
2514 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6, JUNE 2013

DRAW: A New Data-gRouping-AWare Data Placement Scheme for Data
Intensive Applications With Interest Locality

Jun Wang, Qiangju Xiao, Jiangling Yin, and Pengju Shang

Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32826 USA

Recent years have seen an increasing number of scientists employ data parallel computing frameworks such as MapReduce and
Hadoop to run data intensive applications and conduct analysis. In these co-located compute and storage frameworks, a wise data place-
ment scheme can significantly improve the performance. Existing data parallel frameworks, e.g., Hadoop, or Hadoop-based clouds,
distribute the data using a random placement method for simplicity and load balance. However, we observe that many data intensive
applications exhibit interest locality which only sweep part of a big data set. The data often accessed together result from their grouping
semantics. Without taking data grouping into consideration, the random placement does not perform well and is way below the effi-
ciency of optimal data distribution. In this paper, we develop a new Data-gRouping-AWare (DRAW) data placement scheme to address
the above-mentioned problem. DRAW dynamically scrutinizes data access from system log files. It extracts optimal data groupings and
re-organizes data layouts to achieve the maximum parallelism per group subjective to load balance. By experimenting two real-world
MapReduce applications with different data placement schemes on a 40-node test bed, we conclude that DRAW increases the total
number of local map tasks executed up to 59.8%, reduces the completion latency of the map phase up to 41.7%, and improves the
overall performance by 36.4%, in comparison with Hadoop’s default random placement.

Index Terms—Data intensive, data layout, Hadoop, MapReduce.

I. INTRODUCTION

T He emerging myriad data intensive applications place a
demand on high-performance computing resources with

massive storage. Academic and industrial pioneers have been
developing big data parallel computing frameworks and large-
scale distributed file systems to facilitate the high-performance
runs of data-intensive applications, such as bio-informatics [20],
astronomy [19], and high-energy physics [17].
In practice, many scientific and engineering applications

have interest locality: 1) domain scientists are only interested
in a subset of the whole data set, and 2) scientists are likely to
access one subset more frequently than others. For example, in
the bioinformatics domain, X and Y chromosomes are related
to the offspring’s gender. Both chromosomes are often ana-
lyzed together in generic research rather than all the 24 human
chromosomes [11]. Regarding other mammal’s genome data
pools, the chimpanzee is usually compared with human [14],
[22]. Another example is, in the climate modeling and fore-
casting domain, some scientists are only interested in some spe-
cific time periods [23]. In summary, these co-related data have
high possibility to be processed as a group by specific domain
applications. Here, we formally define the “data grouping” to
represent the possibility of two or more data (e.g., blocks in
Hadoop) to be accessed as a group. Such data grouping can be
quantified by a weight: a count that these data have already
been accessed as a group. The potential assumption is that
if two pieces of data have been already accessed together for
many times, it is highly possible for them to be accessed as a
group in the future [10].

Manuscript received November 26, 2012; revised February 28, 2013; ac-
cepted March 01, 2013. Date of current version May 30, 2013. Corresponding
author: J. Wang (e-mail: jun.wang@ucf.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMAG.2013.2251613

Fig. 1. Simple case showing the efficiency of data placement for MapReduce
programs.

By using Hadoop’s default random data placement strategy,
the overall data distribution may be balanced,1 but there is no
guarantee that the data accessed as a group is evenly distributed.
More specifically, a MapReduce job is split into manymap tasks
to process in parallel. Map tasks intend to be allocated to the
nodeswith the needed data locally being stored to achieve “com-
pute-storage co-locality”. Without evenly distributed grouping
data, some map tasks are either scheduled on other nodes which
remotely access the needed data, or they are scheduled on these
data holding nodes but have towait in the queue. Thesemap tasks
violate the data locality and severely drag down the MapReduce
program performance [3]. Besides, dynamic data grouping is ef-
fective for exploiting the predictability of data access patterns
and improving the performance of distributed file systems [10],
[12], [16].We show an example in Fig. 1: if the grouping data are

1If the initial data distribution is not balanced, Hadoop users can start a bal-
ancer (an utility in Hadoop), to rebalance the data among the nodes.

