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Abstract—There has been an exponential growth in data
volumes in several domains. Often these voluminous datasets
encompass a large number of features. Fitting models to such
high-dimensional, voluminous data allows us to understand
phenomena and inform decision-making. The analytics process
is naturally iterative as scientists explore the set of features,
data fitting algorithms, portions of the dataspace, and the
particular algorithm’s hyperparameters to guide their model-
building process. It often takes several model-fitting attempts
before one arrives at a satisfactory solution that may then be
subjected to further refinements. Each of these model-building
attempts is itself time-consuming and dominated by I/O and data
movement costs. In this study, we present our methodology for
significantly alleviating I/O-induced inefficiencies during model
training. Rather than work with the raw data, we generate
and work with sketches of the data. Our framework, Fennel,
is independent of the libraries or analytical engines preferred
by users. Our empirical benchmarks have been performed
with datasets from diverse domains (weather, epidemiology, and
music) and we profile several aspects of our methodology.

Index Terms—model training; data sketches; multidimensional
datasets, in-memory analytics;

I. INTRODUCTION

Data generation and storage in several domains have grown
exponentially. Contributing factors include the proliferation
of sensing environments, falling costs for networked sensors,
monitoring of diverse natural and man-made phenomena,
simulations, and social media.

These data offer unprecedented opportunities for innovation
and discovery. The data can be used to construct models that
inform understanding of phenomena, planning, and decision
making. In commercial settings, such models have economic
implications and are known to drive sales, promotional cam-
paigns, make inventory decisions, and guide investment strat-
egy. The models we consider in this study are the product
of analytic processes that leverage statistical and machine
learning algorithms to fit models to the data. These are distinct
from physical and mathematical models derived by subject-
matter-experts in a particular domain.

This growth in data volumes has coincide with the prolif-
eration of new data-fitting algorithms, open-source libraries
for statistical and machine learning, and analytical engines
that facilitate distributed orchestration of analytic tasks at
scale. These software provide turnkey solutions for model

construction; all that is required is provisioning of computing
infrastructure and data to train the models on.

The starting point for analytics libraries is data. Building
models is predicated on access to on-disk data. However, the
I/O subsystem is 5-6 orders of magnitude slower than the
CPU the analytics process is I/O bound. Furthermore, this data
is distributed and discovery of the precise data to build the
models on can itself be I/O intensive.

While data staging plays an important role in the efficiency
of data accesses, it is impossible for any staging algorithm
to (divine and) optimize for all possible “future” analytic
operations. Users may focus their model-fitting operations to
specific combinations of features and/or particular portions of
the feature space. For example, a user may seek to understand
the impact of disease spread using a mix of different control
strategies such as movement controls and vaccination. Some
features may be common in both analyses such as those
that describe disease biology. The range of possibilities to
construct models using different sets of features becomes
combinatorially explosive as the features increase; with NV
features there are 2V possibilities.

Misalignments in how the data is stored and how they are
accessed are inevitable. The crux of this paper is to alleviate
I/O inefficiencies during model construction in settings where
the data is voluminous, dispersed over multiple machines, and
encompasses a large number of features.

A. Challenges

There are several challenges to constructing analytical mod-
els over voluminous datasets. These include:

e 1/O costs: On-disk data must be accessed and be memory-
resident before model building operations can commence.
The speed-differential across the memory hierarchy com-
pounds these challenges. The disk I/O subsystem is sluggish
with access times and transfer rates that are orders of
magnitude slower than memory.

e Data movement costs: Completion times for analytics pro-
cesses are prolonged when there is no data locality. In such
cases, data needs to be pulled to the machine where the
analytics process is executing. Data accesses in such cases
incur network I/O costs in addition to disk I/O.



o Shared clusters: Analytic processes often execute in clusters
that are shared across users and their applications. Processes
on a single machine are subject to interference when they
access the disk simultaneously; this interference results
in plummeting throughputs during transfers from disk to
memory. Network transfers are subject to these interference
inefficiencies as well.

o lterative nature of the analytics process: The analytics
process is naturally iterative involving multiple, repeated
sweeps over the data as the coefficients associated with
the features are continually adjusted to improve model
performance. A data scientist may also choose to explore
multiple model fitting algorithms each of which may also
involve hyper-parameter tuning.

o Data volumes: Data volumes exacerbate the aforementioned
challenges relating to I/O, data movements, interference and
plummeting throughputs in shared clusters. These ineffi-
ciencies result in prolonged execution times for analytic
operations that inhibit explorations.

