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Abstract—We describe the design of a high-throughput storage 
system, Galileo, for data streams generated in observational 
settings. The shared-nothing architecture in Galileo supports 
incremental assimilation of nodes, while accounting for 
heterogeneity in their capabilities, to cope with data volumes. 
To achieve efficient storage and retrievals of data, Galileo 
accounts for the geospatial and chronological characteristics of 
such time-series observational data streams. Our benchmarks 
demonstrate that Galileo supports high-throughput storage 
and efficient retrievals of specific portions of large datasets 
while supporting different types of queries.  
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I. INTRODUCTION 
There has been a steady increase in the number and type 

of observational devices. Data from such devices must be 
stored for (1) processing that relies on access to historical 
data to make forecasts, and (2) visualizing how the 
observational data changes over time for a given spatial 
area. Data produced by such observational devices can be 
thought of as time-series data streams; a device generates 
the packets periodically or as part of configured change 
notifications. Data packets generated in these settings 
contain measurements from multiple, proximate locations. 
These measurements can be made by a single device (e.g., 
volumetric scans generated by radars) or from multiple 
devices (e.g., sensors send data to a base station that collates 
multiple observations to generate a single packet).  

Observational data have spatio-temporal characteristics. 
Each measurement represents a feature of interest such as 
temperature, pressure, humidity, etc. The measurement is 
tied to specific location and elevation, and has a timestamp 
associated with it. While individual packets within an 
observational stream may not be large (usually a few KB), 
the frequency of the reported measurements combined with 
increases in the number and type of devices lead to 
increasing data volumes.  

A. Usage Scenarios 
Our targeted usage scenario is in the atmospheric 

domain where such data from such measurements are used 
as inputs to weather forecasting models and visualization 
schemes. These usage patterns entail access to historical 

data to validate new models, identify correlations or trends, 
and visualize feature changes over time. We need to be able 
to access specific portions of the data efficiently to ensure 
faster completions of the aforementioned activities. 

B. Research Challenges 
Research challenges in designing a storage framework 

for such observational data include the following: 
1. Support for a scale-out architecture: An extensible 
architecture that can assimilate nodes one at a time to 
support increased data storage requirements. 
2. High throughput storage of data: Given the number of 
data sources, we must be able to store data streams arriving 
at high rates. We measure throughput in terms of the total 
number of stream packets stored by the system over a period 
of time. 
4. Efficient retrievals of specific portions of the data: Given 
the large data volumes involved we must support fast sifting 
of stored data streams in response to queries that target a 
specific feature at a specific time for a given geospatial area. 
To accomplish this, we must account for the spatial and 
temporal characteristics of the data while storing data that in 
turn is the basis for efficient retrievals. 
5. Fast detection of non-matching queries: Often the query 
parameters are adjusted based on results from past queries. 
To support fine-tuning of queries, we must have accurate 
and efficient detection of situations when there are no data 
that match a specified query. 
6. Range query support: We must be able to support range 
queries over both the spatial and temporal dimensions while 
ensuring that support for such queries do not result in 
unacceptable overheads.  
7. Failure recovery: We must account for any possible 
failures and data corruptions at individual nodes. Recovery 
from failures must be fast and consistent. 

C. Contributions 
This paper describes the design of a demonstrably high-

throughput geospatial data storage system. The storage 
framework is distributed and is incrementally scalable with 
the ability to assimilate new storage nodes as they become 
available. The storage subsystem organizes the storage and 
dispersion of data streams to support fast, efficient range-
queries targeting specific features across the spatial and 



temporal dimensions. To sustain failures and recover from 
data corruptions of specific blocks the system relies on 
replication. Most importantly, our benchmarks demonstrate 
the feasibility of designing high-throughput data storage 
from commodity nodes while accounting for differences in 
the capabilities of these nodes. Leveraging heterogeneity in 
the available nodes is particularly useful in cloud settings 
where newer nodes tend to have better storage and 
processing capabilities over time.  

