when an internal pivot is applied.
Let us now relax the assumption that W is split when T ’s restarting procedure halts.

Let Q be the members of P − {X } that do not intersect W . We may perform the
corresponding pivot in O(|N (x) − W |) time by walking into the adjacency list for x
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from the ends until we come to the �rst and last members of W , and then ignoring
the region between these two points during the pivot. We call such a pivot an external
pivot because it splits only those partition classes that do not intersect W . For the pivot
to be ‘legal,’ W must be isolated or contained in a partition class.

Lemma 5.5. Let W be an isolated node of an M tree T; and suppose that the ad-
jacency lists representing G are sorted according to the leaf order of T . Except for
the time to update new split nodes in the M trees, the following operations take time
proportional to O(1) plus the number of edges they remove from the adjacency-list
representation of G.

• An external pivot on W with x ∈ W .
• An internal pivot on W with x 6∈ W if a pointer to an instance of a member of W
in x’s adjacency list is available.

Proof. Since W is isolated, every element that is visited in x’s adjacency list lies in a
di�erent partition class from x, and is thus eliminated from x’s adjacency list.

5.2. Vertex partitioning, given a restarting algorithm on the M2 tree

We now show that �nding a linear-time implementation of VertexPartition reduces
to the problem of �nding a linear-time restarting procedure for the M2 tree. Assume
such a restarting procedure exists; we will develop it later. Let us call it M2resolve.
The procedure for performing the vertex partition is just a depth-�rst traversal of the

M2 tree, with some pivots generated at each node, followed by a call to M2resolve.

Procedure LinVertexPartition(T; G;P)

{T is an M2 tree on a prime graph G and P is a partition of V (G)
that has at least two partition classes. M2Resolve is a linear
restarting algorithm on T . Perform pivots, halting only when P

consists of singleton sets.}
Run Modules to label each node X of T with an x ∈ V (G)− X that splits X
Let U be the root of T
For each child W of U do
M2DFS (W )

M2resolve ()
For each w ∈ V (G) do
Perform a universal pivot on w

Procedure M2DFS (U )
M2resolve()
Let P be the parent of U
Let w ∈ V (G)− U that splits U
If P is labeled degenerate then
Perform an internal pivot on P with w
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Else
Perform an internal pivot on U with w

For each non-singleton child W of U do
M2DFS(W )

Lemma 5.6. LinVertexPartition runs in O(n+m) time and halts when P consists of
singleton sets.

Proof. Observe that since G is prime, Modules labels every internal node U in the
tree with some pivot w ∈ V (G)−U that splits U . By the de�nition of an M2 tree, if
U ’s parent P is degenerate, then w ∈ V (G)− P.

Claim. When a node U is visited in M2DFS, it becomes isolated, and if it is prime,
its children become isolated.
These conditions hold at the root after the initial call to M2resolve. Suppose U is

a node at depth k¿1 in the tree and that the conditions hold at all nodes up through
depth k − 1. Then U ’s parent P exists and P is isolated. Moreover, if P is prime
then U is isolated. The internal pivot performed when U is processed is legal. If P
is degenerate, then the pivot node does not lie in P because it distinguishes members
of U and the tree is an M2 tree. The pivot splits U , and the next call to M2resolve
establishes the claim at U . Inductively, the claim follows at each depth.
The depth-�rst procedure thus splits all internal nodes in the tree. After the last call

to M2resolve, P is consistent with the M2 tree by the assumption that M2resolve
is correct. The only non-singleton members of P are thus sets of leaf siblings whose
parents are degenerate. Since G is prime, each pair of vertices in such a set X disagrees
on a third node x in G. By the de�nition of an M2 tree, x lies outside their parent,
hence outside X . The universal pivot on x in the �nal loop of the main procedure
splits them into separate classes. We conclude that each pair of vertices is separated
by P when the procedure terminates, hence every member of P is a singleton set.
For the time bound, the call to Modules is O(n + m), as we showed earlier. The

universal pivots at the end of the main procedure are O(n+m), since they happen once
on each vertex. At each node of the tree, M2DFS performs constant-time operations,
plus an internal pivot. By the foregoing claim, U or P is split, and by the assumption
that M2resolve is correct, the preceding call to it makes P or U isolated before the
internal split is performed on it. By Lemma 5.5, the cost of the internal pivot is
proportional to the number of edges that it eliminates from G, so the time spent in
these pivots over the course of the algorithm is O(n+ m).

5.3. Keeping track of split M-tree nodes

We have now shown that linear-time transitive orientation reduces to the problem
of �nding a linear-time restarting procedure on the M2 tree. Before proceeding to the
next step, we need an additional tool. As we indicated above, a node of an M tree T



220 R.M. McConnell, J.P. Spinrad /Discrete Mathematics 201 (1999) 189–241

only becomes relevant to partitioning P after it is split, that is, after it is no longer
contained in a single partition class. In this section we show how to keep track of
split nodes of T as P is re�ned by VertexPartition. In particular, once a split node is
‘processed’ by the restarting procedure on T , it is not used again, so we are interested in
maintaining a list of unprocessed split nodes without exceeding O(n+m) time over the
course of VertexPartition. The methods are a variant of a technique developed in [7].
Let P′ = P − Y ∪ {Ya; Y − Ya}. That is, P′ is the re�nement of P obtained by

dividing one of its partition classes into two classes during a pivot operation. A call
to Newsplits (Ya; T ), which is de�ned below, labels and returns the set of nodes of
T that are split by P′ but not by P. These nodes may then be used to update a
complete list of split nodes. A pivot splits a set of classes of P into two classes, so
the corresponding set of calls to Newsplits is used to �nd the split nodes of T that
result from the pivot.
The Newsplits procedure assumes that each node of T is already labeled as to

whether it is split by P, and labels only those nodes that are split by P′ but not by
P. During processing, it maintains the following information:

• UniformList: A set of tree nodes that are contained in Ya, hence not split.
• TouchedList: A set of tree nodes known to intersect Ya, but not yet known to be
contained in Ya.

• UniformChildren(U ): An integer label on each internal tree node U that gives the
number of children of U that are known to be contained in Ya. UniformChildren(U )
is assumed to be initialized to 0 for each node U in T before Newsplits is run, and
the procedure restores this condition before returning.

The procedure follows:

Procedure Newsplits(Ya; T )
Let UniformList consist of the leaves of T corresponding to members of Ya
Let Newsplits and TouchedList be empty lists of nodes of T
While UniformList is not empty
Remove a node U of T from UniformList
Let P be the parent of U in T
If P is not marked split then
UniformChildren(P) := UniformChildren(P) + 1
If UniformChildren(P) = 1 then put P on TouchedList
If UniformChildren(P) = |childrenT (P)| then
Move P from TouchedList to UniformList
UniformChildren(P) := 0 {reinitialize for next time}

While TouchedList is not empty
Remove a tree node W from the TouchedList
While W is not marked as split
Mark W as split
Insert W in Newsplits
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UniformChildren(P) := 0 {reinitialize for next time}
W := parentT (W )

return Newsplits

Lemma 5.7. Let P′ = P − Y ∪ {Ya; Y − Ya} be a re�nement of a partition P on
vertices of G. Suppose that those nodes of a union tree T on G that are split by P

are labeled. Newsplits (Ya; T ) labels and returns the set of nodes of T that are split
by P′ but not split by P, and takes O(|Ya|+k) time, where k is the number of nodes
of T that it returns.

