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Bayesian Networks 

 Probabilistic Directed Acyclic Graph Model 

 Each node in the network represents 

random variable 

 Edges between the nodes represent the 

probabilistic dependencies between the 

nodes 

 Conditional probability matrices are 

stochastic in nature 

 Parameters of the model consistent with 

the Markov property 
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Discrete Markov Model 

 Discrete Markov model is a stochastic model used to model randomly 

changing systems  

 It is assumed that future states depend only on the present state and not on 

the sequence of events that preceded it (that is, it assumes the Markov 

property).  

 Generally, this assumption enables reasoning and computation with the 

model that would otherwise be intractable. 

 An example use of a Markov chain is Markov Chain Monte Carlo, which uses 

the Markov property to prove that a particular method for performing a 

random walk will sample from the joint distribution of a system. 
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Hidden Markov Model 

 A hidden Markov model is a Markov chain for which the state is only partially 

observable. 

 An HMM can be presented as the simplest dynamic Bayesian network.  

 Observations are related to the state of the system, but they are typically 

insufficient to precisely determine the state. 

 In a hidden Markov model, the state is not directly visible, but output, 

dependent on the state, is visible. 

 Hidden Markov models are especially known for their application in temporal 

pattern recognition such as speech, handwriting, gesture recognition, part-of-

speech tagging, musical score following, partial discharges and bioinformatics 

and time-series data. 
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Limitations of HMM 

 In image processing, 

 M objects 

 K positions 

 K^M possible distinct states to model the system 

 Inefficient and difficult to interpret 

 This unconstrained HMM would require K^2M parameters in the transition 

matrix 

 This encourages random interactions of all variables, which will not help to 

discover the structure of system.  
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Extensions of HMM 
 Factorial HMMs 

 Underlying state transitions are constrained (i.e. each state is independent) 

 Each state variable evolves according its own dynamics and uncoupled from 

other state variables 
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Extensions of HMM 
 Tree structured HMM 

 This architecture can be interpreted as a probabilistic decision tree with 

Markovian dynamics linking the decision variable. 

 Note that, the interaction between state variables is constrained 

 Provide useful starting point for modeling time series with both temporal and 

spatial structure of multiple resolutions 
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Application of HMM in predictive 

analysis 

 As per requirement, both extensions can be used in predictive analysis. 

 Factorial HMMs can be used in case of mutually independent state variables. 

 Factorial HMMs can also provide a very efficient approach to construct a 

model with state variables completely decoupled. 

 Tree structured HMMs provide a more open and controlled interaction 

between state variables which maintains the efficiency of model while 

allowing the state variables to interact with each other. 
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Questions ? 
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