
A Real-time Anomalies Detection System based on Streaming Technology

Yutan Du, Jun Liu, Fang Liu
Beijing Key Laboratory of Network System Architecture

and Convergence
Beijing University of Posts and Telecommunications

Beijing, China
duyutan0814@gmail.com

Luying Chen
Haohandata Technology Co.,Ltd

Beijing, China
cly@kuanguang.com.cn

Abstract—With the wide deployment of flow monitoring in IP
networks, flow data has been more and more applied on
abnormal traffic detection. In practice, anomalies should be
detected as fast as possible from giant quantity of flow data,
while, at present, some classical anomalies detecting methods
can not achieve this goal. In this paper, we propose and
implement a distributed streaming computing system which
aims to perform real-time anomalies detection by leveraging
Apache Storm, a stream-computing platform. Based on this
efficient system, we can uninterruptedly monitor the mutation
of flow data and locate the source of anomalies or attacks in
real-time by finding the specific abnormal IP addresses. A
typical application example proved the capability and benefits
of our system and we also have a detailed discussion in
performance measurements and scalability.

Keywords-anomalies detection; Apache Storm;
streaming computing ; real-time;

I. INTRODUCTION

A. Background and Problem Statement
Flow monitoring is an important field of research and has

been widely deployed in IP network [1]. A flow is defined as
unidirectional stream of IP packets that share a set of
common properties; typically, the IP-five-tuple of protocol,
source and destination IP addresses, source and destination
ports are used [2]. The flow data contains a lot statistics
about those observed flows, such as the number of octets and
packets measured within a given time interval.
It has been shown that flow data can be used in

anomalies detection. By discovering periodical changes and
temporal trends of octets or packets count, it’s obvious that
we can detect and analyze traffic anomalies caused by
network problems or illegitimate attack traffic [3]. In
practice, it is important that the examination of the flow data
occurs in a timely manner, enabling the network
administrator find anomalies and to decide on appropriate
countermeasures [4]. While in recent years, there occurs an
explosive growth of interactive information in large scale
network [5] [6], to deal with giant quantity of these flow data,
some batch processing framework with big throughput, such
as MapReduce [7] may be a feasible solution, but with poor
instantaneity [8]. Those classical anomalies detection method
meet a hardship when making real-time process and
simultaneously dealing with giant quantity of source data.
For this purpose, some emerging kinds of framework which
providing real-time analysis and continuous computing can
just meet our requirements. Typical one of them is Apache

Storm [9]. Storm provides a distributed and fault-tolerant
real-time computation method, makes it easy to process
unbounded streams of data.
There are three key points that Storm can be used for real

time anomalies detection in large-scale network:
� Distributed programming provides parallel processes,

services mass data requirement and makes sure to be
capable with increasing amount of source flow data.

� Continuous computing model could processes input
streams in arbitrarily complex ways. This provides
the feasibility of realizing anomalies detection
algorithm in the framework. Flow data in streams
can be disposed with filters, functions, aggregation
and accesses complying with algorithm manner.

� Transfer mode makes these flow data streams
storage in memory throughout their lives，and will
not be written into disk unless artificial operation.
Low latency guarantees real-time process possible.

B. Major Contributions
In this paper, we designed and implemented a scheme

that makes the distributed real-time streaming technology
applied on anomalies detection. Our system makes a flexible
integration of Storm and distributed log collection system
Flume [10], working as collector for flow data with TB level
amount. Subsequent processing module chain provides a
framework for user defined detection algorithm. It can
dispose the received data with high-performance distributed,
stream-oriented analyses to monitor the minutely changes
and overall trends of octets or packets count. Based on some
peculiar mutations, we can locate network anomalies by
finding the specific abnormal IP addresses in real-time.

C. Paper Organization
This paper is organized as follows: Section II presents the

architecture and design of the proposed system. Section III
explains our key technologies. Evaluation results, including
correctness verification and performance analysis will be
shown in section IV. At last, section V presents the
concluding remarks and a number of future enhancements.