B. Research Questions

Since data volumes worsen inefficiencies, can we reduce
data volumes without adversely impacting the accuracy of
model construction? In particular, we propose to sketch the
data and use this as the basis for explorations. This study is
guided by the following research questions.

RQ-1: How can we sketch the data to significantly reduce data
volumes while preserving characteristics of the feature space?
In particular, compaction must also include preservation of
the distribution characteristics of individual features and cross-
feature covariance.

RQ-2: How can we leverage the sketch to facilitate training
of models? The sketch must be amenable to querying, selec-
tion and retrievals, and effective generation of training data.
Training data generated from the sketch must be statistically
representative of the original full-resolution data.

RQ-3: How can we facilitate fast, effective explorations model
building using these sketches? In particular, this involves
preserving timeliness without compromising on the accuracy
of the generated models.

C. Approach Summary

Our methodology targets significant reduction in I/O re-
quirements during model fitting operations. In particular, our
methodology relies on sketching the data, and then using these
sketches to identify relevant portions of the feature space.
Finally, we also leverage the sketches to construct models.
Our framework, encompassing the sketching algorithm and
systems optimizations, is codenamed Fennel.

There are two key characteristics in our methodology. First,
on-disk data is accessed during sketching operations, but
is never modified (or deleted). Our sketch facilitates fast
exploratory analytics and the full-resolution, on-disk data can
continue to be used for deeper explorations once some of the
exploratory analyses show promise. Second, the Fennel sketch

is significantly more compact than the on-disk data and thus
amenable to memory-residency, fast query evaluations, and
subsequent retrievals.

We now describe the end-to-end phases that comprise
Fennel; some of these phases are one-time operations and once
the data is sketched and the metadata organized, the discovery
and analytic operations can be completed in a timely fashion
with substantially reduced 1/O.

The groundwork phase lays the foundation for sketching.
We use the Welford’s method to construct statistical properties
of the feature space. This include summary statistics associated
with individual features and cross-feature covariances. Next
we explore binning (or discretization) of individual features.
For each feature, the bins are generated using an Online Kernel
Density Estimation (oKDE) [1], [2] function such that the
probability of placing an observation within each bin is equal.
Bins are generated offline with respect to a sample and a
configurable error threshold defined based on the Normalized
Root Mean Square Error (NRMSE). The number of bins
are incremented until the discretization error is below the
preconfigured NRMSE threshold. The costs associated with
the groundwork phase are amortized over a large number of
subsequent analytic tasks.

During the sketching phase on-disk data is sketched, and
elements of the sketch are shuffled within the cluster to
facilitate fast querying, retrievals, and memory-consumption
reduction. In particular, we normalize the data based on the
summary statistics for each feature, and then discretize the
normalized feature values. The binned feature(s) are then used
to compute discretized feature vectors (DFVs), which are an
ordered concatenation of binned feature values.

As the data is sketched on individual disks, the DFVs and
their assorted frequencies are shuffled to get an accurate global
count of the frequencies associated with a particular DFV
for the entire dataset. Fennel uses DHTs (distributed hash
tables) as the logical overlay to organize the DFVs. The DFVs
and their concomitant frequencies maintained within the DHT
comprises the distributed Fennel sketch. The Fennel DHT is
organized as a one-hop DHT with consistent hashing. The
hash code associated with the DFVs is generated by using a
configurable number of feature bins within the DFV as the
input to a CRC-32 function. This allows us to ensure that
DFVs representing proximate portions of the feature space are
collated. DFVs at each Fennel-DHT node are organized using
an in-memory data structure with support for aging contents
partially to disk in situations where memory contention is
high. The organization of DFVs does not preclude searching
or retrieving portions of the feature space for an arbitrary set
of features.

The discovery phase supports search and retrievals of rel-
evant portions of the feature space. Queries that we support
include: range queries, SQL, and statistical queries. We are
also support queries based on top-K or bottom-K DFVs; this
allows users to retrieve either the k-most (or rarely) occurring
DFVs. During query evaluations DFVs that satisfy query
constraints are retrieved from the sketch and streamed back



to the client. These DFVs are organized within our GIST data
structure that is the entry point for several analytic operations.

