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Motivation
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 Due to exponential growth of biological datasets, 
current similarity search tools are becoming less 
sufficient

 BLAST, BLAT, YASS, FASTA, etc…

 Algorithm centric, different heuristics on similar 
algorithm with different trade-offs

 Similarity between sequences, or lack thereof, can 
explain relationships between them

 In some cases can provide important clues about 
common evolutionary roots of organisms



Basic Idea
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 Inverted index

 Map content to its location in the database

 Rather than indexing what each location contains

 Allows for efficient searches at the cost of additional 

processing for insertions

 DHTs provide extremely fast lookups for distributed 

datasets



Basic Idea
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 Searching DNA sequences for subsequences is a 
challenging problem

 Must consider partial matches, insertions/deletions 
(indels), repeated regions, etc.. 

 Sliding window over DNA sequence indexing on 
each substring

 Sliding window can identify indels

 Store data with in a DHT with a nearest neighbor 
data structure

 Nearest neighbor structure finds partial matches



Challenges
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 How to locate matches for a non-exact match query 

in a DHT?

 How to balance content load on storage nodes?



Vantage Point Tree

 Developed by Peter Yianilos and Jeffrey Uhlmann

independently

 Data structure used for nearest neighbor searches in 

metric space

 Recursively partition data points into two divisions

 Points that are within a threshold distance of the 

vantage point 

 Points that are outside the same

threshold
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Vantage-Point Tree
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 Each node in a vp-tree 

maintains four values: 

 Input value

 Radius, µ

 Left child 

 Right child



Searching vp-trees

• Let query be q

• Let radius of q be τ 
• k nearest neighbors are 

contained within τ
• τ = min(𝑑𝑖𝑠𝑡 𝑞 → 𝑣, τ )
• 3 cases

• τ lies completely within 𝜇
• τ lies completely outside 𝜇
• τ and 𝜇 intersect

• Stop recursing when leaves are 

reached

τ

q
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Searching vp-trees

• Case 1: τ completely outside 

of 𝜇
• Don’t need to search left 

subtree

• τ = min(𝑑𝑖𝑠𝑡 𝑞 → 𝑣𝑝), τ
• Recurse on right subtree

τ

q

𝜇

vp
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Searching vp-trees

• Case 2: τ completely

inside 𝜇
• Don’t need to search 

right subtree

• τ = min(𝑟, τ)
• Recurse on left 

subtree

r

𝜇 τ
q

vp
r
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Searching vp-trees

• Case 3: worst case 

intersect

• Must search both 

trees

• τ = min(𝑟, τ)
• Recurse on both 

subtrees

𝜇

τ

q

r
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Vantage-point prefix tree

 Global vp-tree as an index is not scalable

 Utilize vp-tree as a similarity based hashing function

 Alter vp-tree node to contain a prefix

𝑝𝑟𝑒𝑓𝑖𝑥𝑙𝑒𝑓𝑡 = 𝑝𝑟𝑒𝑓𝑖𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ≪ 1

𝑝𝑟𝑒𝑓𝑖𝑥𝑟𝑖𝑔ℎ𝑡 = 𝑝𝑟𝑒𝑓𝑖𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ≪ 1 + 1

 Use as a group hash by assigning

groups to subtrees 

 Requires a balanced vpp-tree

1

10 11

100 111101 110
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System Architecture
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 Zero-hop distributed hash table

 Such as Apache Cassandra and Amazon Dynamo

 Hierarchical, two-tier hashing scheme

 Each node belongs to a group

 Groups are placed on the hashing ring

 Two rounds of hashing required to place or retrieve 

data

 Hashed to a group using the vpp-tree

 Second hash among group nodes



System Architecture
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Indexing Data
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 100bp sliding window over each contig

 Each 100bp subsequence is individually indexed

 Passed through the vpp-tree to determine storage 

grouping

 Within the group, the subsequence is distributed 

using a SHA-1 hash to a storage node

 The subsequence block is maintained in a vp-tree 

local to its storage node



Query Evaluation
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 Query is “hashed” in the vpp-prefix tree to find all 

subtrees that may have matching subsequences

 Each node in the selected group(s) performs a 

lookup in their vp-tree

 Results are aggregated and filtered 

 Results are send back to the client



Results
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 Three benchmarks to test indexing speed, data 

distribution, and query speed

 Sourced real world data from the Genome Assembly 

Golden-standard Evaluation (GAGE)

 Four genomes ranging from 2 Mbp to 3 Gbp

 Benchmark 1: index each of the genomes into the 

system and measure the time to complete



Results
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Results
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 Benchmark 2: Data distribution

 After all datasets have been indexed count files per 

node

 Compare versus flat SHA-1 hash



Results
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 Benchmark 3: Issue a series of queries; measure 

response time and number of results

 Exact match query whose target exists in the database

 Exact match query whose target has a few errors to its 

match

 Similarity query whose target exists in the database

 Similarity whose target has a few errors to its match

 Similarity whose target is randomly generated



Results
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Conclusion & Future Work
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 The hashing scheme needs to be refined 

substantially in order to level the out the dispersion 

of the data

 Data input one-by-one

 Choosing initial vantage point (root)

 Currently queries must match the window they were 

indexed with

 Sliding window over queries



Questions?
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 Thanks!