D. Paper Organization 
In the following section, the architecture of Galileo will 

be discussed, including an overview of how data is stored to 
disk, the network layout, and how data is positioned and 
replicated within the system. Next, the query system will be 
explained in section III, followed by a brief survey of related 
technologies in section IV. Section V presents benchmarks 
of our system’s capabilities, and section VI reports 
conclusions from our initial research and discusses the future 
direction of the project. 

II. SYSTEM ARCHITECTURE 
Galileo runs as a computation on the Granules Runtime 

for Cloud Computing [1]. Granules is an ideal platform to 
build upon because it provides a basis for streaming 
communication between nodes in the system and for 
incoming data streams as well. As data enters the system, it 
can be sifted and pre-processed with the Granules runtime 
and then stored in a distributed manner across multiple 
machines with Galileo. When accessing data, users have the 
option of pushing their computations out to relevant Galileo 
storage nodes where they can be run locally to avoid 
incurring IO costs associated with transferring large amounts 
of data across a network. This also makes it possible to 
support distributed programming paradigms such as 
MapReduce [2]. 

Much like Google File System (GFS) [3] or Amazon’s 
Dynamo storage system, [4] Galileo is a high-level 
abstraction that utilizes the underlying host file systems for 
storing data on physical media. This allows Galileo to be 
portable across operating systems and hardware while also 
coexisting with other files. It also means that Galileo does 
not require an entire disk or partition be devoted to the 
system. In Galileo, storage units are called blocks and are 
stored as files on the host file system. Each block is 
accompanied by a set of metadata that is specifically tailored 
for scientific applications. 

As extremely large datasets can require massive 
computing resources, Galileo is designed with scalability in 
mind. The system employs a shared nothing architecture, 
meaning storage nodes operate autonomously and do not 
share their state with any other nodes. This simplifies the 
process of meeting increased storage demands because 
additional nodes can be added to the system without 
requiring excessive communication or migration of data. 

To ensure the system is as fault-tolerant as possible, 
Galileo does not utilize master nodes or fixed entry points 
that could result in single points of failure. In fact, Galileo 
will continue to provide query and storage facilities even 
when failures occur so that applications that do not require 
complete access to all information in the system can continue 
to run. Blocks are also replicated across machines to cope 
with general hardware failures that are expected in 
distributed setting. 

A. Granules 
Granules [1] is a light-weight distributed stream 

processing system. In Granules computations can be 
expressed as MapReduce or as directed cyclic graphs and 
the runtime orchestrates these computations on a set of 
available machines. In Granules individual computations 
can specify a scheduling strategy that allows them to be 
schedule for execution when data is available or at regular 
intervals specified in milliseconds. Computations in 
Granules can have multiple, successive rounds of execution 
during which they can retain state. A computation can 
change its scheduling strategy during execution, and the 
runtime will enforce the new scheduling strategy during the 
next round of execution. A computation is also allowed to 
specify a ceiling on the maximum number of times that it 
can be scheduled for execution. The runtime allows a 
computation to specify a hybrid scheduling strategy that is a 
combination of data availability, periodicity, and the 
maximum number of execution. 

Granules allows these computations to be developed in C, 
C++, C#, Java, Python and R. Some of the domains that 
Granules has been deployed in include bioinformatics, 
brain-computer interfaces [5], multidimensional clustering 
algorithms, handwriting recognition [6], and 
epidemiological modeling. Granules is an open-source effort. 

B. Blocks 
A Galileo block is an multi-dimensional array of data, 

similar to how data is represented in systems like SciDB [7, 
8] or formats such as NetCDF [9] or FITS, [10] although in 
the case of Galileo metadata files are stored separately on the 
file system alongside their respective data blocks. This 
separation simplifies operations: indexing, lookups, and 
queries all operate on metadata, while storage and 
modification operations occur on the blocks themselves. The 
division also makes it possible to load and retain metadata 
information in main memory without needing to read an 
entire block from disk. Combined with the on-disk metadata 
journal, a storage node’s entire state can be quickly 
recovered after a crash. 