II. SYSTEM ARCHETECTURE

A. Data Collection
Flow data is a sequence of packets that have the uniform

5-tuple during a certain period. Those flow data are sorted in

2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics

978-1-4799-4955-7/14 $31.00 © 2014 IEEE

DOI 10.1109/IHMSC.2014.168

275

Figure 1. Source Collection Architecture

real time, and preserved in text form. Output file will be
created each time unit and store in a directory. To collect the
constantly produced flow data, availability and reliability
should be met. In Fig. 1, a Flume agent called SourceAgent
works to monitor the specific local directory. It does the
scanner job and uses Avro protocol transferring flow records
to those ReceivingAgent built in clusters. Flume provides
automatic blocking mechanism [11], when records come so
fast that the cluster calculating ability reach the limit,
SourceAgent will slow down the scan speed accordingly.

B. Data Processing
Our system employs Storm stream-processing frame.

When receiving the source flow records, spout will pre-
process them and get required fields including: IP addresses,
record time, uplink packets count and downlink packets
count. (We choose each flow record’s packets count rather
than octets to detect the specific anomalies which are caused
by a large number of short messages). Then multistage bolts
cooperate with each other to implement our anomalies
detecting algorithm.
Workload is partitioned by four modules. Fig. 2

illustrates our topology, flow data which have been pre-
processed by WorkSport transfer into Monitor module, TopN
module and Storage module synchronously.

Figure 2. Data Processing Architecture

TABLE I. HBASE MONITOR TABLE STRUCTURE

Row key Column: Qualifier (CF: count)
each time unit
(eg.1392301200)

0: no abnormal
1: uplink abnormal
2: downlink abnormal
3: both way abnormal

TABLE II. HBASE TOP N TABLE STRUCTURE

Row key Column: CF
Qualifier: Up Qualifier: Down

each time unit
(eg.1392301200)

N IP addresses:
IP1,IP2,...IPn-1,IPn

N IP addresses:
IP1,IP2,...IPn-1,IPn

TABLE III. HBASE STORAGE TABLE STRUCTURE

Row key Column: CF
Qualifier: Up Qualifier: Down

IP+”,”+each time unit
(eg.123.456.78.9,1392301200)

up PKTs count
M

down PKTs count
N

Monitor module keeps whole packets count’s variation
trend throughout our system, it judges whether there
occurred anomalies in each time unit by using the “K-
Nearest Neighbor” (k-NN for short) [12] cumulative
variation algorithm. TABLE I shows its stored format in
“Monitor table”.
TopN module finds out N IP addresses which generate

the most quantity packets in each time unit. Those IP
addresses made the greatest contribution to the overall
packets count, so we mark them as Suspects. If an anomaly
occurs, abnormal IP addresses should come from those
Suspects in the corresponding time unit. TABLE II shows its
stored format in “TopN table”.
Storage module gets packets count of each IP address

every time unit. We store the result in “Storage table” with
the following format TABLE III shows. This information is
used to determine the real abnormal IP addresses. After
confirming the range of Suspects, we also need to sift. By
inquiring those Suspects one by one, we can eventually know
the “criminal” addresses responsible for anomalies.
Monitoring these three HBase [13] [14] tables in real-

time, query module can get the final correspondence
between anomalies occurring time and those abnormal IP
addresses. Query process works uninterruptedly with two
steps. Step 1, it checks Monitor table each time unit, if
detecting anomalies at time unit T, it will immediately find
the Suspects in TopN table using rowkey “T”, and make a
combination between T and each Suspect of query result as
Storage table rowkey format “IP,time”. Step 2, we scan the
Storage table using step 1’s outcome with a time range from
T-x moment to T moment, fetch the packets count trend of
this period and use “k-NN” algorithm to make sure if every
Suspect IP address had problem in time unit T.

III. KEY TECHNOLOGIES

A. Integration of continuous input streams
Due to Storm’s nontrivial character, topology must

communicate with external systems for input, e.g. our
topology spout takes flow data information from a external
Avro connection provided by the Flume agents. So we need
to build Flume agents in Storm spout components and make
sure that they conclude an infallible and flexible connection.
Storm cluster constituted by multiple nodes, for even
distribution of whole data, we give equal spout tasks to each
node by using pluggable schedule and it means every node
needs to set as many Flume agents as spout task.y g p

Figure 3. Spout Architecture

276

Figure 4. Topology of Monitor Module

To make a one-to-one correspondence between a Flume
agent and a spout task, we redesign Storm spout’s operating
logic. In Fig. 3, when topology initializing, every spout task
firstly establishes an Avro Flume agent binding with a
unique port. After receiving flow records, local agent stores
them in a memory channel. Spout monitors the channel
continually, gets flow records and makes them a conversion
from Flume’s data model “Event” to Storm’s tuple structure
“Values”. After this conversion, records will be sent to
subsequent bolt calculation components in a batch pattern.