The pre-processing phase supports incremental refinements
of the GIST data structure. The GIST data structure is used
for generating synthetic data. In particular, DFVs and their
occurrence frequencies are used to generate datasets that
are normalized, proportional, and statistically representative
of the observed feature space. GIST is also used to inform
partitioning synthetic datasets as training, test, and validation
datasets. A refinement supports generation of folds as needed
in k-fold cross-validation.

The model fitting and assessment phase includes generation
of synthetic datasets from GIST, support for just-in-time gen-
eration of data and using the data to complete model training.
Several customizations such as controlling the number of
observations to be generated, the number of machines involved
during the analytics phase, and partitioning the synthetic datas-
pace into decorrelated datasets as needed in ensemble training
are also supported. Fennel supports automated assessment of
model performance.

D. Paper Contributions

Our methodology facilitates rapid explorations of the feature
space. Fennel does not preclude building models from on-disk
data. Our contributions include:

1) Our sketch achieves significant compaction rates while
preserving representativeness of the feature space.

2) Our sketch is amenable to memory-residency, querying,
and targeted retrievals.

3) GIST, which in essence is a sketchlet, serves as the basis for
fast model training and assessments. GIST supports just-in-
time generation of synthetic data to substantially alleviate
memory footprints during training.

4) Model fitting operations using the sketch can be performed
using diverse libraries and analytical engines.

Since we target efficiencies at the data and 1/O level, our

methodology is suitable for a broad class of model fitting

algorithms be they regression, classification, or clustering.

E. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of Fennel’s architecture and
its building blocks followed by a detailed discussion on our
approach in Section III. System benchmarks are presented
in Section IV and related work is discussed in Section V.
Section VI outlines conclusions and future work.

II. SYSTEMS OVERVIEW

The Fennel Architecture can be partitioned into three
components, namely the Storage Cluster, Analytics Cluster,
and Clients. This architecture, along with the sketched data
distribution communication, is presented in Figure la.

The Fennel Storage Cluster contains a number of machines
responsible for storing sketched data. The feature space is
partitioned among nodes using a single hop DHT, which
uses consistent hashing for deterministic DFV placement.

Figure 1b outlines important internals of each storage node.
Node functionality is divided between the control and data
planes. The control plane handles the DHT and gossip between
nodes. Alternatively, the data plane is responsible for sketch
initialization, querying, and data pipelines which are used for
efficient data insertion.

The Analytics Cluster comprises machines we use to gener-
ate synthetic datasets and train models. During analytics, each
machine receives a desirable portion of sketched data from
the storage cluster. We train a variety of models by generating
a statistically representative synthetic dataset using sketched
data. Observations are generated and fed into model training
entirely in-memory.

Fennel Clients are responsible for submitting requests for
sketch initialization, data insertion, and data queries. Users are
able to initialize sketch definitions containing any variety of
dataset features and feature discretization boundaries. Clients
may also initialize Data Pipelines at multiple Fennel Storage
Nodes and use them to insert data. Finally, users can submit
queries over the sketched data; instructing Fennel Storage
Nodes to distribute data to the Analytics Cluster and kickstart
model training operations.

The core abstraction underpinning data insertions is data
pipelines. Pipelines contain a chain of stages (source, trans-
form, and shuffle) connected with blocking queues. Each
stage operates with multiple threads to efficiently leverage
modern multi-core CPU architectures. Using these structures
we effectively distribute computationally expensive operations
(ie. feature discretization, DHT lookups, DFV shuffling, etc)
over the Fennel Storage Nodes.

III. METHODOLOGY

Our methodology for effective model training encompasses
the following distinct phases.

1) The groundwork phase focuses on distributed calculation,
and subsequent exchange, of global statistical properties of
the feature space. [RQ-1]

2) We then sketch on-disk data to ensure effective com-
pactions while preserving representativeness of the feature
space. Portions of the sketch are shuffled to conserve
memory footprints and fast query evaluations. [RQ-1]

3) The distributed Fennel sketch facilitates interactive explo-
rations and retrievals of the feature space. This is supported
by enabling fast query evaluations and retrieval of results.
[RQ-1, RQ-2]

4) The pre-processing phase leverages our GIST data struc-
ture, which organizes portions of the sketch that satisfy
specified query constraints. GIST supports generation of
representative synthetic datasets. [RQ-2, RQ-3]

5) The model fitting and assessments phase facilitates training
of models while performing I/O frugally to facilitate fast
completion times. [RQ-3]

A. Groundwork Phase

The groundwork phase constructs statistical properties of
the feature space and uses online kernel density estimation
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functions to compute feature discretization boundaries. We
designed a MapReduce job that does a single pass over the
distributed dataset in the Map phase, and a computationally
inexpensive Reduce phase.

