
MENDEL: A DISTRIBUTED STORAGE

SYSTEM FOR EFFICIENT SIMILARITY

SEARCHES AND SEQUENCE

ALIGNMENT

Cameron TolooeeJan. 30, 2015

Big Data Lab, Jan. 31, 2015



Outline

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Motivation

 Overview

 Vantage-Point Tree

 System Architecture

 Results

 Conclusion & Future Work

 Questions



Motivation

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Due to exponential growth of biological datasets, 
current similarity search tools are becoming less 
sufficient

 BLAST, BLAT, YASS, FASTA, etc…

 Algorithm centric, different heuristics on similar 
algorithm with different trade-offs

 Similarity between sequences, or lack thereof, can 
explain relationships between them

 In some cases can provide important clues about 
common evolutionary roots of organisms



Basic Idea

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Inverted index

 Map content to its location in the database

 Rather than indexing what each location contains

 Allows for efficient searches at the cost of additional 

processing for insertions

 DHTs provide extremely fast lookups for distributed 

datasets



Basic Idea

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Searching DNA sequences for subsequences is a 
challenging problem

 Must consider partial matches, insertions/deletions 
(indels), repeated regions, etc.. 

 Sliding window over DNA sequence indexing on 
each substring

 Sliding window can identify indels

 Store data with in a DHT with a nearest neighbor 
data structure

 Nearest neighbor structure finds partial matches



Challenges

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 How to locate matches for a non-exact match query 

in a DHT?

 How to balance content load on storage nodes?



Vantage Point Tree

 Developed by Peter Yianilos and Jeffrey Uhlmann

independently

 Data structure used for nearest neighbor searches in 

metric space

 Recursively partition data points into two divisions

 Points that are within a threshold distance of the 

vantage point 

 Points that are outside the same

threshold

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Vantage-Point Tree

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Each node in a vp-tree 

maintains four values: 

 Input value

 Radius, µ

 Left child 

 Right child



Searching vp-trees

• Let query be q

• Let radius of q be τ 
• k nearest neighbors are 

contained within τ
• τ = min(𝑑𝑖𝑠𝑡 𝑞 → 𝑣, τ )
• 3 cases

• τ lies completely within 𝜇
• τ lies completely outside 𝜇
• τ and 𝜇 intersect

• Stop recursing when leaves are 

reached

τ

q

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Searching vp-trees

• Case 1: τ completely outside 

of 𝜇
• Don’t need to search left 

subtree

• τ = min(𝑑𝑖𝑠𝑡 𝑞 → 𝑣𝑝), τ
• Recurse on right subtree

τ

q

𝜇

vp

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Searching vp-trees

• Case 2: τ completely

inside 𝜇
• Don’t need to search 

right subtree

• τ = min(𝑟, τ)
• Recurse on left 

subtree

r

𝜇 τ
q

vp
r

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Searching vp-trees

• Case 3: worst case 

intersect

• Must search both 

trees

• τ = min(𝑟, τ)
• Recurse on both 

subtrees

𝜇

τ

q

r

Jan. 30, 2015

vp

Dec. 16, 2014Big Data Lab, Jan. 31, 2015



Vantage-point prefix tree

 Global vp-tree as an index is not scalable

 Utilize vp-tree as a similarity based hashing function

 Alter vp-tree node to contain a prefix

𝑝𝑟𝑒𝑓𝑖𝑥𝑙𝑒𝑓𝑡 = 𝑝𝑟𝑒𝑓𝑖𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ≪ 1

𝑝𝑟𝑒𝑓𝑖𝑥𝑟𝑖𝑔ℎ𝑡 = 𝑝𝑟𝑒𝑓𝑖𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ≪ 1 + 1

 Use as a group hash by assigning

groups to subtrees 

 Requires a balanced vpp-tree

1

10 11

100 111101 110

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



System Architecture

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Zero-hop distributed hash table

 Such as Apache Cassandra and Amazon Dynamo

 Hierarchical, two-tier hashing scheme

 Each node belongs to a group

 Groups are placed on the hashing ring

 Two rounds of hashing required to place or retrieve 

data

 Hashed to a group using the vpp-tree

 Second hash among group nodes



System Architecture

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

Client

Mendel ClusterGroup 
E

Group 
F

Group 
A

Group 
B

Group 
CGroup 

D
Group E

Node 
1

Node 
2

Node 
4

Node 
5

Node 
6

Node 
3

Group
Hash

Node
Hash



Indexing Data

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 100bp sliding window over each contig

 Each 100bp subsequence is individually indexed

 Passed through the vpp-tree to determine storage 

grouping

 Within the group, the subsequence is distributed 

using a SHA-1 hash to a storage node

 The subsequence block is maintained in a vp-tree 

local to its storage node



Query Evaluation

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Query is “hashed” in the vpp-prefix tree to find all 

subtrees that may have matching subsequences

 Each node in the selected group(s) performs a 

lookup in their vp-tree

 Results are aggregated and filtered 

 Results are send back to the client



Results

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Three benchmarks to test indexing speed, data 

distribution, and query speed

 Sourced real world data from the Genome Assembly 

Golden-standard Evaluation (GAGE)

 Four genomes ranging from 2 Mbp to 3 Gbp

 Benchmark 1: index each of the genomes into the 

system and measure the time to complete



Results

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Results

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Benchmark 2: Data distribution

 After all datasets have been indexed count files per 

node

 Compare versus flat SHA-1 hash



Results

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Benchmark 3: Issue a series of queries; measure 

response time and number of results

 Exact match query whose target exists in the database

 Exact match query whose target has a few errors to its 

match

 Similarity query whose target exists in the database

 Similarity whose target has a few errors to its match

 Similarity whose target is randomly generated



Results

Jan. 30, 2015Big Data Lab, Jan. 31, 2015



Conclusion & Future Work

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 The hashing scheme needs to be refined 

substantially in order to level the out the dispersion 

of the data

 Data input one-by-one

 Choosing initial vantage point (root)

 Currently queries must match the window they were 

indexed with

 Sliding window over queries



Questions?

Jan. 30, 2015Big Data Lab, Jan. 31, 2015

 Thanks!