B. Real-time anomalies detection algorithm
For real-time processing, it’s hard to store huge amount

of experience values, so we choose the “k-NN” algorithm
[11]. Fig. 4 illustrates Monitor module topology. It has two
stages including count bolt and sum bolt (MC and MS for
short).
MC could have a high level parallelism to deal with big

throughput. It receives flow records emitted from spout
using shuffle grouping to balance the pressure. Each task
continuously updating the sum of receiving flow records’
packets count, and emits them to MS. Emitting the update
result when each record comes can make MS hold the
accurate status, while cluster inner network load rising at the
same time. MS summarizes MC’s intermediate outcomes
and encapsulates the k-NN algorithm. We maintain a table
which keeps the received packets counting of each MC task.
Each time unit, MS makes a summation of the whole
packets count, then using k-NN algorithm to judge if
anomalies occurred and store normal result for future
verdict. HBase writing action occurs once per time unit, and
MS’s table should be cleared after writing operation.

C. Real-time TopN computing algorithm
We use the “Frequent algorithm” [15] which applies for

top N query in data streams to dynamically get n IP
addresses which produce most packets in each time unit.
Frequent algorithm is based on counting operations. For

the given value N, we build N counter, when reading a new
data x, it has three kinds of processing mode.

� If a counter maps to x, make this counter value
added by 1.

� If no counter maps to x, but there is at least one
unoccupied counter, then allot a counter for x and set
its value as 1.

� If no counter maps to x, neither is one counter
unoccupied, then make all counters’ value subtracted
by 1 and release counters with a value as 0.

Figure 5. Topology of Monitor Module

Fig. 5 illustrates TopN module topology. It also has two
stages including count bolt and sum bolt (TC and TS for
short). TC receives flow records emitted from spout using
fields grouping method to make sure that flow records with
the same IP address can’t be transfer to different tasks. Each
TC task builds n counters, process coming records using the
algorithm mentioned above. TC task provides its n counters
to TS and TS with unique task maintains m*n (m is TC
tasks count) counters. These counters are sorted in
descending order and ranking result will be updated with
every coming message emitted by TC. Though TC’s
counting may be less than the truth, the TS ranking
correctness can be ensure when m*n is big enough. IP
addresses map to the top n counters are just our target.
HBase writing action occurs once per time unit, and all
counters should be cleared after writing operation.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment
Our experimental setup consists of 3 computer nodes

(N1, N2 and N3 for short). They have the same hardware
configuration with double Intel(R) Pentium(R) CPU G2030
@ 3.00GHz, 8GB of RAM, 500GB disk and 100Mbps
network bandwidth. Fig. 6 shows the deployment scenarios.

Figure 6. Experimental deployments

TABLE IV. ACCURACY IN TOP N MODULE

Time/
Accuracy

Top 10 Top 25 Top 50 Top 100

22:05 100% 100% 100% 96%
22:15 100% 100% 100% 100%
22:25 100% 100% 100% 97%
22:35 100% 100% 100% 96%
22:45 100% 100% 100% 98%
22:55 100% 100% 100% 98%

277

B. Correctness Evaluation
In this section, we present some results to analyze our

system’s function correctness. Experimental data is one
hour (22:00-23:00) exported flow data in L province, China.
1) Real-time TopN Computing
We made a comparison between “TopN table” records

and the authentic set for N IP addresses with most packets
count. Accuracy is the metric and it is computed using

N
MA �ccuracy (1)