Instead of just one or a few large directories containing 
all the blocks present on a machine, Galileo separates blocks 
into an on-disk hierarchical directory structure using the 
blocks’ metadata. As the number of files in a directory 
increases, reading directory indexes becomes more and more 
time-consuming, so this structure spreads data across 



multiple directories to avoid this performance penalty. The 
structure also makes it possible to glean some of a block’s 
metadata simply by knowing its location in the hierarchy on 
disk. In the case of massive datasets where not all the 
metadata in the system can be stored in main memory or 
after a failure has occurred, the hierarchy makes it possible 
to start searching from a starting point that is already close to 
the desired information.  

The initial directory structure is as follows: beginning 
with temporal information, the year associated with the block 
is used to determine the directory under the first (root) 
storage directory for data in the system. Months, days, and 
hours are used to further sub-divide the directory structure; 
each year directory contains twelve month directories, and 
each month directory contains up to 31 days, and so on. 
Since temporal information could include a range of times, 
the beginning of the range is used for the on-disk graph. The 
next level of subdirectories is determined by using the data’s 
spatial information to compute a Geohash [11]. Geohashes 
are strings that can be used to divide data into arbitrarily-
sized spatial bounding boxes, where shorter strings 
correspond with larger geographic regions, and therefore 
more blocks. The precision of these strings determines the 
number of subdirectories created on the file system, and can 
be automatically tuned by Galileo to cope with different 
geographic dispersions of data. Further details of the 
Geohash algorithm are discussed in subsection E. If 
incoming data does not fit into the configured directory 
structure, it is automatically split into separate blocks by the 
system. 

Our storage scheme offers a few advantages over using 
one large, contiguous file for storing blocks. For instance, the 
on-disk hierarchy encodes partial metadata in directory 
names that is available without needing to read any files 
directly. In addition, this scheme makes the storage format 
flexible; if we decide to incorporate support for NetCDF, [9] 
HDF5, [12] or FITS [10] as our file block storage format at a 
later time, we can do so easily without needing to overhaul 
major parts of the system. Migration of data in the face of 
failures or for load-balancing purposes is also simplified, as 
single units of storage can be copied directly to other nodes. 

Since blocks are stored on top of the host file system, any 
benefits the file system provides will also benefit Galileo. 
Caching of frequently-used blocks can be handled by the 
host operating system as long as it supports a disk-caching 
mechanism. Performance characteristics of file systems often 
involve tradeoffs, so this scheme allows the underlying file 
system to be changed to better match specific workloads, if 
necessary. 

C. Metadata 
When designing a database specifically for scientific 

data, the creators of SciDB [7] identified some major 
differences between scientific data and business-oriented 
data. Two of these differences involve file metadata: first, 
scientific data usually has a spatial aspect, involving location 

or elevation information. Additionally, scientific data storage 
needs are massive and continuously growing in size; systems 
dealing with such information should be able to handle data 
on the petabyte-scale. This generally involves an indexing 
scheme to speed up access. 

Galileo aims to address these scientific needs as well. 
Each file in Galileo is accompanied by a rich set of metadata. 
The metadata contains spatial information which can include 
elevation and a range of coordinates that form a bounding 
box or a single spatial point. This information can be used to 
query and apply computations on specific geographic 
regions. Since measurements are often performed over a 
range of time, temporal information is also encoded in files’ 
metadata. This allows users to retrieve a wide array of 
constantly-changing information bundled as a single dataset, 
or apply transformations across a specific time interval. 

In an effort to make Galileo data blocks self-describing, 
meaning all the information needed to interpret the data is 
included in the files, metadata contains a number of user-
defined features. Features could include environmental 
attributes such as wind speed, pressure, humidity, or some 
other application-specific attribute. Support is also included 
for encoding device identifiers in the metadata so datasets 
can be built from specific sensors or instruments. This gives 
the file format flexibility to fit a wide range of use case 
scenarios. 