0018-9464/$31.00 © 2013 IEEE

WANG et al.: DRAW: DATA PLACEMENT SCHEME 2515

distributed by Hadoop’s random strategy, the shaded map tasks
with either remote data access or queueing delay are the perfor-
mance barriers; whereas if these data are evenly distributed, the
MapReduce program can avoid these barriers.
Now we briefly analyze the possibility for random data dis-

tribution to evenly distribute the data from the same group. Our
observation shows this possibility is affected by three factors:
1) the number of replica for each data block in each rack (NR);
2) the maximum number of simultaneous map tasks on each
node (NS); and 3) the data grouping access patterns. It is easy
to conclude that the larger NR or NS is, the more likely that
Hadoop’s default random solution will achieve the optimal dis-
tribution: a) assume NR is extremely large, e.g., the number
of replica for each data is same as the number of nodes in the
cluster, because the random data distribution will not place the
same data onto the same node, each node will hold one copy of
the data therefore the maximized parallelism can be achieved;
b) assume NS is extremely large, e.g., equals to the number
of affinitive data, even if the random solution clusters all these
data onto the same node, all the map tasks can run simultane-
ously hence the performance will not be degraded. In above two
hypothetical cases, random data distribution is the ideal affini-
tive-data placement. However in practice, NR and NS are very
small (3 replica for each data and by default) [3]: in
3-replica Hadoops, there are at most 2 replica in the
same rack, the other one is placed in another rack for rack-level
fault tolerance; moreover, some single-replica Hadoops
are used for performance purpose [7], or in the Cloud plat-

forms that provide sufficient data redundancy for reliability, e.g.,
Amazon’s EC2 and S3 [1], [25]; is limited by the hardware
capacity, currently in most of the clusters [5]. More-
over, the data grouping is not considered in default Hadoop,
which results in a nonoptimal data placement strategy for the
data-intensive applications having interest locality.
Therefore, we develop a new Data-gRouping-AWare data

placement scheme (DRAW) that takes into account the data
grouping effects to significantly improve the performance
for data-intensive applications with interest locality. Without
loss of generality, DRAW is designed and implemented as a
Hadoop-version prototype. By experimenting with real world
genome indexing [2] and astrophysics applications [9], DRAW
is able to execute up to 59.8% more local map tasks in com-
parison with random placement. In addition, DRAW reduces
the completion time of map phase by up to 41.7%, and the
MapReduce task execution time by up to 36.4%.2

The rest of this paper is organized as follow: Section II
describes the design of DRAW. Section III present experi-
mental methodology and our results and analysis, respectively.
Section IV presents related works. Finally, Section V concludes
the paper.

II. DATA-GROUPING-AWARE DATA PLACEMENT

In this section, we design DRAW at rack-level, which op-
timizes the grouping-data distribution inside a rack. There are
three parts in our design: a data access history graph (HDAG)

2These numbers can be affected by the number of launched reduce tasks, the
required data size, etc.

Fig. 2. Example showing the HDAG.

to exploit system log files learning the data grouping informa-
tion; a data grouping matrix (DGM) to quantify the grouping
weights among the data and generate the optimized data group-
ings; an optimal data placement algorithm (ODPA) to form the
optimal data placement.

A. History Data Access Graph (HDAG)

HDAG is a graph describing the access patterns among the
files, which can be learned from the history of data accesses. In
each Hadoop cluster rack, the NameNodemaintains system logs
recording every system operation, including the files which have
been accessed. A naive solution can be: monitor the files which
are being accessed; every two continuously accessed files will
be categorized in the same group. This solution is simple for im-
plementation because it only needs a traversal of the NameNode
log files. However in practical situations there are two problems:
first, the log files could be huge which may result in unaccept-
able traversal latency; second, the continuously accessed files
are not necessarily related, e.g., the last file accessed by task
and the first file accessed by task . Therefore, we need to de-
fine checkpoint to indicate how far the HDAGwill traverse back
in the NameNode logs; and we also need to exploit the map-
pings between tasks and files to accurately learn the file access
patterns. Note that in Hadoop clusters, files are split into blocks
which is the basic data distribution unit; hence we need to trans-
late the grouping information at file level into block level. For-
tunately, the mapping information between files and blocks can
be found in the NameNode. Fig. 2 shows an example of HDAG:
given threeMapReduce tasks, accesses ,
here is block; accesses ; and accesses

. The accessing information initially gen-
erated from the log files is shown as Fig. 2(a). Thereafter we
can easily translate the table into the HDAG shown as Fig. 2(b).
This translation step makes it easier to generate the grouping
Matrix for the next step.