Proof. By induction on the height of a node U in T , U is moved from TouchedList to
UniformList at some point during execution of the �rst While loop if and only if it is
contained in Ya. A node W is inserted in TouchedList at some point during execution
of the �rst While loop if and only if some child of W is inserted in UniformList. It
follows that the nodes that remain in TouchedList at the end of execution of the �rst
While loop are those that have at least one child but not all children contained in Ya.
Every node Z that is split by P′ but not by P has leaf descendants that are con-

tained in Ya, so each path from Z to such a descendant must contain a member of
TouchedList. No descendant of Z is labeled as split when Newsplits is called, since
Z is not split by P. The paths from Z to its descendants on TouchedList consist of
unmarked nodes, so the �nal loop marks Z as split. This proves the correctness of the
procedure.
To obtain the time bound, note that since each node of T has at least two children

and there are |Ya| leaves of T that are contained in Ya, there are O(|Ya|) nodes of T that
are contained in Ya. Thus, O(|Ya|) nodes are inserted in UniformList. Each iteration
of the �rst While loop removes a node from UniformList, so this loop can execute
at most O(|Ya|) times. Constant time is spent in each iteration, so the �rst loop takes
O(|Ya|) time. The members of TouchedList are parents of members of UniformList,
so TouchedList may have at most O(|Ya|) elements at the end of the �rst loop. The
second outer loop executes O(|Ya|) times. The inner loop spends constant time per
iteration and iterates once for each node inserted in Newsplits. All iterations of this
inner loop require O(k) time. The total time required by the second main loop is thus
O(|Ya|+ k).

Lemma 5.8. The nodes of a union tree T that are split initially by an arbitrary
starting partition may be identi�ed in O(n) time.

Proof. Let Ps be the starting partition. If Ps = {{v}; V − {v}} as in OrderedVertex-
Partition, then the split nodes of T are just the ancestors of the leaf of T corresponding
to v. If Ps = {Y1; Y2; : : : ; Yj} is arbitrary, we may express P as the result of a series of
splits that are suitable for processing by Newsplits. Let R1 = V and let P1 = {V}. Let
Ri = Ri−1−Yi−1 and let Pi = Pi−1−{Ri−1}∪{Yi; Ri}. Ps is just Pj−1. Thus, we may
obtain the nodes that are split by Ps by calling Newsplits on each of Y1; Y2; : : : ; Yj−1.
By Lemma 5.7, this takes O(n) time.
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Lemma 5.9. The total time required maintain a current list of all split nodes after
each pivot in VertexPartition is O(n+ m).

Proof. Follows from Lemmas 5.5–5.8.

We may thus ignore Newsplits in the remaining analysis of the time bound of
VertexPartition.

5.4. A restarting procedure on the M2 tree, Given one on the P4 tree

The goal of this section is to develop a linear-time restarting procedure for the M2
tree, given a linear-time restarting procedure for the P4 tree. This procedure is called
M2restart in the pseudocode for VertexPartition. In the next section, we give the
restarting procedure on the P4 tree, completing the algorithm.
Recall that the M1M2 procedure of the decomposition algorithm inputs the P4 tree

and outputs the M2 tree. It does this by inserting new nodes into the P4 tree and
changing the labels of some nodes from prime to degenerate. Of the procedures that are
called, only Splitters, SCC, and PQ make re�nements to the tree. Thus, the re�nements
to the P4 tree come in the following stages:
1. Splitters produces a re�nement T1 of the P4 tree;
2. SCC then produces a re�nement T2 of T1;
3. PQ then produces a re�nement T3 of T2;
4. A second call to Splitters produces a re�nement T4 of T3;
5. A second call to SCC produces a re�nement T5 of T4, and T5 is an M2 tree.
We proceed as follows:

• Given an arbitrary input tree to a call to Splitters and the availability of a linear
restarting procedure on that input tree, we derive a linear restarting procedure on the
re�nement of the tree produced by Splitters. This procedure is called Splitresolve.

• Given an output tree of Splitters and a linear restarting procedure on it, we derive
a linear restarting procedure on the re�nement of it produced by the main body of
SCC. This procedure is called SCCresolve.

• Given an output tree of SCC and a linear restarting procedure on it, we give a
linear restarting procedure on the re�nement of the tree produced by the main body
of PQ. This procedure is called PQresolve.
This is su�cient to get the result we seek. Given a linear restarting procedure on

the P4 tree, Splitresolve gives one on T1. Given a linear restarting procedure on T1,
SCCresolve gives one on T2. Given one on T2, PQresolve gives one on T3. Given one
on T3, Splitresolve gives one on T4. Given one on T4, SCCresolve gives one on the
M2 tree.
Since each incarnation of each of these procedures has its own tree on which it is

a restarting procedure, and its own requirements on the ordering of adjacency lists in
the representation of G, assume that each has its own copy of the tree on which it
is a restarting procedure, and its own copy of the adjacency-list representation of G.
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Thus, there are �ve trees and �ve copies of G used in the two calls to Splitresolve, the
two calls to SCCresolve, and the call to PQresolve. Any time one of the procedures
performs a pivot, it removes edges only from its own copy of G. However, it must
make the appropriate calls to Newsplits on all �ve trees to keep the split-node labeling
current in all �ve trees. Each procedure keeps its own list of split nodes in its tree
that it has not yet processed; this is updated whenever any new nodes of its tree are
labeled as split. Inside a procedure, the list of split nodes is known as Splitlist.

5.4.1. Splitresolve
Let T denote the input tree to a call to Splitters and let Ts denote the tree that results

from omitting the contraction steps that may occur after nodes are inserted to T . That
is, we omit the �nal steps of the �rst loop, where z or X is contracted out of the tree.
Omitting the step allows us to avoid inserting some special cases into the pseudocode
for Splitresolve, and does not a�ect the family of sets that are consistent with the tree.
Ts may therefore have an occasional node that has only one child, but each node is
still de�ned to be synonymous with the set of vertices of G that correspond to its leaf
descendants. Thus, a restarting procedure on Ts is also a restarting procedure on the
output tree of Splitters.
Ts is obtained from T by giving each degenerate node X a new child Z that is a

union of some of X ’s children, then labeling Z degenerate and relabeling X prime.
The children of Z in Ts are the children of X in T that are not split by any vertex in
V (G)−X . The children of X in Ts are Z and the children of X in T that are split by
a vertex of V (G) − X . Let StartingResolve denote an assumed linear-time restarting
procedure on T .