M is the intersection of “TopN table” and authentic top N IP
set. It is obviously that high accuracy presents good validity.
We pick six typical points to show the result. Accuracies

are listed in TABLE IV. We just concentrate on coverage
probabilities, while their ranking is not what we are
concerned about. The accuracy was maintaining in 96–
100%. This indicates that our real-time TopN computing
scheme in Storm can achieve high accuracy.
2) Real-time anomalies detection
The left y-axis of Fig. 7 is packets count value which is

calculated by all the raw flow records, while right y-axis is
monitor module’s detection result. In Fig. 9, up packets
count rose unexpectedly at 22:20, while Monitor module’s
value changed to “1”, meaning uplink anomalies occurred at
the same time. Continue to observe, it’s obvious that real
value of packets count and our detection result showed great
identity throughout the whole experimental time. Monitor
table’s value can reflect the truth in real-time, so we can
conclude that our anomalies detection method that makes k-
NN algorithm embedded in Storm topology works well.
3) Judging Correctness Evaluation
Up to this point, we have shown that the first found

anomaly occurred at 22:20. At 22:20, our system exported
28 abnormal inside IP addresses records in upstream
direction. By analyzing with raw flow records，we found
that at 22:20, 26 members of these 28 IP addresses had huge
flow records with the same outside IP 120.200.96.7. And
just at that time unit, 120.200.96.7’s packets count went up
from 2538 to 17063945 which accounting for even 89
percent. According to some further research, we found the
reason for this exceedingly proportion rising is that
120.200.96.7 received a huge number of consecutive, short
UDP packets that transferred by 45 inside IP addresses
around 22:20， while the top 26 with the most packets count
among these 45 inside IP addresses were just these 26 which
our system regarded as anomalies. Our system successfully
detected this real existing abnormal UDP flow [16] by
figuring out senders’ IP. For the left two abnormal records,
their inside or outside packets count rose drastically between
22:19 and 22:20, and this rising made themselves regarded
as anomalies. However, we omit their detailed schema from
this paper.

C. Performance and Scalability analyze
1) Performance Analyses

Figure 7. Comparison between Monitor Module’s Result and Real Packet

For a distributed streaming system, many factors can
have an effect on performance. We monitored our system
status with memory, disk IO, networks IO and CPU.
Storm topology has no disk IO unless we manually take

the operation reading or writing disk， so our system disk
IO are HBase writing and reading. In TABLE V, disk IO is
under 20% while the system attains the maximum
processing ability. So disk IO is not a key factor, neither is
network IO with a transmission rate slower than 3Mb/s,
because our network bandwidth is 12.5Mb/s.
Now we concentrate on CPU performance, in TABLE V,

when adding input records count, nodes’ CPU idle lowered.
The y-axis of Fig. 8 is CPU idle percentage, when the
records count grows up to 0.8 million every minute, CPU
had just a few seconds around 51 without full load status.
When this became to 0.85 million，CPU has no idle and
attained to ultimate state ， while at the same time
accumulation of unprocessed flow data occurred at source
dictionary because of the Flume blocking mechanism. This
shows that CPU confined system maximum calculate ability.
Memory is also an important resource. By making a

comparison between the third and fourth column, we can
see when the RAM increasing, system performance had no
obviously improvement except that frequency of JVM
garbage collection decreased. CPU also stayed in
ultimate state and the real processing time did not shorten.
So in our experiment, memory did not become the
bottleneck of performance.

TABLE V. SYSTEM PERFORMANCE ANALYSES

Records count
per minute
(*100000)

4
(1G RAM)

7
(1G RAM)

8
(1G RAM)

8
(4G RAM)

Java GC
in 20 minutes
（young/full）

N2(302/26)
N3(291/19)

N2(365/30)
N3(277/30)

N2(485/32)
N3(441/33)

N2(102/14)
N3(93/17)

Average
Disk IO

9.5% 16.7% 19.9% 19.7%

Source node
Network IO

2.2Mb/s 2.56Mb/s 2.39Mb/s 2.42Mb/s

Average
CPU Idle

49.93% 19.76% 7.17% 7.42%

Idle> 50%
per minute

28s 12s 2s 2s

278

Figure 8. CPU Free Period Situation

TABLE VI. SCALABILITY OF TASK PARALLELISM

Num of
Nodes

Maximum processing
records (*10000 per min)

Maximum processing
records Per Node
(*10000 per min)