To cope with massive data storage needs, Galileo uses 
temporal and spatial metadata attributes to create a 
hierarchical graph-based index of the data residing in the 
system.  This index is stored in main memory on the Galileo 
storage node, so locating data is as fast as possible. 

Galileo metadata files also contain checksum information 
for both the metadata itself and the blocks they are associated 
with. This information is used to detect data corruption that 
is generally expected when running in a distributed 
environment on commodity hardware. When corruption 
occurs, replicas are provided from other machines to replace 
the faulty files. 

D. Journaling 
Making complex structural changes to the underlying 

data structures in Galileo can often require many separate 
disk operations. Power failures or system crashes that can 
take place during such operations can leave these data 
structures in an inconsistent, partially-modified state; the use 
of journaling safeguards against such uncertainties. Every 
change committed to the on-disk data stored in Galileo is 
preceded by an update to the system journal. In the case of 
failures, the journal serves as a checkpoint and the entire 
journal is read from disk to determine the last operation that 
was taking place before the failure occurred. Once the pre-
failure state has been determined, the operation can be 
completed, if possible, or rolled back if the data required to 
complete the operation was lost during the failure. 

When adding a file to the system, partial metadata is read 
to determine a location for the block in the in-memory graph. 



The graph destination for the block may require a number of 
vertices and edges to be created, so this information is 
written to the journal before storing any files. When 
recovering from a failure, this information allows the system 
to recreate its in-memory graph quickly and begin servicing 
queries without needing to re-read all the metadata from 
disk. 

E. Geohashes 
The Geohash algorithm [11] can be used to divide 

geographic regions into a hierarchical structure. A Geohash 
is derived by interleaving bits obtained from latitude and 
longitude pairs and then converting the bits to a string using 
a base-32 character map. A Geohash string represents a fixed 
spatial bounding box. For example, the latitude and 
longitude coordinates of N 40.57°, W 105.08° fall within the 
Geohash bounding box of 9xjqbce. Appending characters to 
the string would make it refer to more precise geographical 
subsets of the original string. 

To obtain the latitude and longitude bits from an initial 
pair of coordinates representing a target point in space, the 
algorithm is applied recursively across successively more 
precise geographical regions bounding the coordinates. The 
remaining geographical area is reduced by selecting a half-
way pivot point that alternates between longitude and 
latitude at each step. If the target coordinate value is greater 
than the pivot, a 1 bit is appended to the overall set of bits; 
otherwise, a 0 bit is appended. The remaining geographic 
area that contains the original point is then used in the next 
iteration of the algorithm. Successive iterations increase the 
accuracy of the final Geohash string. 

An appealing property of the Geohash algorithm is that 
nearby points will generally share similar Geohash strings. 
The longer the sequence of matching bits is, the closer two 
points are. This property is exploited in Galileo to support 
simple range-based spatial queries that return data in a given 
Geohash region, allowing users to specify more- or less-
precise hashes to select smaller or larger areas. It is also 
possible to use Geohashes for quick proximity searches. In 
addition to queries, Geohashes can also be used to group 
similar data. If a collection of data gets too large, simply 
using more precise Geohashes allows the system to create 
more specific, and therefore smaller, groupings of data. This 
property also allows quick retrieval of similar data blocks for 
use in computations. 

F. Network Organization 
Galileo employs many features of distributed hash 

tables, (DHTs) much like systems such as Chord [13] or 
Dynamo [4]. Like Dynamo, Galileo is a zero-hop DHT, 
where each node knows enough about the network topology 
to route requests directly to their destination. Individual 
storage nodes running on machines in the system are divided 
into groups. These groups can represent arbitrary collections 
of machines, or could be used to arrange machines with 
geographic locality or common hardware attributes. Each 

group is assigned its own UUID stream, so it is also possible 
to broadcast information to an entire group if necessary. 
Group members form a ring and communicate with their 
neighbors over a socket connection on a separate thread. This 
connection is used for detecting when a neighboring node 
has failed and maintaining replication levels when failures 
occur. Groups operate in isolation from the other nodes in 
the system, apart from storage nodes being able to route 
incoming data directly to its destination stream, which may 
be handled by a node in a different group. 

