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Recent years have seen an increasing number of scientists employ data parallel computing frameworks such as MapReduce and
Hadoop to run data intensive applications and conduct analysis. In these co-located compute and storage frameworks, a wise data place-
ment scheme can significantly improve the performance. Existing data parallel frameworks, e.g., Hadoop, or Hadoop-based clouds,
distribute the data using a random placement method for simplicity and load balance. However, we observe that many data intensive
applications exhibit interest locality which only sweep part of a big data set. The data often accessed together result from their grouping
semantics. Without taking data grouping into consideration, the random placement does not perform well and is way below the effi-
ciency of optimal data distribution. In this paper, we develop a new Data-gRouping-AWare (DRAW) data placement scheme to address
the above-mentioned problem. DRAW dynamically scrutinizes data access from system log files. It extracts optimal data groupings and
re-organizes data layouts to achieve the maximum parallelism per group subjective to load balance. By experimenting two real-world
MapReduce applications with different data placement schemes on a 40-node test bed, we conclude that DRAW increases the total
number of local map tasks executed up to 59.8%, reduces the completion latency of the map phase up to 41.7%, and improves the
overall performance by 36.4%, in comparison with Hadoop’s default random placement.

Index Terms—Data intensive, data layout, Hadoop, MapReduce.

I. INTRODUCTION

He emerging myriad data intensive applications place a
demand on high-performan@®mputing resources with
massive storage. Academic and industrial pioneers have been
developing big data parallel computing frameworks and large-
scale distributedi @it fejaijRitet i ifttisparhitinaimnterdoig it aespe -
high possibility to be processed as a group by djpedomain
applications. Here, we formally dee the ‘tlata grouping” to
represent the possibility of two or more data (e.g., blocks in
Hadoop) to be accessed as agp. Such data grouping can be
quanttied by aweight: a count that these data have already
been accessed as a group. The potential assumption is that
if two pieces of data have been already accessed together for
many times, it is highly possible for them to be accessed as a

group in the future [10].
Fig. 1. Simple case showing thefiefency of data placement for MapReduce
programs.

By using Hadooprogram performance [3]. Besides, dynamic date
fective for exploiting the predictability of data a
and mproving the performance of distributéte s)
[12], [16]. We show an example in Fig. 1: if the grc
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Fig. 3. Example showing the grouping matrix and the ovd$aW to cluster data based dineir grouping weights.

to group B at the same time; the grouping weight in the DGMutput: A matrix indicating the optimal data placement:
denotes “how likely” one data should be grouped with anothé& P[2][n];
data. Steps:

After knowing the DGM in Fig. 3, we use a matrix clustering pS:
algorithm to group the highlrelated data in step3. Specally, for each row fromi[n][n] do
Bond Energy Algorithm (BEA) is used to transform the DGM to
the clustered data grouping matrix (CDGM). Since a weighted
matrix clustering problem is N®* hard, the time complexity to Find the minimum valué’ in this row;
obtain the optimized solution ©(n"), wheren is the dimen-
sion. The BEA algorithm saves the computing costimgling
the suboptimal solution in tim@(n?) [13]; it has been widely
utilized in distributed database systems for the vertical partition  MinSet = C1,V1,C2,V2,; // there may be more than
of large tables [18] and matrix clustering work [13]. The BEA one minimum value
algorithm clusters the highly assated data together indicating
which data should be evenly distributed. After group 1 is gener-

R = the index of current row;

Put this value and its cagsponding column inde& into
a setMinSet,

if there is only one tupléC'1, V1) in MinSet then

ated, repeat the steps in steprtiatep 5 to generate the group /IThe data referred by C1 should be placed with the
2. In this case, group 1 and group 2 represent most related data data referred by R on the same node;

sets. Assuming there ard&dataNodesn the Hadoop cluster, the

CDGM in Fig. 3 indicates data {6, 7, 2, 1, 3} (group 1) and {4, DP[O][R] = R

9, 5, 10, 8} (group 2) should bevenly distributed when placed DP[1][R] = C1;

on the 5 nodes. Note that we have only 10 pieces of data in our
example, after knowing that {6, 7, 2, 1, 3} should be placed as
a group (horizontally), it is natal to treat the left data {4, 9, 5, Continue;
10, 8} as another group. Hence, step 4 and step 5 in Fig. 3 are
not necessary for our case, but when the number of remaining
data (after recognizing therst group) is larger than the number for each columrC; from MinSet do
of nodes, more clustering steps are needed.