We compute statistical properties of the feature space using
Welford’s online method. During the Map phase we iteratively
update the data structure with each observation. The Reduce
phase leverages the well-defined algorithm to merge separate
instances of Welford’s from each node, resulting in accurate
evaluation over the entire feature space.

We compute feature discretization boundaries based on a
data sample of around 50,000 observations. During the Map
phase, we create a reservoir sample at each host with a
proportional number of observations relative to the entire
dataset. Reservoir sampling is an online sampling technique,
which ensures that each observation has an equal probability
of being present in the final sample. In the Reduce phase, we
combine the samples from each host and compute an online
kernel density estimation (0KDE) function for each feature.
We iteratively increase the number of bins until the normalized
root means squared error (NRMSE) between the discretized
values and the sample is below a configurable, predefined
threshold (0.025 in our experiments). During each iteration,
discretized boundary values are computed to split the oKDE
into bins containing equal observation frequencies. Tuning
the NRMSE threshold is tradeoff between dataset compaction
rates and the statistical representativeness. The result of this
operation is a list of bounds that split the feature space into
bins with equal observation frequencies.

B. Sketching On-Disk Data

We initialize sketches in Fennel by defining a set of ac-
tive features and their corresponding discretization boundary
values. This enables defining multiple sketches over the same
dataset encompassing any subset of features and producing
myriad compaction rates and levels of synthetic data accuracy.

Discretized Feature Vectors (DFVs): We handle generation
of DFVs in the transform stage of the Data Pipeline. Each
observation is presented as a vector of numeric values, one for
each feature. For each value we perform a binary search over
the defined discretized boundaries for that feature to retrieve
a boundary index. Fennel tracks frequencies of unique DFVs.

Storing DFVs: We shuffle DFVs among Fennel nodes during

the shuffle stage, which serves two purposes:

1) It enables equal distribution of data to each Fennel node.
This balance results in more effective distribution of com-
putations over the cluster.

2) We are able to optimize some queries based on known
data placement. Queries that constrain specific features may
only need to contact a subset of Fennel Storage Nodes. This
results in more efficient data queries.

Fennel uses a Distributed Hash Table (DHT) to effectively
distribute DFVs over the cluster. We allow each physical
node to partition itself as multiple virtual nodes to allow
for responsibility of different proportions of the hash space.
This is advantageous when deploying in a cluster where
machines have varying hardware capabilities or when the DHT
experiences data “hot spots”.

We determine the node responsible for a DFV by hashing a
subset of the DFV features using the CRC32 algorithm. Con-
sistent hashing among Fennel nodes ensures nearly uniform
DFV placement. The hashed features are defined during sketch
initialization. Domain specific knowledge aids in choosing the
features as Fennel queries may leverage the DHT to improve
query performance.

At each node, we store unique DFVs and their accompany-
ing frequencies. Employing a hash map, as opposed to a tree
structure, reduces overheads. During query evaluations, a tree-
based organization requires traversal of many levels; data with
high dimensionality presents a combinatorially explosive tree
(e.g.; 2000 features, with 30 discretized values each, results
in 302990 possible leaf nodes). Query wildcards where some
features are unconstrained, results in an exponential increase
in the number of tree path traversals.

To provide efficient queries we construct indices based on
a subset of the feature space. The data structure is a tree
where each level pertains to a single feature, internal nodes
are discretized feature values, and leaf nodes contain a list
of DFVs and frequencies. The result are shallow indices that
reduce the search space when querying highly dimensional
data where many features are left unconstrained.

C. Exploring and Retrieving Portions of the Feature Space

Fennel supports lightweight SQL queries over data sketches.
Queries may specify a subset of features to retrieve. As
datasets are intrinsically numeric we support a number of
numeric feature constraints (<, <=, =, >, >=) as well



as boolean operations (AND, NAND, OR, XOR). Query
execution proceeds in steps.

« Discretization of query parameters: Since all feature values
defined in sketches are discretized we need to convert the
query parameters. Obviously not all queries will fall directly
on discretization boundaries, therefore we dynamically relax
query constraints towards outlying boundaries.

o Determine responsible nodes: Depending on sketch def-
initions, Fennel redirects queries to a subset of Storage
Nodes. DFVs are distributed in the DHT based on a subset
of features, if the query contains those features we can
guarantee the location of requested data and reduce the
number of Nodes involved in evaluation.