B. DGM

Based on HDAG, we can generate a DGM showing the rela-
tion between every two data blocks. Given the same example as
shown in Fig. 2, we can build the DGM as shown in Fig. 3 (step1
and step2), where each element DGM is the
grouping weight between data and . Every DGM can be
calculated by counting the tasks in common between task sets
of and . The elements in the diagonal of the DGM show
the number of jobs that have used this data. In DRAW, DGM
is a by matrix, where is the number of existing blocks.
As we stated before, one data belonging to group A may belong

2516 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6, JUNE 2013

Fig. 3. Example showing the grouping matrix and the overall flow to cluster data based on their grouping weights.

to group B at the same time; the grouping weight in the DGM
denotes “how likely” one data should be grouped with another
data.
After knowing the DGM in Fig. 3, we use a matrix clustering

algorithm to group the highly related data in step3. Specifically,
Bond Energy Algorithm (BEA) is used to transform the DGM to
the clustered data grouping matrix (CDGM). Since a weighted
matrix clustering problem is N-P hard, the time complexity to
obtain the optimized solution is , where is the dimen-
sion. The BEA algorithm saves the computing cost by finding
the suboptimal solution in time [13]; it has been widely
utilized in distributed database systems for the vertical partition
of large tables [18] and matrix clustering work [13]. The BEA
algorithm clusters the highly associated data together indicating
which data should be evenly distributed. After group 1 is gener-
ated, repeat the steps in step 4 and step 5 to generate the group
2. In this case, group 1 and group 2 represent most related data
sets. Assuming there are 5DataNodes in the Hadoop cluster, the
CDGM in Fig. 3 indicates data {6, 7, 2, 1, 3} (group 1) and {4,
9, 5, 10, 8} (group 2) should be evenly distributed when placed
on the 5 nodes. Note that we have only 10 pieces of data in our
example, after knowing that {6, 7, 2, 1, 3} should be placed as
a group (horizontally), it is natural to treat the left data {4, 9, 5,
10, 8} as another group. Hence, step 4 and step 5 in Fig. 3 are
not necessary for our case, but when the number of remaining
data (after recognizing the first group) is larger than the number
of nodes, more clustering steps are needed.

C. ODPA

Knowing the data groups alone is not enough to achieve the
optimal data placement. Given the same example from Fig. 3,
random placing of each group, as shown in Fig. 4 (1), task 2
and task 3 can only run on 4 nodes rather than 5, which is not
optimal.

Algorithm 1 ODPA algorithm

Input: The sub-matrix (OSM) as shown in Fig. 3: ;
where is the number of data nodes;

Output: A matrix indicating the optimal data placement:
;

Steps:

for each row from do

;

Find the minimum value in this row;

Put this value and its corresponding column index into
a set MinSet;

,; // there may be more than
one minimum value

if there is only one tuple in then

//The data referred by C1 should be placed with the
data referred by R on the same node;

;

;

Mark column is invalid (already assigned);

Continue;

end if

for each column from do

Calculate ;// all the
items in column

end for

Choose the largest value from array;

;

;

;

Mark column is invalid (already assigned);

end for

WANG et al.: DRAW: DATA PLACEMENT SCHEME 2517

Fig. 4. Without ODPA, the layout generated from CDGM may be still non-
optimal.

This is because the above data grouping only considers the
horizontal relationships among the data in DGM, and so it is also
necessary to make sure the blocks on the same node have min-
imal chance to be in the same group (vertical relationships). In
order to obtain this information, we propose an algorithm named
ODPA to complete our DRAW design, as described in Algo-
rithm 1. ODPA is based on submatrix for ODPA (OSM) from
CDGM. OSM indicates the dependencies among the data al-
ready placed and the ones being placed. For example, the OSM
in Fig. 3 denotes the vertical relations between two different
groups (group1:6, 7, 2, 1, 3 and group2:4, 9, 5, 10, 8).
Take the OSM from Fig. 3 as an example, The ODPA algo-

rithm starts from the first row in OSM, whose row index is 6.
Because there is only one minimum value 0 in column 9, we
assign , which means data 6 and 9 should be
placed on the same data node because 9 is the least relevant
data to 6. When checking row 7, there are five equal minimum
values, which means any of these five data are equally related on
data 7. To choose the optimal candidate among these five can-
didates, we need to examine their dependencies to other already
placed data, which is performed by the loop calculating
the for these five columns. In our case, is the
largest value; by placing 8 with 7 on the same node, we can, to
the maximum extent, reduce the possibility of assigning it onto
another related data block. Hence, a new tuple {7, 8} is added to