In DHTs, a hash function is used to locate where data 
will be stored in the system. In the case of Galileo, a two-
tiered hashing scheme is used: first, the destination group for 
the data is determined by computing a Geohash based on the 
data’s spatial information. Then, to determine the storage 
node within a group, a SHA-1 hash is computed using the 
data’s temporal and feature metadata sets. Using the group 
and storage node hashes, clients can determine a UUID for 
the particular node they wish to communicate with and begin 
publishing data on the node’s UUID stream. In the system’s 
present state, this scheme simply distributes data evenly 
across all available machines, but in the future the algorithm 
could be changed to group data based on its content or 
metadata.  

To cope with heterogeneous systems, machines can also 
join multiple groups or represent multiple “virtual” machines 
within a group. This allows more powerful storage nodes to 
be added to the system later and still balance load across 
available machines efficiently. 

Galileo is an eventually consistent system. Nodes and 
groups can be added or removed from the system at will, but 
this may affect the availability of data that must be migrated 
during changes to the network topology. This property 
allows applications to continue with their computations if 
they can be completed with partial information. Once data 
migrations are complete, the system resumes its usual 
operating state and all the information stored in the system is 
available once again. 

G. Data Replication 
Each storage node in Galileo executes a separate thread 

that oversees the verification and replication of data. The 
designers of Hadoop Distributed File System (HDFS) at 
Yahoo! observed that around 0.8 percent of their nodes fail 
each month and that with a replication level of three, the 
probability of losing a block during one year is less than 
0.005 [14]. Therefore, it is ideal to allocate at least three 
machines per group since replication is done at the group 
level. 

Within a group, machines act as a circular buffer. The 
parent node for a block will receive the first copy of the 
block, store it, and then forward the block on to its neighbor. 
The neighbor then stores and forwards the block on to its 
neighbor, continuing until the configured replication level is 
achieved. In the case of machines acting as multiple virtual 
nodes in the system, the data is forwarded on to the next non-



virtual node. This scheme has a few advantages. For one, 
network load is distributed evenly among nodes participating 
in replication since multiple copies do not need to be sent to 
the system directly. Additionally, the parent node will know 
where replicas will be stored without needing to 
communicate with any other nodes. Replicated blocks are 
not included in query results. 

When corruption is detected using checksums stored in 
metadata files, a node may request a replica from its 
neighbor. Replication requests are logged and used to 
determine if a particular node is experiencing a higher rate of 
corruption than the rest of the nodes. In cases where a node 
has been determined to be faulty based on its corruption rate, 
it can be automatically removed from the system. 

III. INFORMATION RETRIEVAL: DATASETS 
Galileo’s information retrieval process is different from 

traditional databases or key-value stores. Instead of matching 
user-submitted queries against the data available in the 
system and returning the raw data, Galileo streams metadata 
of the matching blocks back to the requestor and our client-
side API transparently collates these metadata blocks into a 
traversable dataset graph. This dataset is a subset of 
Galileo’s in-memory metadata graph, and describes the 
attributes of the blocks that match a query. This allows 
applications to determine how many result blocks are 
available and what their various attributes contain without 
needing to read any data from the disk. The dataset also 
contains information about the size of the data blocks it 
describes. Once a dataset has been obtained, applications can 
have blocks transferred directly to them or further fine-tune 
the dataset by traversing through it or selecting more specific 
portions of the graph. Knowing the location of the data also 
allows applications to push computations directly to relevant 
storage nodes instead of requesting the blocks be transferred, 
avoiding network IO costs.  

Since some storage nodes may respond faster than others 
depending on server load or the size of the data requested, 
datasets are streamed incrementally to client applications. 
This way processing can start before the entire dataset has 
been returned. 