Procedure Splitresolve ()
StartingResolve()
While Splitlist is not empty
Remove a tree node Z from Splitlist
If Z is a node of Ts that was added to T by Splitters then
Let X be Z’s parent in Ts
For each child W 6= Z of X in Ts do
Let w be a vertex that splits W and that does not belong to X
Perform an internal pivot on X with w

StartingResolve ()

Lemma 5.10. Splitresolve is a linear-time restarting procedure on the output tree of
a call to Splitters if StartingResolve is a linear-time restarting procedure on its input
tree.

Proof. Let F be the set of children of X in the input tree T . Every union of a
subfamily of F is consistent with T . The unions of members of F that are consistent
with Ts are X =

⋃
F, individual members of F, and unions of members of F that
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are children of Z . The insertion of Z and the relabeling of X as prime causes no
other change in the family of sets that are consistent with the tree. For the correctness,
it su�ces to show that the inner If statement ensures that every partition class that
intersects X is contained in Z or in one of X ’s other children. Once this occurs,
no partition class in any subsequent re�nement of P may be among the sets made
inconsistent with the tree when Z was inserted. Other iterations accomplish the same
result for all other split nodes that were inserted by Splitters. The �nal call made
to StartingResolve makes sure that P consistent with T . This implies then that P is
consistent with Ts.
Splitters ensures that each child W of X other than Z is split by a vertex that lies

outside of X , and provides such a vertex from the set {low(W ); high(W )} (see De�-
nition 3.3). Since X is split, hence isolated by the most recent call to StartingResolve,
the internal pivot on X with this node is legal and leaves W split. The procedure leaves
every child of X split, with the possible exception of Z . The next call to StartingRe-
solve leaves these split children of X isolated, and since X is also isolated, it leaves
Z isolated. This establishes the correctness of the procedure.
We now establish the time bound. A node of Ts is inserted in Splitlist when it is

�rst split, and the cost of doing this may be ignored since it is accomplished with
Newsplit. Thus, Z is removed only once from Splitlist, and since only one child of X
is inserted by Splitters, an internal pivot is employed once on X for each sibling of
Z . Splitters found the pivot node w. A trivial modi�cation of Splitters labels w with
a pointer to an instance of a member of Z in w’s adjacency list, to facilitate the pivot
operation. Since X is isolated when the internal pivots are performed, the total cost of
internal pivots in the procedure is O(n+ m) by Lemma 5.5.

5.4.2. SCCresolve
Let Tr be as in the pseudocode of the SCC procedure, and let Ts be the output

tree of the procedure. In this section we give SCCresolve, which is a linear restarting
procedure on Ts if Splitresolve is a linear restarting procedure on Tr .

De�nition 5.11. The existence of an edge (U;W ) in a forcing graph indicates that U
disagrees on some member of W . (U;W ) carries a label w(U;W ), which is a node of
W that splits U in G, and labels a(U;W ), and n(U;W ), which are nodes of U that
are adjacent and nonadjacent, respectively, to w(U;W ).

By Remark 3.4, these labels can be supplied in O(n+ m) time with a trivial modi-
�cation of Splitters and ForcingGraphs.

Procedure SCCresolve ()
Splitresolve ()
While Splitlist is not empty do
Remove a node Y from Splitlist
If Y was added to Tr by SCC then
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{ The children of Y are a strongly connected component in a forcing graph}
Let F be the forcing graph in which Y ’s children are a strongly connected
component

Let F ′ be the subgraph of F induced by children of Y .
Do a depth-�rst search of F ′ to �nd a forcing edge (U;W ) that
connects two separated nodes

Perform an external pivot on W with w(U;W )
Splitresolve()
Call SCCDFS(F ′; U; )

Procedure SCCDFS(F ′; W )
For each predecessor U of W in F ′ that has not yet been visited by SCCDFS do
Perform an external pivot on W with w(U;W )
Splitresolve()
SCCDFS(F ′; U )

Lemma 5.12. Let T be an M tree and let U and W be siblings in T . If P is consistent
with T; it may be determined in O(1) time whether U is separated from W .

Proof. Since no member of P may overlap U or W , the question reduces to a test
of whether arbitrary u ∈ U and w ∈ W are members of the same partition class. The
lemma follows from Remark 4.5.

Lemma 5.13. Let Tr refer to the variable by that name in SCCresolve, and let Ts
be the output tree of SCC. SCCresolve is a linear-time restarting algorithm on Ts if
Splitresolve is a linear-time restarting algorithm on Tr .

Proof. To show that it is a restarting procedure, we claim �rst that when SCCDFS
(F ′; W ) is called on an isolated member W of a strongly connected component, it
leaves every member of the strongly connected component isolated. Clearly, it performs
a depth-�rst search on the transpose of F ′, and visits all members of the component,
since F ′ is strongly connected. The external pivot with w(U;W ) splits U , and since
W is separated from U and U is a member of Tr , the call to Splitresolve that follows
the operation must isolate U . The claim then follows inductively for all members of
the component.
In the main procedure, the �rst call to Splitresolve leaves P consistent with Tr .

Y ’s children are nodes of Tr , so any two children that are not contained in the same
partition class are separated. Since the children are the members of a strongly connected
component of F , (U;W ) exists and W is either isolated or contained in a single partition
class, as required for the external pivot on W . The external pivot and the following
call to Splitresolve isolate U , establishing correct conditions for calling SCCDFS. As
we have shown, SCCDFS leaves each child Z of Y isolated. In the re�nement of P
that remains after SCCresolve halts, it follows that for each node Y inserted in Tr by
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SCC, Y is either contained in a single partition class, or else every class that intersects
Y is contained in one of Y ’s children. The �nal call to Splitresolve ensures that the
re�nement is consistent with Tr . These two statements imply that it is consistent with
Ts. SCCresolve is a restarting procedure on Ts.
There are O(n+m) calls to Splitresolve in any O(n+m) calls to SCCresolve, since Y

is processed at most once in all calls. The bound for the calls to Splitresolve is O(n+m),
since it is assumed to be a linear-time restarting procedure. The bound for �nding
(U;W ) is proportional to the number of edges of F that leave members of the strongly-
connected components corresponding to Y . By Lemma 5.12, searching for (U;W ) and
the other operations that act on forcing edges can thus be charged at constant time to
each of the forcing edges they act on. There are O(n+ m) forcing-graph edges, since
the forcing graphs are constructed explicitly by the O(n+m) decomposition algorithm.
Except for the �rst external pivot inside the main loop of SCCresolve, all external
pivots take place on isolated nodes, so their time can be charged to edges eliminated
from G, by Lemma 5.5, and their total time over all iterations is O(n + m). When
the �rst external pivot is carried out in the main procedure, W may be contained in a
partition class rather than isolated. Thus, not all elements traversed in the pivot node’s
adjacency list are eliminated from G. However, we have shown that W is isolated
after the call to SCCDFS. Thus, any elements that were not eliminated from the pivot
node’s adjacency list are eliminated the next time the external pivot is repeated, which
is inside SCCDFS. We may charge the operations of the �rst pivot on W to edges
that are eliminated in the call to SCCDFS. An O(n+m) bound for O(n+m) calls to
SCCresolve follows.