Mark columnC1 is invalid (already assigned);
end if

CalculateSum[i] = sum{M][x]|[C;]);// all the
C. ODPA items inC; column

Knowing the data groups alone is not enough to achieve the end for
optimal data placement. Given the same example from Fig. 3,
random placing of each group, abown in Fig. 4 (1), task 2
and task 3 can Only run on 4 nodes rather than 5, which is not C = the index of the chosen Sum item;

optimal. DP|0][R] = R;

Choose the largest value frofim array;

Algorithm 1 ODPA algorithm DP[E] = ¢
Mark columnC' is invalid (already assigned);

Input: The sub-matrix (OSM) as shown in Fig. B{[n][n];

wheren is the number of data nodes; end for
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Without ODPA, th: lleli Optimized data | t - H H H .
may be not maximized maximizes the parallelism The cases with special interest locality: The purpose of

node1 [ node2 [ node3 | node4 [ node5 | [ nodet | node2 [ node3 [ node4 | node5 DRAW is to optimize the performance for the common appli-
6 | d7 | di g2 | d3 a6 | dy | di 2 | d3 cations which follow or not totally deviated from the previous
d4 do d5 d10 ds d9 ds d4 d10 d5 . . . . . .
interest locality. However in @ictice, some applications may
Tasks requried data |Involved nodes| Tasks requried data Involved nodes have unpredicted access patterns that DRAW dld not studied

t1 d1,d2,d3,d6,d7,d8 1,2,3,4,5 t1 d1,d2,d3,d6,d7,d8 1,2,3,4,5 .

2 | d2,03,d4,d7,d9 A2 | 12 | d2,d3,d4,d7,d9 12,345 yet. These uncommon queries may suffer from bad performance

13_|d1,d2,d5,d6,d7,d10§ . 13 |d1,d2,d5,d6,d7,d10 op:iﬁ’:’l"‘ﬁ because DRAW cannot guarantee these accessing data are well
@ oroptimal @ distributed. But this pattern will be considered into DRAWSs

Fig. 4. Without ODPA, the layout generated from CDGM may be still non]future data organization in case It happened more times.

optimal.
E. Multireplica Per Rack

In previous analysis, we assume that there is only one copy

This is because the above data grouping only considers (i€ ,ch gata existing in each rackhis assumption is derived
horizontal relationships among the datain DGM, and so itis al%m the practical Hadoop céigurations, e.g., Hadoop with
necessary o makg sure the blocks on f[he same nodg have rE‘i'ﬁ'{;le—replica for each data [7],%2 Hadoop with three replicas
imal chance to be in the same gm(vertical relationships). In for each data but put into three different racks [8], etc. How-

order to obtain this information, we propose an algorithm nam er, there are some Hadoop clusters that keep two or even three

ODPA to complete our DRAW design, as described in Algoc'opies of the same data in the same rack [3] to provide better

rithm 1. ODPA is based on submatrix for ODPA (OSM) from . . _
CDGM. OSM indicates the depdancies among the data al_read performance. As we stated in Section |, the more replicas

. '(/Ieach data in the same rack, the more optimal data distribu-
ready placed and the ones being placed. For example, the O A the random strategy can ackie(given that any two replica
in Fig. 3 denotes the vertical relations between two different 9y g y P

groups (groupl:6, 7, 2, 1, 3 and group2:4, 9, 5, 10, 8). cannot stay in the same node). In order to prove our DRAW is

Take the OSM from Fig. 3 as an example, The ODPA algg-t'” necessary for multiple replica Hadoops, we launch inten-

rithm starts from theirst row in OSM, whose row index is 6. Sive experiments as sensity study in Section lil-D.
Because there is only one minimum value 0 in column 9, we
assignDP[6] = {6,9}, which means data 6 and 9 should be
placed on the same data node because 9 is the least relevalit this section, we present fouets of results: the unbalanced
data to 6. When checking row 7, there &g equal minimum data distribution caused by Hadoop’s default random data place-
values, which means any of thefbee data are equally related onment; comparison of the traces of the MapReduce programs on
data 7. To choose the optimal candidate among tfigsecan- the randomly placed data, and the DRAW's reorganized data;
didates, we need to examine their dependencies to other alre@@§ the sensitivity study used to measure the impact of the NR
placed data, which is performed by th& R loop calculating (number of replica for each data block in Hadoop) on DRAW.
the Swum for thesefive columns. In our caséum[8] = 5isthe In the experiments, we developed a program performing data
largest value; by placing 8 with 7 on the same node, we can,r&prganization according to the ODPA output with a precon-
the maximum extent, reduce the possibility of assigning it onfigured frequency or we could launch the program manually if
another related data block. Hence, a new tuple {7, 8} is addedigcessary.