. After doing the same processes to the rows with index 1, 2,
3, we have a , in-
dicating the data should be placed as shown in Fig. 4 (2). Clearly,
all the tasks can achieve the optimal parallelism (5) when run-
ning on the optimal data layout. With the help of ODPA, DRAW
can achieve the two goals: maximize the parallel distribution of
the grouping data, and balance the overall storage loads.

D. Exceptions

The cases without interest locality: DRAW is designed for
the applications showing interest locality. However there are
some real world applications do not have interest locality. In
this case, all the data on the cluster belongs to the same group.
Therefore the data grouping matrix contains the same grouping
weight for each pair of data (except for the diagonal numbers);
the BEA algorithm will not cluster the matrix, all the data blocks
will stay on the nodes and distributed as the default random data
distribution. Because all the data are equally popular, theoret-
ically random data distribution can evenly balance them onto
the nodes. In this case, DRAW has the same performance as
Hadoops random data distribution strategy.

The cases with special interest locality: The purpose of
DRAW is to optimize the performance for the common appli-
cations which follow or not totally deviated from the previous
interest locality. However in practice, some applications may
have unpredicted access patterns that DRAW did not studied
yet. These uncommon queries may suffer from bad performance
because DRAW cannot guarantee these accessing data are well
distributed. But this pattern will be considered into DRAWs
future data organization in case it happened more times.

E. Multireplica Per Rack

In previous analysis, we assume that there is only one copy
of each data existing in each rack. This assumption is derived
from the practical Hadoop configurations, e.g., Hadoop with
single-replica for each data [7], [25], Hadoop with three replicas
for each data but put into three different racks [8], etc. How-
ever, there are some Hadoop clusters that keep two or even three
copies of the same data in the same rack [3] to provide better
read performance. As we stated in Section I, the more replicas
for each data in the same rack, the more optimal data distribu-
tion the random strategy can achieve (given that any two replica
cannot stay in the same node). In order to prove our DRAW is
still necessary for multiple replica Hadoops, we launch inten-
sive experiments as sensitivity study in Section III-D.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present four sets of results: the unbalanced
data distribution caused by Hadoop’s default random data place-
ment; comparison of the traces of the MapReduce programs on
the randomly placed data, and the DRAW’s reorganized data;
and the sensitivity study used to measure the impact of the NR
(number of replica for each data block in Hadoop) on DRAW.
In the experiments, we developed a program performing data
reorganization according to the ODPA output with a precon-
figured frequency or we could launch the program manually if
necessary.

A. Test Bed

Our test bed consists of 40 heterogenous nodes on a single
rack with Hadoop 0.20.1 installed. The cluster and node con-
figurations are shown in the Table I. One node is configured as
the NameNode and JobTracker, whereas the other 39 nodes are
DataNodes and TaskTrackers.

B. Data Distribution

Intuitively, the data distribution may be related to the way
the data is uploaded. There are two ways for the users to up-
load data: bulkily upload all the data at once; or upload the data
based on their categories, e.g., species or particles in our cases.
The second way considers the human-readable data grouping
information (in our case, data belonging to the same species or
particles are assumed to be highly related) rather than the blindly
uploading as in the first method. We upload the data to our test
bed by using these two data uploading methods, 20 times for
each. The overall data distributions are similar in these runs.
First, after bulk uploading the genome data of six species (a

subset of our 40 GB genome data), the data distribution (from

2518 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6, JUNE 2013

TABLE I
CASS CLUSTER CONFIGURATION

Fig. 5. Data layout after bulk uploading six species’ genome data, and the
human’s genome data layout.

a randomly picked run) is shown in Fig. 5 (1). Given a research
group only interested in human [14], [22], the requiring data is
clustered as shown in Fig. 5 (2). The human data is distributed
on half (51.3%) of the cluster, meaning the parallelism for the
future MapReduce job is not optimal.
When using the category-based uploading method, we sur-

prisingly find that the overall data distribution is similar to what
is shown in Fig. 5. To highlight the unbalanced distribution
of the related data, we quantify the degree of unbalance with

. With 20 runs
using the species-based data uploading method, on average, the
data of a specific species is distributed over only 53.2% nodes
of the cluster. The conclusion shows that even when the data
is uploaded based on the initial data grouping information, the
Hadoop’s random data placement is not able to achieve the max-
imal parallelism for the associate data.