5.4.3. PQresolve
In this section, we focus on the re�nements performed on the M1 tree during a call

to PQ. Let T be the tree on which PQ was called, let Tr be the output of the call
to Splitters made from ForcingGraphs inside SCC, and let Ts be the output of the
call to SCC. Let Tt be the output of PQ, when we omit the step where p or q is
contracted in the last line of the pseudocode of PQ. As before, omitting contractions
has no e�ect on the family of sets that are consistent with the tree, so a restarting
procedure on Tt is also a restarting procedure on the tree that is produced when the
contraction steps are not omitted.
For each degenerate node U of Ts, order the children of U according to the topo-

logical sort on its children that was used in PQ when it re�ned Ts to produce Tt .
Order children of other nodes arbitrarily. For each x ∈ V (G), let ord(x) denote the
rank of x in the leaf order on this tree. Assume all adjacency lists have been organized
in ascending order of ord() value, as described above. Since each node of the tree
constitutes an interval in the ord() ordering, one node’s interval precedes or follows
another node’s interval if neither is an ancestor of the other. Thus, ord() also imposes
a linear order on any set of pairwise disjoint nodes of Ts.
A cotree node U in the P4 tree is created by a call to cotree on a subgraph G|S of

G, for some S ⊆V (G) such that G|S is a cograph. Let the representative of a child W
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of U in the P4 tree be an arbitrary vertex w ∈ (W ∩ S). Such a representative clearly
exists, since the leaf descendants of a node in the tree returned by cotree remain among
its descendants in the P4 tree. The representatives of the children of U induce either
a complete or empty subgraph in G, since they induce a complete or empty subgraph
in G|S.

De�nition 5.14. Let D be a node of a forcing graph Gf that was computed in the call
to ForcingGraphs inside SCC. Since the nodes of Gf are disjoint sets that are nodes of
Ts, the ord() order imposes a total order on them that is consistent with the topological
sort used by PQ on the component graph of Gf. Let Early(D) denote the earliest node
W in this order such that (D;W ) is an edge of Gf and D and W are not subsets of
the same partition class in P. If there is no such W , then Early(D) is unde�ned.

By Lemma 5.12, Early(D) may be found in time proportional to the number of
successors of D in Gf whenever SCCresolve halts.
SCCresolve isolates any split node that corresponds to a strongly-connected compo-

nent in the tree returned by SCC. The following procedure may sometimes be used
to isolate such nodes even when they are not split. The parameter, U , is a member
of a strongly connected component that we are interested in isolating. The procedure
requires only that U have a successor in the forcing graph that does not lie in the
same member of P as U does.

Procedure IsolateSCC (U )
{U is a node of a forcing graph Gf that has a successor that does
not lie in the same member of P as U does.
The procedure performs pivots that cause every member of U ’s
strongly-connected component to become isolated }
SCCresolve()
if U is not split then
W ′ := Early(U )
Let w be the representative of W ′

Let W be the union of members of the strongly connected component that
contains W ′

Let X be the union of nodes of Gf
Perform an external pivot on X with w
Perform an external pivot on W with w
SCCresolve()
Perform an external pivot on U with n(U;W ′) (See De�nition 5.11)
Perform an external pivot on U with a(U;W ′)
SCCresolve()
Perform an external pivot on W with w

Assume that SCCresolve is a linear-time restarting algorithm on Ts. For the correct-
ness, note �rst that if U is already split, the procedure achieves the desired result with
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the �rst call to SCCresolve by the assumption that it is a restarting procedure on Ts.
W ′ exists because of the restrictions placed on a what constitutes a valid input for U .
Since X is split and a node of Ts, it is isolated after the initial call to SCCresolve.
Thus, the external pivot on it is legal. W is also a node of Ts. It may or may not
be split, so it is either isolated or contained in a single partition class after the initial
call to SCCresolve. In either case, the �rst pivot on it is legal. W ′ is separated from
U by the �rst call to SCCresolve. The external pivot on W thus splits U , hence U ’s
strongly connected component. The second call to SCCresolve isolates each member
of U ’s strongly connected component. This demonstrates that the procedure achieves
the desired result. Since U is now isolated, the next two external pivots on U are
legal. The third call to SCCresolve ensures that the �nal external pivot on W with w
is legal.

Lemma 5.15. After the two pivots on W with w in IsolateSCC, no subsequent exter-
nal pivot on W with w when P is consistent with Ts can induce a proper re�nement
of P.

Proof. Claim 1: The second call to SCCresolve separates w from all vertices pre-
ceding MIN (W ) in ord(). Let C be the union of members of U ’s strongly connected
component. If C = W , then the claim is immediate, since C is isolated after the second
call to SCCresolve. Assume C 6= W . Since the second call to SCCresolve isolates C, it
separates C from w. Let Y be the partition class that contains w when W ′ = Early(U )
is computed, and let Y ′ be the subset of Y − C that precedes MIN (W ) in the ord()
numbering. It remains to show that the second call to SCCresolve separates Y ′ from
w. X ’s isolation implies that Y ′ is a subset of X . No member of Y ′ distinguishes
members of U , since W ′ = Early(U ) contains the earliest vertex in ord() that splits
U and is not in the same partition class as U is. However, W ′ contains a member that
distinguishes n(U;W ) and a(U;W ). No member of U distinguishes members of W ,
since W is later in ord() than C is. All members of W ′, including w, thus distinguish
n(U;W ) and a(U;W ). If no member of Y ′ distinguishes n(U;W ) and a(U;W ) but
w does distinguish them, it follows that the external pivots on U with n(U;W ) and
a(U;W ) separate Y ′ from w.
Claim 2: Let B be the set of vertices of G whose ord numbers are on the interval

from MAX (W ) + 1 to MAX (X ). No two members of B are distinguished by w. The
members of B are in strongly connected components that are later than W in the
topological sort, by the de�nition of B. Thus w does not distinguish the members of
any node of the forcing graph that is contained in B. Since w is the representative
of W ′, it is either adjacent in G to the representatives of all of W ′s siblings or it is
adjacent in G to none of those representatives. Thus, it cannot distinguish members of
any two siblings of W ′ contained in B, and the claim follows.
Now that we have established the claims, let Z be the partition class that contains

w after the second call to SCCresolve. If Z is contained in W , then W is isolated
by the call to SCCresolve, and the subsequent external pivot on W is the last one
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that can induce a proper re�nement of P. Otherwise, by the assumed correctness of
SCCresolve, Z contains W . After the second external pivot on W with w, no future
external pivot on W with w may split a future partition class that is disjoint from Z . The
lemma thus follows for any future partition classes that are disjoint from Z . Clearly,
it follows for any future partition classes that are contained in W , since an external
pivot on W ignores such classes. In any future re�nement of P that is consistent with
Ts, any partition class that is contained in Z and not contained in W is disjoint from
W . By Claim 1, Z −W ⊆B. The lemma then follows from Claim 2.