D P. After doing the same processes to the rows with index 1, 2,

3,we have P = {{6,9),{7,8},{1.4},{2.5},13,101},in- 4. Test Bed

dicating the data should be placed as shown in Fig. 4 (2). ClearlyOur test bed consists of 40 heterogenous nodes on a single
all the tasks can achieve the optimal parallelism (5) when rurack with Hadoop 0.20.1 installed. The cluster and node con-
ning on the optimal data layout. With the help of ODPA, DRAW(igurations are shown in the Table I. One node isfitped as

can achieve the two goals: maximite parallel distribution of the NameNode andJobTracker, whereas the other 39 nodes are
the grouping data, and balance the overall storage loads.  DataNodes and TaskTrackers.

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

D. Exceptions B. Data Distribution

The cases without interest locality: DRAW is designed for ~ Intuitively, the data distribution may be related to the way
the applications showing intest locality. However there arethe data is uploaded. There are two ways for the users to up-
some real world applications dwt have interest locality. In load data: bulkily upload all the data at once; or upload the data
this case, all the data on the cluster belongs to the same grdegsed a their categories, e.g., species or particles in our cases.
Therefore the data grouping matrix contains the same groupihlge second way considers the human-readable data grouping
weight for each pair of data (egpt for the diagonal numbers);information (in our case, data belonging to the same species or
the BEA algorithm will not cluster the matrix, all the data blockpatticles are assumed to be highly related) rather than the blindly
will stay on the nodes and didtiited as the default random dataiploading as in thérst method. We upload the data to our test
distribution. Because all the datme equally popular, theoret-bed by using these two data uploading methods, 20 times for
ically random data distribution can evenly balance them oneach. The overall data distributions are similar in these runs.
the nodes. In this case, DRAW has the same performance agirst, after bulk uploading the genome data of six species (a
Hadoops random data distribution strategy. subset of our 40 GB genome data), the data distribution (from
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TABLE |
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Fig. 6. Running of Genome indexing MapReduce program on human genome
data.

TABLE Il
COMPARISON OFTWO RUNS OF GENOME INDEXING APPLICATION

Fig. 5. Data layout after bulk uploading six species’ genome data, and the
human’s genome data layout.

a randomly picked run) is shown in Fig. 5 (1). Given a research
group only inteested in human [14], [22], the requiring data iSC. Performance Improvement of MapReduce Programs
clustered as shown in Fig. 5 (2). The_ human data is_ distributedj) Genome Indexing: Based on the DRAW [2] reorganized
on half (51.3%) of the cluster, meaning the parallelism for thgg GB genome data downloaded from [4], we run the Bowtie
future MapReduce job is not optimal. indexing [6] MapReduce program to index the human’s chro-
When using the category-based uploading method, we sgfosomes. Fig. 6 shows the traces of two runs on DRAW's reor-
prisingly find that the overall data distribution is similar to whaganized data and Hadoop’s ramdly placed data, respectively.
is shown inFig. 5. To highlight the unbalanced distributionThe number of reducers is set as large as possible so that the re-
of the related data, we quantithe degree of unbalance withduce phase will not be the performance bottleneck. In our case,
1 — (# of nodes having the data/# o f nodes). With 20 runs  we use 39 reducers. The map phase running on DRAW'’s data is
using he species-based data uploegmethod, on average, thefinished 41.7% earlier than tlo@e running on randomly placed
data of a spefic species is distributed over only 53.2% nodegata, and the job’s overall execution time is also improved by
of the cluster. The conclusion shows that even when the d&& 4% when using DRAW'’s data. The comparison is shown in
is uploaded based on the initial data grouping information, thable Il. The MapReduce job running on the DRAW's reorga-
Hadoop’s random data placemestiot able to achieve the max-nized data has 76.1% maps which bgneom having data lo-
imal parallelism for the associate data. cality, compared with 47.1% fra the randomly placed data; the
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