Fig. 6. Running of Genome indexing MapReduce program on human genome
data.

TABLE II
COMPARISON OF TWO RUNS OF GENOME INDEXING APPLICATION

C. Performance Improvement of MapReduce Programs

1) Genome Indexing: Based on the DRAW [2] reorganized
40 GB genome data downloaded from [4], we run the Bowtie
indexing [6] MapReduce program to index the human’s chro-
mosomes. Fig. 6 shows the traces of two runs on DRAW’s reor-
ganized data and Hadoop’s randomly placed data, respectively.
The number of reducers is set as large as possible so that the re-
duce phase will not be the performance bottleneck. In our case,
we use 39 reducers. The map phase running on DRAW’s data is
finished 41.7% earlier than the one running on randomly placed
data, and the job’s overall execution time is also improved by
36.4% when using DRAW’s data. The comparison is shown in
Table II. The MapReduce job running on the DRAW’s reorga-
nized data has 76.1% maps which benefit from having data lo-
cality, compared with 47.1% from the randomly placed data; the

WANG et al.: DRAW: DATA PLACEMENT SCHEME 2519

TABLE III
COMPARISON OF EXPERIMENTAL NHD (% OF NODES HOLDING DATA) AND DRAW’S IDEAL NHD

Fig. 7. Running of Mass Analyzer on astrophysics data; the size of interested
data for each run is relative small (8 blocks on average).

number of local map tasks is increased by
.

Note that there are still 23.9% maps which are working
without having data locality even after the DRAW’s data
reorganization. There are two reasons: first, the data grouping
information the BEA algorithm used is generated from all
previous MapReduce programs rather any specific one, and
the ODPA follows High-Weight-First-Placed strategy, which
means the data with higher (accumulative) grouping weights
will be granted higher priority to be evenly distributed. In other
words, the distribution of the nonhottest data is only optimized
but may be not 100% perfect for the corresponding MapReduce
programs. Second, the matrix clustering is an NP-hard problem,
hence the clustered grouping matrix generated from BEA al-
gorithm, whose time complexity is rather than ,
is a pseudo-optimal solution. Adoption of BEA algorithm is a
reasonable tradeoff between efficiency and accuracy. However,
since the hottest data will be granted the highest priority to be
clustered, the applications interested in these data can achieve
the ideal parallelism.
2) Mass Analyzer on Astrophysics Data: In this section, we

do experiments on smaller data sets: each particle’s data is ex-
actly 512 M, which will be split into only 8 blocks.
Our Mass Analyzer on the astrophysics data tries to calculate

the average mass of each area. The results are shown in Fig. 7.
DRAW reduces the map phase by 18.2%, and the overall perfor-
mance of the MapReduce program is improved by only 11.2%.
It is obvious that the impact of DRAW is linearly related to the
size of the required data by the MapReduce program. The less
data is being accessed, the more close that random data place-
ment can achieve maximized parallelism. For example, given
40 nodes in the cluster and 2 maximum simultaneous map tasks
on each node, the 8 blocks of each astrophysics data file are
more likely to be balancedwhen compared to the 48 blocks of an
mammal’s genome data. Hence the conclusion is DRAW works
better for the MapReduce programs accessing large-scale data
(larger than 3 GB for our hardware configuration).

Fig. 8. Data distributions (NHD) of four species, on 1-replica, 2-replica, and
3-replica Hadoop.