« Execute query at each node: Each responsible Fennel Stor-
age Node executes the query (in parallel), leveraging suit-
able indices to improve performance.

DFVs that satisfy specified query constraints are organized
into our GIST data structure. Fennel clients submit queries
to each node in parallel and are returned a stream of DFVs
and their corresponding frequencies. The GIST structure is an
agglomerated list of (DFV, frequency) combinations.

D. Preprocessing Phase

Refinements of the GIST are necessary for the incremental
nature of analytics. A GIST may be further filtered given
additional feature constraints using the SQL-like query lan-
guage. Operationally, refinement requires iteration over each
(DFV, frequency) combination in the structure to identify all
desired observations. Since a GIST is compact enough to fit
in memory, filtering is computationally inexpensive.

We produce synthetic datasets by iterating over the GIST;
operating on a specific DFV and frequency combination during
each iteration. Synthetic observations are created by generating
a random value between the lower and upper boundaries of
each discretized feature following a uniform distribution. For
example, say a feature is discretized with values 0, 5, 10, and
15. DFVs with a discretized value 0 would then produce a
randomly generated value between O and 5.

We provide the ability to specify the number of synthetic
observations that should be generated. This functionality is
implemented as a multiplier of the original observation count.
For example, if a GIST contains 100,000 observations a
multiplier of 2.0 will generate 200,000 observations, whereas
a 0.5 multiplier will only generate 50,000 observations. This
functionality is especially useful for data sampling operations.
When using the multiplier synthetic datasets remain represen-
tative of the original feature space by applying the multiplier
to each DFVs frequency.

GIST is amenable to partitioning synthetic data into separate
training, testing, and validation datasets. Each partition is
guaranteed to be statistically representative of the original
feature space. Once a synthetic dataset is available it is
then partitioned into non-overlapping training, testing, and
validation datasets (by default 80%, 10%, 10%).

TABLE I: Benchmark dataset attributes including observation
count, feature count, and original dataset size.

Dataset Observations | Features Size
NOAA 4.2 billion 56 2.94 TB
Texas Epidemiology 899,952 2595 26 GB
Million Songs 463,715 91 425 MB

E. Model Fitting and Assessments

The learning process improves the efficiency of the models
gradually in an iterative manner by optimizing an objective
function (loss function) that measures the degree to which the
ideal case is satisfied. To build a model that generalizes well
(i.e., it performs well on unseen data), this process needs to
be repeated several times for fine tuning hyper-parameters in
the learning process and finding the most influential features.
Model fitting is time-consuming and becomes prohibitive for
voluminous datasets with high dimensionality. For example,
the process for finding the most influential features (called
feature selection) needs multiple accesses to a voluminous
dataset to extract a different subset of features and evaluate
their importance during the training process. Fast access to
data speeds up model fitting.

1. Support for just-in-time Generation of Synthetic Data: Fen-
nel operations work entirely with sketched data and generate
synthetic data only when it is necessary, or “just-in-time” for
processing. In Fennel we are able to query and distribute
sketched data, encapsulated within the GIST, over the Ana-
Iytics Cluster and generate synthetic data at each machine.
The advantage of this approach is 0 data is small enough
to be memory resident and therefore bypasses (magnitudes
slower) disk accesses, and 9 network I/O incurred during
data transfer is vastly reduced.

2. Completion of Model Training: The time to train a model
depends on multiple factors including the size of the training
data, how the data is hosted, and the data fitting algorithm.
For example, performing batch learning to fit one complex
model on voluminous data will be infeasible and leads to
prolonged training time because an optimizing step will be
done after making a full pass over the entire training data.
Reducing the training time could be achieved by relying on
different strategies such as 0 employing mini-batch learning
in parallel to train one complex model, 9 constructing a
bagging ensemble comprising decorrelated models that can
be trained in parallel, 9 building specialized models, each
of which has been trained to be expert for different portion
of the feature space, or relying on sampling to create a
small version of the voluminous data. Each of these different
strategies requires a different aspect of the data. Fennel retains
sketches in memory and relies on different strategies to enable
fast handling of the queries.