Lemma 5.16. Any sequence of O(n+m) calls to IsolateSCC takes O(n+m) time if
SCCresolve is a linear-time restarting procedure.

Proof. The time spent in the calls to SCCresolve is O(n+m) by the assumption that it
is a linear restarting procedure. The time to �nd Early(U ) is charged to edges of the
forcing graph that leave U at constant time per edge, by Lemma 5.12. It remains to
bound the time spent in each of the �ve external pivots over all calls to IsolateSCC.
Since X is split and isolated by the �rst call to SCCresolve, the �rst external pivot
takes O(n + m) time over all calls to IsolateSCC, by Lemma 5.5. Similarly, U is
isolated by the second call to SCCresolve, so the external pivots on U take O(n+m)
time over all calls to IsolateSCC.
The di�cult step is bounding the time spent in the two external pivots on W . Let

us call these two pivots special pivots, since they are handled somewhat di�erently. If
W is not marked ‘o� limits’, perform the two special pivots normally, then mark W as
o� limits. If it is already marked o� limits, omit the two special pivots. The omission
has no e�ect on P, by Lemma 5.15. The two pivots take time that is proportional to
the number of elements of w’s adjacency list that are members of X −W , since X is
isolated by the �rst call to SCCresolve and the external pivot on X removed elements
of V (G) − X from w’s adjacency list. When W is not marked o� limits, pay for the
two special pivots by charging each of these adjacency-list elements a constant cost.
This ensures that whenever a pair of special pivots with w is performed on a node
that is not marked o� limits, the cost is charged to elements of w’s adjacency list that
have not been charged to before by any special pivot. This gives an O(n+ m) bound
on the cost of all special pivots in all calls to IsolateSCC.

We now give the pseudocode for PQresolve. Recall that the procedure works on Tt ,
and Splitlist is a list of split nodes of Tt . Recall the de�nition of drivers, passengers,
‘P’ and ‘Q’ nodes given in the pseudocode of PQ. Let an ‘SCC’ node denote any
node of a strong-component graph used by PQ.

Procedure PQresolve()
While Splitlist is not empty do
Remove a node U from Splitlist
If U is an unprocessed node that was added to Ts by PQ then



230 R.M. McConnell, J.P. Spinrad /Discrete Mathematics 201 (1999) 189–241

PQdescendants(U )
SCCresolve()

Procedure PQdescendants(U )
For each unprocessed child W of U that was added to Ts by PQ do
PQdescendants(W )

SCCresolve()
If U is a ‘P’ node then PQprocess(U )

Procedure PQprocess(P)

{P is a ‘P’ node. P is a union of children of some degenerate
node U in Tr . Let X be P’s driver. X is the union of the
members of a strongly connected component CX of G(G;U; Tr),
since X is a node of Gc(G;U; Tr). The procedure causes each member
of CX to become isolated}
Mark P as processed
SCCresolve()
If X is not split then
Find an edge (X ′; Z) of G(G;U; Tr) such that X ′ ∈ CX and
X ′ and Z are separated.

IsolateSCC(X ′)
For each X ′′ ∈ CX do
For each forcing edge (X ′′; Z ′) in G(G;U; Tr) such that Z ′ 6∈ X do
Perform an external pivot on X with n(X ′′; Z)
Perform an external pivot on X with a(X ′′; Z)

Lemma 5.17. Suppose SCCprocess is a restarting procedure on Ts. Let P be a P
node in Tt and let X be its driver. In PQprocess either the call to SCCresolve(P) or
the call to IsolateSCC isolates X .

Proof. If X is split when PQprocess is called, then the result follows from the assumed
correctness of SCCprocess. We will now assume that X is not split.

Observation (∗): P is a P node. From the way P was constructed in PQ, for each
passenger B of P there exist an edge (X ′′; B′′) of G(G;U; Tr) such that X ′′ is a subset
of X; and B′′ is a subset of the driver of B.

We will now de�ne the rank of a P node or an SCC node. The rank preserves
information about the order in which PQprocess was called on various P nodes. The
rank of each P or SCC node is initially zero. At the moment when PQprocess is called
on a P node, the P node assumes a new rank that is one plus the maximum of the
ranks of its passengers, and which remains constant thereafter. Intuitively, the rank of
a P node thus tells how high it is in the recursion tree in the call to PQdescendants
that caused the node to be processed.
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If P has rank 1, then the driver and each passenger of P is an SCC node or an
unsplit P node. Any split SCC nodes are isolated by of the call to SCCresolve in
PQdescendants. The driver and each passenger is either isolated or a subset of a
partition class in P. Since P is split, it follows that some passenger B is separated
from X . From Observation (∗) above, when PQprocess is called on P, there exists a
forcing edge that satis�es the de�nition of (X ′; Z) in the procedure. Thus, the lemma
follows for P from the correctness of IsolateSCC and the two external pivots on X
are legal.
Now assume the lemma is true for any node of rank up to k¿1, and suppose P

is a node with rank k + 1. When a call to PQprocess is initiated on P, there has
already been a call to PQprocess on some passenger B, and B has lower rank than
P. By the inductive hypothesis, B’s driver is isolated. By the observation above, there
exists a forcing edge satisfying the de�nition of (X ′; Z). The lemma again follows for
P from the correctness of IsolateSCC, and the two external pivots on X are again
legal.

Lemma 5.18. When PQresolve halts, P is consistent with Tt , assuming that SCCre-
solve is a restarting algorithm on Ts.

Proof. The last call to SCCresolve before PQresolve halts ensures that P is consistent
with Ts. Tt consists of Ts with some additional P and Q nodes inserted. Since each
P node has two children and each Q node is degenerate, it su�ces to show that no
member of P overlaps any P or Q node in the M2 tree.
When PQresolve halts, it has called PQprocess on every split P node, since Splitlist

is empty. No partition class that overlaps a P node may intersect its driver, by Lemma
5.17. Thus, if a partition class overlaps a Q node, it must overlap the Q-node’s par-
ent, which is a P node. It therefore su�ces to show that no class may overlap a
P node.
Suppose for purposes of contradiction that A is a partition class that overlaps some

P node.
Each P node was created in PQ, when a node denoted p in PQ is inserted into the

tree. P is given by the set of leaf descendants of p, which remain unchanged thereafter.
The P nodes are created in a chronological order that is partially constrained by the
topological sorts of the forcing graphs. Let P be the P node in the M2 tree that was
created earliest among all P nodes that overlap A. To obtain the contradiction, we
show that P must contain A.
Let X and U refer to the values of the variables by those names during the iteration

of the outer loop of PQ that created P. X is P’s driver. Let CX be the set of nodes
of G(G;U; Tt) that are contained in X . Let R be the set of nodes of Gc(G;U; Tt)
that are marked as ‘representatives’ at the beginning of the iteration of the inner loop
that creates P, and let F be the set of nodes whose drivers are members of R. The
members of F are just the current children of U that are candidates to become P’s
passengers when P is created.
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Claim 1. X was isolated either by the call to SCCresolve or by the call to IsolateSCC
in PQprocess(P).
This follows from Lemma 5.17.