IV. RELATED WORK 
Hadoop [15] and its accompanying file system, HDFS 

[14] share some common objectives with Galileo. Hadoop is 
an implementation of the MapReduce framework, and HDFS 
can be used to store and retrieve results from computations 
orchestrated by Hadoop. A primary difference between 
HDFS and Galileo is the role of metadata in the two systems; 
HDFS is designed for more general-purpose storage needs, 
and cannot perform the indexing optimizations Galileo’s 
geospatial metadata makes possible. In addition, the 
Granules runtime allows computations to build state over 
time, which contrasts with Hadoop’s exactly-once semantics. 

The Hadoop and HDFS combination has been used 
specifically for geospatial data [16, 17]. Akdogan, 

Demiryurek, Banaei-Kashani, and Shahabi found that the 
MapReduce paradigm is effective for a number of geospatial 
operations and scales linearly as nodes are added to the 
system [16]. Their implementation uses an index based on 
Voronoi diagrams, which helps speed up operations on 
geospatial areas, but does not include a temporal component. 

SciDB [7, 8] also shares many characteristics with 
Galileo. It is a science-oriented database management system 
(DBMS) which deals with multi-dimensional arrays of data 
in a shared nothing architecture. SciDB has modular support 
for data processing and querying facilities, allowing users to 
write their own extensions to run within SciDB. This makes 
writing powerful, application-specific queries possible. 
Conversely, Galileo places computational responsibilities 
outside the system and frameworks such as Granules [1, 18] 
are used for processing information. Another key difference 
between the two systems is metadata handling. In SciDB, 
metadata and information about nodes in the system are 
indexed in a centralized system catalog which is backed by 
the PostgreSQL Object-Relational Database Management 
System (ORDBMS) [19]. Galileo distributes metadata and 
index information across all the nodes in the system. 

PostGIS [20] provides an alternative approach to storing 
data with geospatial attributes: instead of being designed as a 
standalone system, it is an extension that runs on the 
PostgreSQL ORDBMS [19]. PostGIS includes geospatial 
data types and queries that coexist with traditional database 
functionality. The geospatial queries allow some processing 
work to be offloaded to the database itself. PostGIS is an 
ideal system for users with information that fits the tabular 
database storage model well, but in general multi-
dimensional arrays are often a better fit for many forms of 
scientific data, as discovered in a panel held by the SciDB 
creators [8]. Scaling PostGIS may also be more difficult, as 
scaling options frequently involve replicating the database to 
other servers or splitting data manually between multiple 
servers, complicating the application logic used to interact 
with the database. 

BigTable [21] is a database-like storage platform that 
maps row, column, and time values to byte arrays.  In 
BigTable, data is stored in lexicographic order by row keys.  
Rows with consecutive keys are grouped into tablets, which 
are distributed across machines to provide load balancing.  
Since multiple versions of data can be present in the database 
at a given time, timestamps are used to distinguish between 
different versions.  BigTable stores its data on the Google 
File System [3], which handles the splitting and distribution 
of files. While BigTable has been used for Google Earth, 
queries that are explicitly geospatial are not supported by the 
system.   

Cassandra [22] was created by Facebook for dealing with 
massive amounts of textual data in the form of user message 
inboxes.  Unlike other distributed data stores that focus on 
read performance, Cassandra is heavily optimized for write-
heavy workloads. This feature is provided by doing 
extensive journaling and flushing large amounts of buffered 



data to the disk while performing large, sequential writes.  
Cassandra is similar to BigTable [21] in its map-based data 
model and Dynamo [4] in its network organization.  In 
Cassandra, node addition and removal is a more involved 
process than in Galileo and may require data migration.  
Cassandra is also not designed for geospatial queries. 