D. Sensitivity Study: Number of Replica (NR)

The NR for each data block in Hadoop cluster is configurable.
For data distribution, the more replica that exist for each block,
the higher possibility that the grouping data can be evenly dis-
tributed. Hence, the efficiency of DRAW on the MapReduce
programs is inverse proportional to NR in the Hadoop.
In order to quantify the impact of NR on our design, we

bulkily upload the 40 G genome data to our test bed configured
with , and , respectively. Fig. 8
shows the data distributions for four species: Stickleback,
Opossum, Chicken from vertebrates, and C.briggsae from ne-
matodes. The “% of nodes holding the data (NHD)” is directly
related to the parallelism that the program accessing corre-
sponding species can use. The results prove that, in most cases,3

NR is linearly related to the parallelism of data distribution;
which means a higher degree of replica in Hadoop can mitigate
the problem of unbalanced grouping-data distribution. For
example, the Stickleback data is only distributed on 44.7% of
the nodes in 1-replica Hadoop; when using 3-replica Hadoop,
81.5% of the nodes can provide Stickleback data.
Now we study the efficiency of DRAW for multiple replica

Hadoop systems. We still use the above data. Table III shows
the comparison of the experimental NHD and DRAW’s ideal
NHD. The NHD difference indicates the possible improvement
DRAW can achieve. Note that for the three vertebrates, the
number of blocks for each species is larger than the number
of nodes in our test bed, hence ideally, DRAW can distributes
the grouping data on all the nodes, with 100% NHD; for the
C.briggsae whose number of blocks is smaller than 40, the ideal
DRAW’s NHD is calculated as ,
which is shown in bold font in Table III. Our experimental
results show that, for the 2-replica Hadoop, DRAW may im-
prove the data distribution parallelism by 27.2% on average;
for the 3-replica Hadoop, DRAW is expected to improve the
parallelism by 17.6% (without considering the exception of
Chicken data) on average.

3There is one exception for Chicken: the data is more evenly distributed in
2-replica case than 3-replica.

2520 IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6, JUNE 2013

IV. RELATED WORK

Several previous works exploited the grouping-like data
semantics and organized data layout in some specific ways
to support high-performance data accesses. Ahmed et al.
[10] exploited the file-grouping relation to better manage the
distributed file caches. The rationale is that group accessed
files are likely to be group accessed again. This idea works
well in cache management. However in data intensive com-
puting, such grouping behavior is at chunk level rather than
file level.
Yuan [24] develops a data dependency-based data placement

for the scientific cloud work flows, which clusters the relative
data as intensively as possible to effectively reduce data move-
ment during the workflow’s execution. However, for data par-
allel frameworks such as MapReduce which relies on the co-lo-
cated compute and data locality [3], the relevant data needs to
be distributed as evenly as possible.
Xie et al. [15] takes data locality into account for launching

speculative MapReduce tasks in heterogeneous environments.
They focus on balancing data processing load based on net-
work topology and disk space utilization of a cluster. In contrast,
DRAW focuses on data redistribution based on data semantics;
they are two complimentary works.
MRAP [21] develops a set of MapReduce APIs for data

providers who may be aware of the subsequent access patterns
of the data after being uploaded. By specifying the access pat-
terns, the data are distributed in a corresponding way such that
the best data access performance can be achieved. However,
it requires application developers to specify the data access
patterns beforehand. Our DRAW captures grouping patterns by
runtime tools.

V. CONCLUSION

The default random data placement in a MapReduce/Hadoop
cluster does not take into account data grouping semantics.
This could cluster many grouped data into a small number
of nodes, which limits the data parallelism degree and results
in performance bottleneck. In order to solve the problem, a
new DRAW scheme is developed. DRAW captures runtime
data grouping patterns and distributes the grouped data as
evenly as possible. There are three phases in DRAW: learning
data grouping information from system logs, clustering the
data-grouping matrix, and reorganizing the grouping data.
We also theoretically prove that the inefficiency of Hadoop’s
random placement method. Our experimental results show
that for two representative MapReduce applications—Genome
Indexing and Astrophysics, DRAW can significantly improve
the throughput of local map task execution by up to 59.8%, and
reduce the execution time of map phase by up to 41.7%. The
overall MapReduce job response time is reduced by 36.4%.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National Sci-
ence Foundation under Grant CCF-0811413 and Grant CNS-
1115665, and by the National Science Foundation Early Career
Award 0953946.