Claim 2. All members of F are either contained in or disjoint from A.

The last call to SCCresolve in the main procedure of PQresolve ensures that A
overlaps no SCC nodes. By the de�nition of P, A overlaps no P nodes in F.

Claim 3. A is disjoint from X and contains one of P’s passengers.

A must be disjoint from X , since otherwise Claim 1 implies that A is contained in X
and does not overlap P. Thus, one of P’s passengers is contained in A, since otherwise
Claim 2 implies that P does not intersect A.

Claim 4. A is a union of some of P’s passengers.

Since U is a node of Ts, it is isolated after the �rst call to SCCresolve in PQprocess.
Thus A is a subset of U . There is an edge of Gc(G;U; Tr) from X to the drivers of each
of P’s passengers. By Claim 3, there is an edge of G(G;U; Tr) from some X ′ ∈ CX
to a node Z of G(G;U; Tr) that is contained in A. Thus w(X ′; Z) is contained in A.
By Claim 1, X is isolated when the �nal nested loops of PQprocess(P) perform an
external pivot on X with n(X ′; Z) and a(X ′; Z). Thus, the partition class that contained
A at that time did not contain n(X ′; Z) or a(X ′; Z). Since members of A were not
split into di�erent classes by these pivots, A must agree on n(X ′; Z) and A must agree
on a(X ′; Z). Since n(X ′; Z) and a(X ′; Z) disagree on w(X ′; Z), they must disagree on
every node in A. It follows that there is an edge of G(G;U; Tr) from X ′ to every node
of G(G;U; Tr) that is contained in A. Thus, A is a union of nodes of G(G;U; Tr) that
are subsets of strongly connected components that follow X in the topological sort.
Every such node is contained in a member C of F. By Claim 2, C is contained in A,
so there is an edge of Gc(G;U; Tr) to its driver, and C becomes a passenger of P.
Claim 4 implies that P contains A, a contradiction.

Lemma 5.19. Let Ts and Tt be as de�ned at the beginning of this section. PQresolve
is a linear-time restarting procedure on Tt; provided SCCresolve is a linear-time
restarting procedure on Ts.

Proof. Each P node is inserted, examined, and removed at most once in Splitlist. We
showed previously that the time Newsplits spends maintaining Splitlist is O(n + m).
Exclusive of PQprocess, the remainder of the operations are just a series of truncated
depth-�rst traversals of di�erent regions of the tree, and which collectively only visit
each node of the tree once.
Thus, it remains to bound the time spent in all calls to PQprocess. Since each node

P is processed at most once, O(n + m) time is spent in the calls to SCCresolve and
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IsolateSCC by Lemmas 5.13 and 5.16. By Lemma 5.12, the cost of �nding (X ′; Z)
and the (X ′′; Z ′) may be charged to those edges of G(G;U; Tr) that are members of
CX ×V (G(G;U; T )) at constant time per edge, since they will only be charged in this
way in Process(P). Similarly, if each pair of pivots on X in the inner loop is assigned
to (X ′′; Z ′) in the inner loop, each edge is assigned two external pivots. Since there
are O(n+m) edges in all forcing graphs combined, there are at most O(n+m) of these
pivot operations. By Lemma 5.17 and 5.5, the external pivots contribute O(n+m) time
to the running time of the restarting sequence.

5.5. A restarting procedure on the P4 tree

We have reduced the problem of performing transitive orientation in linear time to
that of developing a linear restarting procedure on the P4 tree. In this section, we give
such a procedure, thus completing the transitive orientation algorithm.
Let U be a P4 or cotree node, and let u be the node of the data structure created

by Createtree that represents U (i.e. the node of the P4 tree whose leaf descendants
correspond to U ). The local members of U are those that were passed to the recursive
incarnation of Createtree or cotree that created u.
The existence of a node u in the P4 tree encodes information that the algorithm

discovered when it examined local, not global, members of u. Thus, to �nd what
information about G the algorithm encoded by installing u in the P4 tree, we restrict
our attention to its local members. The P4 tree is not a suitable structure for looking
up the local members of a node. We use what we will call a local tree. For each
node W of the P4 tree, the local tree has a unique corresponding node, and the leaf
descendants of that node in the local tree give the local members of W .
The local tree is created by the following procedure, which duplicates the recursion

of Createtree.

Function Localtree(G)
Input: An undirected graph G
Output: A local tree corresponding to G
if G is a cograph then T = Cotree(G)
else
Let (a; b); (b; c); (c; d) be a P4 in G;
TA := Localtree(G|A)
TB := Localtree(G|B)
TC := Localtree(G|C)
TD := Localtree(G|D)
TE := Localtree(G|E)
Create a tree node p and label it a “P4” node
Create a tree node s and label it an “S” node
for i = A; B; C; D; E do
Make Ti be a child of p;
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Select x ∈ {a; b; c; d}
TF := Localtree(G|(U ∪ {x}))
Make p be a child of s
Let TF be the other child of s
Let T be the tree rooted at s

return T

It is instructive to verify that the local tree essentially gives the recursion tree for
Createtree, except that each recursive incarnation creates two tree nodes, s and p,
rather than just one. We assume that the same unspeci�ed choices of {a; b; c; d} and
x ∈ {a; b; c; d} are made at each step in the recursion of Createtree and Localtree.
Each P4 or cotree node in either of the two trees has a unique corresponding node
in the other. However, the ‘S’ nodes do not have analogous nodes in the P4 tree.
Each P4 node is paired with a parent S node that is created by the same incarnation
of Localtree, so each S node has a unique P4 child. Note also that since the node x
mentioned in Localtree is passed to more than one recursive call, there will be more
than one leaf of the tree that corresponds to x.

De�nition 5.20. Let u be a node of a local tree T on graph G, and let X be an
arbitrary set of vertices of G.

• S(u) = {l : l is a leaf descendant of u in T}.
• L(u) = {x : x is a vertex of G that corresponds to at least one l ∈ S(u)}.
• Given an arbitrary set X of vertices of G, S(X ) is the set of leaves of the local tree
that correspond to a member of X . If P is a partition of vertices of G, S(P) =
{S(X ) : x ∈ P.