3. Assessment of Model Performance: The synthetic data
generated by Fennel can be partitioned into training (80%), test
(10%), and validation datasets (10%) to evaluate models per-
formance with a different set of the hyper-parameters. Cross-
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validation can also be used for the same purpose. The valida-
tion data will be used to assess the model’s performance using
different hyper-parameter values. In our systems benchmarks,
we assess models using external test data that is a subset of
the original data and have not been staged to the system.
For regression problems, we use the NRMSE to measure
the models’ performance on unseen data. Furthermore, we
perform bias-variance decomposition to divide the prediction
error into two components (Bias and Variance). With this
analysis, we can improve the models’ performance further
by targeting either the bias or variance components of model
error.

IV. SYSTEM BENCHMARKS

We profiled several aspects of our methodology to assess:

1) Effectiveness of the Fennel sketch in terms of it compaction
rates (Section IV-B, RQ-1) and representativeness of the
feature space (Section IV-D, RQ-1).

2) Systems characteristics of the distributed Fennel sketch.
This includes its memory footprints, how amenable it is to
querying and retrievals, and how it load balances memory
utilization. (Section IV-C, RQ-2)

3) Support for effective model fitting in terms of training
times, and the accuracy of the models constructed using
the sketch. (Section IV-E, RQ-3)

A. Experimental Setup

1) Datasets: We have benchmarked Fennel using three dif-
ferent datasets (presented in Table I) to highlight functionality
under a variety of dataset dimensionality and sizes. NOAA
is a popular weather dataset. We have chosen to analyze 2
years (2013 and 2014) and the 56 features that are uniformly
reported by all vantages during that duration. The Texas
Epidemiology dataset is a high dimensional dataset tracing
livestock epidemics. Million Songs outlines a variety of song
characteristics and the year that song was recorded.

2) Hardware: We deployed Fennel on a cluster of HP-
DL60-G9-E5-2620v4 machines running Fedora 27. These are
outfitted with 16GB RAM and an Intel Xeon E5-2620 which
has 8 cores (16 hyper-threads) @ 2.10GHz. The storage and
analytics clusters are deployed on 50 and 47 unique machines
respectively.

B. Sketching Effectiveness

Figure 2 depicts the compaction effectiveness of Fennel
over the NOAA dataset. We iteratively loaded each month
and noted sketch memory consumption.

The cumulative sketches compaction rates improve from
the first month to the last increasing from 10x—13x, 25x—
27x, 250x—280x, and 15,000x—87,000x for 56, 28, 14, and
7 features respectively. We see that (1) reducing the number of
features has a significant impact on sketched data size and (2)
sketched size follows a logarithmic trend where compaction
rates improve as the data volumes increase.

C. Profiling the Data Structure for Organizing DFVs

Figure 3 depicts the memory consumption at each individual
node comprising the distributed Fennel sketches. Each of the
50 bars reflects a singe node and for each node we depict
memory consumed by each of the three datasets. The standard
deviations of memory usage for each dataset at each node
are 0.0234MB, 0.3844MB, and 0.4053MB for Million Songs,
Texas, and NOAA respectively. This benchmark highlights the
Fennel DHT’s ability to balance DFV placements within the
cluster.

Next, we profile individual query evaluations. This exper-
iment was performed by submitting queries from a single
client to a single storage node. We have chosen to evaluate
under these constraints because the Fennel DHT may optimize
queries by restricting the number of storage nodes a query
contacts, meaning queries returning the same number of ob-
servations may execute with highly variable performance. To
more accurately catalogue query evaluations we have isolated
a single node.

In Figure 4, the selectivity percentage represents the portion
of records stored at the node that was returned by the query.
The profiled node contained 40 million total observations.
The y-axis reports elapsed time (in seconds) for each opera-
tion. For each query we report two separate values. 0 the
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latency incurred by sending a query to the node and receiving
portions of the sketch e the duration to generate synthetic
observations based on the GIST.

We see that latency for servicing a query increases linearly
with selectivity. For example, 5% selectivity (~2 million ob-
servations) takes roughly 2.5 seconds and 10% selectivity (~4
million observations) takes about 5 seconds. Query requests
are not throttled by network I/O and therefore may be executed
in parallel among Fennel storage nodes.

D. Generation of Synthetic Datasets

Figure 4 profiles synthetic dataset generation. Generation of
observations scales linearly with the query selectivity.