REFERENCES
[1] [Online]. Available: http://aws.amazon.com/s3/
[2] [Online]. Available: http://bowtie-bio.sourceforge.net/index.shtml
[3] [Online]. Available: http://developer.yahoo.com/hadoop/tutorial/

module1.html
[4] [Online]. Available: http://genome.ucsc.edu/
[5] [Online]. Available: http://hadoop.apache.org/common/docs/r0.18.3/

hdfs_design.html
[6] [Online]. Available: http://michael.dipperstein.com/bwt/
[7] [Online]. Available: http://sector.sourceforge.net/benchmark.html
[8] [Online]. Available:https://issues.apache.org/jira/browse/hadoop-2559
[9] [Online]. Available: http://t8web.lanl.gov/people/heitmann/arxiv/
[10] A.Amer,D.D. E. Long, andR.C. Burns, “Group-basedmanagement of

distributed file caches,” in Proc. 22nd Int. Conf. Distrib. Comput. Syst.
(ICDCS’02),Washington,DC,USA, 2002, p. 525, IEEEComputer Soc.

[11] A. Dumitriu, “X and y (number 5),” in Proc. ACM SIGGRAPH 2004
Art Gallery SIGGRAPH’04, New York, NY, USA, 2004, p. 28, ACM.

[12] G. Ganger and M. Frans Kaashoek, “Embedded inodes and explicit
grouping: Exploiting disk bandwidth for small files,” in Proc. 1997
USENIX Technol. Conf., 1997, pp. 1–17.

[13] N. Gorla and K. Zhang, “Deriving program physical structures using
bond energy algorithm,” in Proc. 6th Asia Pacific Software Eng. Conf.
APSEC’99, Washington, DC, USA, 1999, p. 359, IEEE Computer Soc.

[14] Y. Hahn and B. Lee, “Identification of nine human-specific frameshift
mutations by comparative analysis of the human and the chimpanzee
genome sequences,” Bioinformatics, vol. 21, pp. 186–194, Jan. 2005.

[15] X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J. Majors, A. Man-
zanares, and Q. Xiao, “Improving mapreduce performance through
data placement in heterogeneous hadoop clusters,” Apr. 2010.

[16] G. H. Kuenning andG. J. Popek, “Automated hoarding formobile com-
puters,” in Proc. 16th ACM Symp. Operat. Syst. Principles, SOSP’97,
New York, 1997, pp. 264–275, ACM.

[17] J. G. Liu, M. Ghanem, V. Curcin, C. Haselwimmer, Y. Guo, G.
Morgan, and K. Mish, “Achievements and experiences from a
grid-based earthquake analysis and modelling study,” in Proc. 2nd
IEEE Int. Conf. e-Science and Grid Computing, E-SCIENCE’06,
Washington, DC, USA, 2006, p. 35-, IEEE Computer Soc.

[18] M. T. Özsu and P. Valduriez, Principles of Distributed Database Sys-
tems , 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1999.

[19] M. Rodriguez-Martinez, J. Seguel, and M. Greer, “Open source cloud
computing tools: A case study with a weather application,” in Proc.
2010 IEEE 3rd Int. Conf. Cloud Comput. CLOUD’10, Washington,
DC, USA, 2010, pp. 443–449, IEEE Computer Soc.

[20] M. C. Schatz, “Cloudburst,” Bioinformatics, vol. 25, pp. 1363–1369,
Jun. 2009.

[21] S. Sehrish, G. Mackey, J. Wang, and J. Bent, “Mrap: A novel mapre-
duce-based framework to support HPC analytics applications with ac-
cess patterns,” in Proc. 19th ACM Int. Symp. High Perform. Distrib.
Comput. HPDC’10, New York, NY, USA, 2010, pp. 107–118, ACM.

[22] M. Specht, R. Lebrun, and C. P. E. Zollikofer, “Visualizing shape trans-
formation between chimpanzee and human braincases,” Vis. Comput.,
vol. 23, pp. 743–751, Aug. 2007.

[23] S. Tripathi and R. S. Govindaraju, “Change detection in rainfall and
temperature patterns over india,” in Proc. 3rd Int. Workshop on Knowl-
edge Discov. Sens. Data, SensorKDD’09, New York, NY, USA, 2009,
pp. 133–141, ACM.

[24] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in
scientific cloud workflows,” Future Gener. Comput. Syst., vol. 26, pp.
1200–1214, Oct. 2010.

[25] B. Zhang, N. Zhang, H. Li, F. Liu, and K. Miao, “An efficient cloud
computing-based architecture for freight system application in china
railway,” in Proc. 1st Int. Conf. Cloud Comput. CloudCom’09, Berlin,
Germany, 2009, pp. 359–368, Springer-Verlag.