For distinct local tree nodes u and w it is possible that L(u) = L(w). However, when
no ambiguity is possible, we will use u and L(u) interchangeably, so that we may treat
each node of the local tree as a set.
Let P be the current partition in VertexPartition. A node u of the local tree is

split if L(u) intersects more than one partition class of P. Since more than one leaf
of the local tree may correspond to the same vertex of G, the local tree is not a union
tree on vertices of G. However, we may still use Newsplits to keep track of which
nodes are split locally as P evolves. Let P′ = P − Y ∪ {Ya; Y − Ya}. That is, P′ is
the re�nement of P obtained by dividing one of its partition classes into two classes
during a pivot operation, where Ya is the subset of Y that is adjacent to the pivot
vertex. Clearly, a call to Newsplit(S(Ya); T ), �nds each node u of T such that S(u) is
split by S(P′) but not by S(P). However, S(u) is split by S(P) if and only if L(u)
is split by P, and S(u) is split by S(P′) if and only if L(u) is split by P′. Thus, this
call to Newsplits identi�es each node u of T such that L(u) is split by P′ but not by
P. By applying such a call whenever a partition class Y is split into two sets Ya and
Y − Ya in VertexPartition, we may update a list of all nodes of the local tree that are
split.
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We will show with Lemma 5.21, below, that there is a way to select x ∈ {a; b; c; d}
in Createtree that guarantees that each node of G will correspond to at most two
leaves of the local tree. Thus, |S(Ya)| = O(|Ya|), so a call to Newsplits(S(Ya); T ) takes
O(|Ya|+ k) time by Lemma 5.7. As before, we may ignore the cost of maintaining a
list of currently split nodes of the local tree after each pivot operation.

Lemma 5.21. A local tree where each member of V appears at most twice as a leaf
may be constructed in linear time.

Proof. We must give some additional details about the linear-time implementation
of Createtree given in [31]. The algorithm processes each vertex of G once. Let
{x1; x2; : : : ; xn} denote the order in which the vertices of G are processed. During this
processing of G it maintains an evolving family of sets of vertices of G. Let Fj−1
denote the state of the set family before vertex xj is processed. Fj has the following
property:
(∗) For each X ∈ Fj, G|(X ∩ {x1; x2; : : : ; xj}) is a cograph.
The evolution of the set family tells how Createtree divides up the problem of

computing a P4 tree recursively. Each member of {xj; xj+1; : : : ; xn} is in exactly one
member of Fj−1. As a base case, F0 = {V (G)}. For an inductive step, let Y be
the member of Fj−1 that contains xj. If G|(Y ∩ {x1; x2; : : : ; xj}) is a cograph, then
Fj−1 =Fj. If G|(Y ∩{x1; x2; : : : ; xj}) is not a cograph, then every P4 that is contained
in this subgraph must contain xj because property (∗) on Fj−1 implies that G|(Y ∩
{x1; x2; : : : ; xj−1) is a cograph. Select such a P4 to be {a; b; c; d}. it Xj. Compute the
following partition of Y :
(1) A := (N (b)− N (c)− N (d)) ∩ Y ,
(2) B := ((N (a) ∩ N (c))− N (d)) ∩ Y ,
(3) C := ((N (b) ∩ N (d))− N (a)) ∩ Y ,
(4) D := (N (c)− N (b)− N (a)) ∩ Y ,
(5) U := ((N (a) ∩ N (b) ∩ N (c) ∩ N (d)) ∪ (N (a) ∩ N (b) ∩ N (c) ∩ N (d))) ∩ Y ,
(6) E := Y − A− B− C − D − U ,
Fj := (Fj−1 − Y ) ∪ {A; B; C; D; E; U ∪ {x}}.
Without loss of generality, suppose xj = a. Since every member of A forms a P4

with b; c, and d and G|{x1; x2; : : : ; xj−1} is a cograph, {x1; x2; : : : ; xj} ∩ A = {xj}. From
this observation and the fact that every P4 in G|(Y ∩ ({x1; x2; : : : xj}) contains xj, it
follows that property (∗) is maintained in Fj.
We now add a small detail that ensures that each xj corresponds to at most two

leaves of the local tree. Each node corresponds to a number of leaves of the local tree
that is given by one plus the number of times it was selected as x in all recursive
incarnations of Createtree and hence of Localtree. If a P4 is discovered when xj is
processed, then select x to be xj, since xj is a member of the P4. Since xj node is
selected as x only when it is processed, it is selected at most once to be x during
computation of the P4 tree.
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5.6. Finding pivots with a local tree node

We will �nd it convenient again to label each node u with a representative r ∈ L(u).
The representatives will be used for pivot operations. We ensure that the degree sum
of the representatives is O(m) with the following procedure:

Procedure Representatives(u)

Input: The root u of a local tree T on undirected graph G.

Result: A labeling of each internal node of T with a ‘representative’ vertex of G.

For each child w of u do
Call Representatives(w)

If |U | = 1 then let r be the sole member of L(u)
Else let r be a representative of children of u that has minimum degree
Assign r be the representative of u
If u is a P4 node then
Let a; b; c; d and A; B; C; D be as in the recursive call to Localtree
that created u

Reassign a; b; c; d as the representatives of the children corresponding
to A,B,C,D respectively

Lemma 5.22. Representatives runs in O(n+ m) time.

Proof. Suppose that Localtree labels U with a; b; c; d and associates them with A; B; C; D
when it creates U . Since only an S node may have a unique child and no S node is
the parent of another, the result is immediate from Lemma 5.21, which implies that
the number of nodes in the local tree is O(n).

Lemma 5.23. Let T ′ be the local tree. For each node U of the local tree, let r(U )
denote the representative of U .

∑
U∈T ′ deg(r(U )) = O(n+m); where deg(x) denotes

the degree of a vertex x in G.

Proof. Consider the degree sum of representatives if the last if statement is omitted
from Representatives. Let the rank of a node of the local tree be 1 if it is a leaf,
and one plus the maximum of the ranks of its children otherwise. Since each internal
node has at least two children, the degree sum of representatives of nodes of rank k
is at most half the degree sum of representatives of nodes of rank k − 1. Since the
degree sum of the leaves is O(m) by Lemma 5.21, the bound on these representatives
follows.
Createtree can be made to run in linear time [31] and in that implementation it

examines the entire adjacency list of each of a; b; c; d during creation of a P4 node.
This gives an O(n + m) bound on the degree sum of representatives assigned by the
�nal if statement.
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De�nition 5.24. A set X coincides with the local tree if it satis�es the following
conditions:
1. For any S node S and its P4 child P, either X ∩ P is empty, X ∩ P = P, or X ∩ S
is contained in a child of P.

2. For any cotree node W , X ∩ W is either empty, a union of children of W , or
contained in a child of W .
A partition P of nodes of G coincides with the local tree if each member of P

coincides with it.

Theorem 5.25. P coincides with the local tree if and only if it is consistent with the
corresponding P4 tree.