2 80 40
3 118 39.3
4 152 38
5 182 36.4

According to those result, we can conclude that CPU
properties dominate performance. Capability promoting
needs support of CPU with higher frequency or more cores.
2) Scalability Evaluation
Scalability is the key parameter that is used to evaluate

the efficiency of a parallel algorithm. To evaluate scalability
of our system, we changed the number of cluster nodes as 2,
3, 4, and 5 to study the processing capacity for detecting
work. The middle column of TABLE VI is the maximum
processing ability calculated when CPU cores reach their
ultimate state. The ideal scalability should mathematically
be a linear growth that means doubling the number of
computing nodes doubles the processing capacity. The right
column shows node average processing ability, it remain the
same value indicates the ideal scalability. From the result,
we can see that our method approaches closely to linear
scalability. The reasons for not matching the ideal is that
extra task scheduling, and communications between spout
and bolt take up more system resources, which are internal
mechanism residing in Storm execution environment.
Although our parallel algorithm extend little slower than

the linear scalability, the total execution amount of flow
data records, which are 1.82 million for 1 minute can
satisfy the performance requirement as a stream-oriented
processing program running over only 5 working nodes.

V. CONCLUTION
This paper proposes a real-time anomalies detection

system based on streaming technology. We designed and
implemented a novel anomalies detection algorithm on the

streaming computation freamwork. It offered a solution that
can detects network anomalies and accurately locate the
source of anomalies at IP level. Experimental results prove
that the proposed system achieves accurate real-time
anomalies detection from mass flow data in a scalable way.
For future work, we will focus on enhancing the system to
provide multiple data source processing capability.

ACKNOWLEDGMENT
This work was supported by 111 Project of China

(B08004) and the Fundamental Research Funds for the
Central Universities (2013RC0114).

REFERENCES
[1] F. Dressler and G. Munz. Flexible flow aggregation for adaptive

network monitoring. IEEE LCN Workshop on Network
Measurements 2006, Tampa, Florida, USA, Nov. 2006.

[2] Gerhard Munz and Georg Carle. Real-time Analysis of Flow Data for
Network Attack Detection. Integrated Network Management, 2007.
IM '07. 10th IFIP/IEEE International Symposium on, 21-25 May
2007, Munich, Germany:100-108.

[3] Anukool Lakhina, Mark Crovella, Christiphe Diot. Characterization
of network-wide anomalies in traffic flows. Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, 25 Oct
2004:201-206.

[4] Paul Barford, David Plonka. Characteristics of network traffic flow
anomalies. IMW '01 Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, 01 Nov 2001: 69-73.

[5] J. McHugh. Sets, Bags, and Rock and Roll: Analyzing Large Data
Sets of Network Data. European Symposium on Research in
Computer Security 2004 (ESORICS 04), Sophia Antipolis, France,
Sept. 2004.

[6] Ling Huang, XuanLong Nguyen et al. Communication-Efficient
Online Detection of Network-Wide Anomalies. 26th IEEE
International Conference on Computer Communications. 6-12 May
2007, Anchorage, AK:134-142.

[7] Jeffrey Dean, Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM - 50th
anniversary issue: 1958 – 2008, Volume 51 Issue 1, January
2008 ,NY, USA:107-113.

[8] Youngseok Lee, Wonchul Kang, Hyeongu Son. An Internet Traffic
Analysis Method with MapReduce. Network Operations and
Management Symposium Workshops (NOMS Wksps) . 19-23 April
2010:357-361.

[9] Twitter Storm Homepage, http://storm.incubator.apache.org/.
[10] Apache Flume Homepage, http://flume.apache.org/.
[11] Chengwei Wang, Infantdani Abel Rayan, Karsten Schwan. Faster,

larger, easier: reining real-time big data processing in cloud.
Middleware Conference. 13 Dec. 2012.

[12] Xiaohui Yu, Ken Q. Pu, Nick Koudas. Monitoring k-Nearest
Neighbor Queries Over Moving Objects. ICDE 2005, 05-08 April
2005:631-642.

[13] Apache HBase Homepage, http://hbase.apache.org/.
[14] George L. HBase: the definitive guide[M]. O'Reilly Media, Inc. 2011.
[15] Richard M. Karp, Scott Shenker, Christos H. Papadimitriou. A simple

algorithm for finding frequent elements in streams and bags. ACM
Transactions on Database Systems, Volume 28 Issue 1, March
2003:51-55.

[16] C. Gates and D. Becknel. Host Anomalies from Network Data. IEEE
Systems, Man and Cybernetics Information Assurance Workshop,
West Point, NY, June 2005.

279