To evaluate statistical representativeness of the synthetic
data we have employed the Kruskal-Wallis test to compare if
the original dataset and synthetic dataset are drawn from the
same population. In this test, the standard p-value less than
0.05 is used to reject the null hypothesis that the two samples
are drawn from separate populations. We have provided a plot

of p-values for each feature in the NOAA dataset in Figure 5.
We found that only 7 of 56 features failed the Kruskal-Wallis
test. Four of the failures we caused by features with already
discretized values. In this case, the latitude and longitude of
each collection point and a yes (1) / no (0) flag for measurable
snow and rainfall. The other three were a construct of heavily
skewed feature distributions. We generate synthetic values
based on a uniform distribution within each bin, decreasing the
size of bins over dense portions of the KDE would improve
synthetic data accuracies.

E. Model Construction

1) Training Times: In Figure 6 we explore resource utiliza-
tion and duration of Fennel data sampling. We compare these
results to TODA (traditional on-disk analytics). Model training
times will be identical between the systems for each selectivity
interval so we have focused on reporting the variances in
data sampling. For these experiments we monitored disk 1/O,
network I/O, and duration based on various sample sizes of
the NOAA dataset.

Figure 6a reports disk I/O during data sampling; as can be
seen Fennel requires no disk I/0. Figure 6b reports on network
I/O between the Storage and Analytics Clusters. We see that
Fennel significantly reduces network 1/0O. For each selectivity
test Fennel shows an 88% reduction in network I/0.

Figure 6¢ displays the overall duration for data sampling.
We observe a 76 % - 92% reduction in data sampling times.
However, the tradeoff between savings of disk/network I/O and
time required to generate accurate synthetic datasets is tunable
for higher performance.

Figures 7 and 8 present sampling times for varying selec-
tivity over the Million Songs and Texas datasets respectively.
We see similar improvements as in Figure 6¢ showing that
Fennel’s advantage is not unique to the NOAA dataset.

2) Model Performance - Accuracy: We conducted exper-
iments to asses how much accuracy is sacrificed by using
the Fennel sketch that significantly reduces training times.
We trained models on data sampled from the actual and the
synthetic data generated from sketches and evaluated their
accuracy on test data sampled from the actual full-resolution
data. Figures 9a, 9b and 9c contrast the accuracy of models
built on actual data with the ones trained on synthetic data for
the three datasets. In Figure 9a we can see that the models
trained on actual and synthetic data of Million Song dataset
have similar accuracy for all sampling sizes. In this case,
we significantly reduced the training time without accuracy
reduction. For other datasets, models built on synthetic data
are less accurate, but as can be seen the differences are not
significant. Furthermore, the accuracy improves as the training
data sizes become larger.

Also, we created ensembles comprising instances of the
models that have already trained on the Million Song and
Texas datasets. Each ensemble makes a prediction by aver-
aging the predictions of the constituent models for a given
observation. The ensembles could improve the accuracy as
shown in Figures 9a and 9b and their creation does not increase
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the training time. We can also use Fennel query to train
less correlated models and construct the ensembles that will
improve the accuracy further.

We used a Fennel query to partition the multidimensional
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Fig. 8: Sampling times for the Texas dataset.

feature space of the NOAA dataset into 64 sub-regions; the
target that we considered for model building was surface
temperature measured in Kelvin. We sampled each sub-region
to create a specialized model to make predictions only for
observational feature vectors belonging to the particular sub-
region. We then assessed the accuracy of these specialized
models by contrasting their accuracy with the best accuracy
obtained from global models built on data sampled from
the entire data. The accuracy (RMSE) achieved by leveraging
specialized models was 1.04, while that using the global model
was 1.39. This benchmark demonstrates the suitability of using
Fennel to construct specialized models targeted for particular
portions of the feature space.

V. RELATED WORK

A broad spectrum of solutions have been proposed to
enable learning from large datasets with the focus on reducing
training times without sacrificing accuracy. Sampling is a
commonly used strategy for dealing with voluminous datasets.
Different strategies [3], [4], [5] have been proposed to create a
smaller representative subset of the original dataset. Although
sampling enables analysis of voluminous data, it becomes
infeasible for optimizing problems with a large number of
parameters that involve voluminous data to achieve an accept-
able solution. Full use of data that is both large in volume
and variability promises opportunities to explore more hidden
structures in such data [6]. Agarwal et al. [7] have shown
that increasing the sampling size of such data usually leads to
better accuracy.