Proof. We proceed by induction on the height of a node in the recursion tree shared
by Createtree and Localtree. If G is a cograph, then the P4 tree and the local tree
are identical, so the theorem follows in this case. Otherwise, let p and s be as in the
main incarnation of Localtree, and let P = L(p) and S = L(s). Let P′ be the node of
the P4 tree that corresponds to P. P′ is created in the main incarnation of Createtree.
Thus, P = P′ and S = V (G), and the children of P in the local tree are the same sets
as the children of P′ = P in the P4 tree.
Let X be subset of V (G) such that X ∩ P 6= P, X ∩ P 6= ∅, and X is not a subset

of a child of P. X does not coincide with the local tree, and is it not consistent with
the P4 tree. The theorem is true in this case.
Suppose X ∩P = ∅ or X ∩P = P. The question of whether X is consistent with the

P4 tree reduces to the question of whether X ∩ (U ∪ {x}) is consistent with the tree
returned by the recursive call to Createtree(G|U ∪ {x}). The question of whether X
is consistent with the local tree reduces to the question of whether X ∩ (U ∪ {x}) is
consistent with the tree returned by the recursive call to Localtree(G|U∪{x}). Adopting
as the inductive hypothesis that the theorem holds for these two subtrees, it follows
that the theorem holds for the trees returned by Createtree(G) and Localtree(G).
Suppose X ∩ S = X is contained in a child of P in the P4 tree, hence in a child of

P′ = P in the P4 tree. Then the question of whether X is consistent with the P4 tree
reduces to the question of whether for each Y ∈ {A; B; C; D; E}, X ∩ Y is consistent
with the recursive call to Createtree(Y ). The question of whether X is consistent with
the local tree reduces to the question of whether for each Y ∈ {A; B; C; D; E}, X ∩Y is
consistent with the recursive call to Localtree(Y ). Adopting as the inductive hypothesis
that the lemma is true for these these two subtrees, it follows that the theorem holds
for the trees returned by Createtree(G) and Localtree(G).

We now give the algorithm which performs a vertex partition, and does not halt
until the partition coincides with the local tree. By Theorem 5.25, it follows that the
algorithm is a restarting procedure on the P4 tree. It maintains the invariant that Splitlist
contains those nodes of the local tree that are split by P but that have not yet been
processed, in addition to some nodes that have been processed. It assumes that the
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nodes of the local tree that are split by the initial partition are correctly labeled as
being split initially. The procedure maintains this invariant as it executes so that it
continues to hold when it halts.

Procedure P4resolve()

While Splitlist is not empty
Remove a node W from Splitlist
If W is not marked Processed
ProcessDescendants(W )

Procedure ProcessDescendants(W )
Mark W as processed
For each split child W ′ of W in the local tree that is not marked as
processed do
ProcessDescendants(W ′)

Process(W )

Procedure Process(W )
If W is a cotree node
For each child W ′ of W
Let w be the representative of W ′

Perform a universal pivot on w and update Splitlist with Newsplits
Else if W is a P4 node
For i := 1 to 4 do
For W ′ = A; B; C; D; E do
Let w be the representative of W ′

Perform a universal pivot on w and update Splitlist with Newsplits

An O(n + m) bound on O(n + m) calls to P4resolve is immediate from Lemma
5.23 and the fact that no node of the tree is processed more than once in all of the
calls.

Lemma 5.26. When Process is called on any P4 or cotree node W in the local tree,
the representatives of its children do not all lie in the same partition class.

Proof. As a base case, suppose Process (W ) occurred before Process (W ′) for each
child W ′ of W . This implies that when ProcessDescendants is called on W , W has no
split children. If W is split but has no split children, then it has children W1 and W2
that are subsets of di�erent partition classes from P. The representatives of W1 and
W2 must thus lie in di�erent partition classes, proving the lemma in this case.
Suppose W has a child W ′ such that Process(W ′) is called before Process(W ).

Adopt as an inductive hypothesis that the lemma is true for W ′. For the lemma to fail
at W , there must be a partition class Y that contains all representatives of children
of W immediately before W ′ is processed. Since the lemma is true at W ′, Y fails to
contain the representative z of some child Z of W ′.
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Case 1: W is a cotree node. W ′ must also a cotree node. W is a 1 node and W ′ is a 0
node or vice versa. Children of W ′ distinguish each other from all siblings of W ′. Thus
the representatives of children of W ′ distinguish each other from the representatives
of siblings of W ′. After the universal pivot on z that occurs when W ′ is processed,
no representative of a child of W ′ is in the same partition class as any representative
of a sibling of W ′, since the representatives of siblings of W ′ are members of Y and
z is not a member of Y . Since one of the representatives of children of W ′ is the
representative of W ′, this proves the lemma in this case.
Case 2: W is a P4 node. Let {a; b; c; d} and A; B; C; D; E be as de�ned in the

incarnation of Localtree that created W . W ′ ∈ {A; B; C; D; E}, so any node of W ′

distinguishes a pair of members of {a; b; c; d}. Thus z distinguishes a pair of members
of {a; b; c; d}. Since {a; b; c; d}⊆Y and z 6∈ Y , {a; b; c; d} do not all lie in the same
partition class when Process(W ) is called. This proves the lemma in this case.

Theorem 5.27. P4resolve is a restarting procedure on the P4 tree.

Proof. By Theorem5.25, it su�ces to show that P coincides with the local tree. Pro-
cessDescendants ensures that for each split local cotree node W , there has been a call
to Process(W ) by the time it halts.
Suppose W is a cotree node. Let the rank of a split cotree node in the local tree

be 0 if it has no split child when P4resolve halts, or else 1 plus the maximum of
the ranks of its children. If W is not split, no partition class violates condition 2 of
De�nition 5.24 with regard to W . If W has rank 0, none of its children is split and it
follows again that no partition class violates condition 2 of De�nition 5.24 with regard
to W . Otherwise, let i¿1 be the rank of W and adopt as an inductive hypothesis that
the lemma is true for split local cotree nodes of rank up to i−1. Assume for purposes
of contradiction that X is a partition class that violates condition 2 of De�nition 5.24,
and thus that X ∩W overlaps some child Y of W . By Lemma 5.26, when Process(Y)
was called, no partition class contained all representatives of children of Y . After a
pivot on each representative of children of Y when Y was processed, no partition
class contained members of both Y and W − Y , contradicting the de�nition of X . We
conclude that no class may violate condition 2 of De�nition 5.24 with regard to any
cotree node of any rank.
Suppose S is an S node and P is its P4 child. If P is not split when the algorithm

halts, then every partition class obeys condition 1 of De�nition 5.24 with respect to
S. Otherwise, let {a; b; c; d} and A; B; C; D; E; U be as in the incarnation of Localtree
that created S and P, and let e be the representative of E. For any partition class
X that exists when Process(P) is called, |X ∩ {a; b; c; d; e}| = j64 by Lemma 5.26.
Suppose j ¿ 1. Since G|{a; b; c; d; e} is prime, performing a universal pivot on each
of a; b; c; d; e splits X into a set F of partition classes such that for each X ′ ∈ F,
|X ′ ∩ {a; b; c; d; e}|6j− 1. Thus, repeating this sequence of pivots three times ensures
that for each resulting partition class Z , |Z ∩ {a; b; c; d; e}|61. By the de�nition of
A; B; C; D; E and U , a �nal pivot on each of {a; b; c; d; e} thus ensures that if X1; X2 ∈
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{A; B; C; D; E; U}, X1 6= X2, x1 ∈ X1, and x2 ∈ X2, then x1 and x2 are in di�erent
partition classes. It follows that for any partition class X ′ at this point, X ′ ∩ S is
contained in one of A; B; C; D; E; U . Thus X ′ satis�es condition 1 of De�nition 5.24
with respect to P.
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