Other solutions rely on distributed systems to build a
complex model using voluminous data distributed across many
networked machines. Some approaches [8], [7], [9], [10] have
relied on the optimization of the MapReduce framework, and
others [11], [12] employed a graph abstraction to express
computations. Also, some frameworks [13], [14], [15], [16]
have been especially proposed to support a broader class of
machine learning algorithms. The cost of moving voluminous
data among distributed machines is prohibitive, and cost con-
cerns have forced the proposed systems to support data-centric
computation. Collocating the computations with distributed
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data portions involves exploiting the natural decomposability
of the objective function over the training examples or, if
possible, modifying the learning algorithm to become system
friendly.

Divide and conquer is another technique for enabling learn-
ing from voluminous data. This approach relies on partitioning
the original dataset into subsets, fitting a predictive model over
each subset independently, and combining the trained models.
Several approaches [17], [18], [19] rely on this technique
to allow diverse solutions for different domain problems.
Some approaches employ ensemble techniques to learn from
voluminous data.

Data preparation is the key to achieving efficient large-scale
data analytics. Usually, each of these solutions are customized
for the particular domain. Our solution stages and organizes
the data such that it facilitates a diverse set of data fitting
techniques efficiently.

Distributed data management and analytics are trending
towards memory-based systems to alleviate magnitudes slower
disk I/O. There are efforts such as Redis [20], which provide
distributed in-memory key-value stores, but the lack of data
compactions precludes their use. Spark SQL [21], using
it’s Dataframe API, provides a coupling of relational and
procedural frameworks over Apache Spark [22]. Alternatively,
Tachyon [23] targets the storage layer for in-memory op-
timizations using a hierarchical data lineage subsystem built
over traditional HDFS to make popular data memory resident.
These approaches aim to provide memory resident analytics,
but may still require disk I/0 during extensive analytics. Fennel
compacts datasets using data sketches allowing the system to
store the sketches in-memory providing two advantages. (1)
substantial alleviation of disk I/O and (2) significant reductions
in network I/O during data transfers.

Frequency based sketches are designed to represent the
observed frequency distribution of a dataset which is a useful
construct in designing approximate query processing sys-
tems. Count Sketch [24], Count-Min [25], Misra-Gries algo-
rithm [26], and Counting-Quotient filters [27] are examples
of frequency based sketches. The sketches sizes are sub-linear
to the dataset size and can be controlled through parameters

associated with the accuracy and probability of exceeding
accuracy bounds. These sketches though designed primarily
for streaming systems, can be used as the sketching algo-
rithm within Fennel to represent the frequency distributions
of DFVs with controlled accuracy. Generating sketches over
spatio-temporal observational streams is studied in [28], [29]
where spatial and/or temporal attributes of data inform(s) the
organization of the sketch. Synopsis comprises a set of micro-
sketches arranged as a prefix tree based on the spatial attributes
of the data.

There have been several efforts to perform analytics over
scientific data collections [30]. Often these efforts have tar-
geted efficiencies at the storage layer [31], [32], [33], schedul-
ing [34], [35], and queries [36], [37]. Our methodology differs
from these aforementioned approaches in our support for
sketches and generation of synthetic datasets to facilitate fast
analytics.

VI. CONCLUSIONS AND FUTURE WORK

This study describes our methodology and reference im-
plementation to sketch on-disk datasets, facilitate distributed
organization of the sketch, and to use the sketch as the basis
for feature space explorations and model training.

RQ-1: The size of the individual bins and total number of
bins should be informed by the distributions associated with
individual features and the NRMSE of the particular binning
strategy. We track the observed feature combinations using
DFVs. Compromising the resolution of the features using
discretization and tracking occurrence frequencies allows us to
preserve representativeness of the feature space. Multidimen-
sional DFVs are generated based on distributed calculation of
the statistical properties of the feature space.

RQ-2: Shuffling the DFVs comprising the sketch allows us
to collocate DFVs, achieve compaction, and ensure accurate
occurrence counts. To conserve memory footprints the in-
memory data structure organized as a hash map. The memory-
residency and reduction in traversals facilitates fast query
evaluations that allow data scientists to interactively explore
the feature space.



RQ-3: The Fennel sketch can be queried to retrieve precise
portions of the feature space that are of interest. The com-
pactness of the Gist data structure and the accompanying
metadata facilitates creation of synthetic datasets that are
highly representative of the on-disk data as evidenced by our
statistical tests reported in Section IV-D. Model training times

are

significantly reduced because no disk I/O is performed

during model training.

As part of future work, we will be investigating deeper
integration with analytical engines. In particular, this includes
seamlessly generating synthetic datasets using core engine
APIs for example, DataFrames and TFRecords.
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