V. BENCHMARKS 
To test the capabilities of Galileo’s storage system, we 

ran benchmarks on a 48-node Xeon-based cluster of servers 
with a gigabit Ethernet interconnect. Each server in the 
cluster was equipped with 12GB of RAM and a 300-
gigabyte, 15,000 RPM hard disk formatted with the ext4 file 
system. The benchmarks were run on the OpenJDK Runtime 
Environment, version 1.6.0_20. 

One billion random data blocks were generated for the 
experiments and dispersed across the 48 machines, each 
containing 1,000 simulated sensor readings and 
accompanying metadata. Readings had a feature set that 
included pressure, temperature, and humidity. This 
configuration resulted in blocks that consumed 4,000 bytes 
of disk space each and metadata files that were 
approximately 120 bytes each. Random temporal ranges 
were chosen within the years of 2002-2011, and random 
spatial locations for the data were constrained to the 
continental United States. In the interest of testing the system 
with the biggest dataset possible, replication was disabled on 
the storage nodes to conserve disk space. The total size of the 
billion-block dataset was approximately 8TB.  

To simulate source “sensor arrays” that stream data into 
the system, machines outside the cluster were used to 
generate the random blocks and stream them into the system 
across the network. We also generated “realistic” data by 
having subsequent blocks share some characteristics with 
previously generated blocks.  For example, one block may be 
generated with metadata for July 1st at 3:00 and the next 
block would contain information about readings from July 1st 
at 4:00. 

A. Storage 
Data blocks enter the system as a stream of bytes. Once 

the data is received, the metadata portion of the block is de-
serialized so it can be read and indexed in the in-memory 
graph, and then the data is written to disk. TABLE I. 
contains timing information for each part of the process in a 
scenario where a 10,000-block burst of data is streamed into 
the system.  

TABLE I.  PER-BLOCK MEAN STORAGE TIME: 10,000 BLOCKS 

Operation Mean Time (ms) Standard Deviation (ms) 
De-serialization 0.0298933 0.0283722 
Indexing 0.0186978 0.0129819 
Writing to Disk 0.133983 0.0425601 

 
In these tests, the majority of the time storing a block is 

spent writing to disk. In cases where files much larger than 

4kB are stored, the overhead incurred by de-serialization and 
indexing should be even more insignificant when compared 
to write times. 

Our storage scheme involves creating several filesystem-
level objects. As a block enters the system, its metadata and 
content are stored separately on disk, which creates two files 
and therefore consumes two inodes on the ext4 file system. 
In addition, directories are also created for the on-disk 
hierarchy that resembles the in-memory graph. TABLE II. 
contains a summary of disk space usage (using the number 
of 1024-byte blocks consumed) and inode utilization as more 
blocks are added to the system.  

TABLE II.  DISK USAGE 

Number of Blocks 1-K Disk Blocks Used Inodes Used 
1,000,000 9,020,432 2,069,110 
10,000,000 88,009,576 21,217,563 
20,000,000 166,358,044 40,239,375 

B. Recovery 
In the event of a system crash, power loss, or scheduled 

reboot, Galileo must recover its state from disk after being 
restarted. Recovery first involves reading the system journal, 
which contains enough edge information to restore the 
system graph that is used to create datasets. TABLE III. 
outlines recovery times for a single node after a system 
failure for three scenarios involving different number of 
stored blocks.  

TABLE III.  RECOVERY TIMES 

Blocks Stored at a Node Graph Recovery (sec) 
1,000,000 3.062 
10,000,000 28.91 
20,000,000 65.18 

C. Retrieval 
For our initial query tests, 100 million random blocks 

were submitted and stored in the system in the manner 
discussed earlier. Then we queried for all pressure readings 
generated in July of 2011 within a spatial range roughly 
covering the state of Colorado. 

TABLE IV. summarizes the results of the query. It 
includes timing information for creating a dataset from 
memory, creating a dataset from disk, (simulating post-
failure conditions) and also for transferring raw data blocks 
across the network to a client (“downloading” the dataset 
contents).  

TABLE IV.  SMALL DATASET QUERY RESULTS 

Result Type First Result (ms) Last Result (ms) 
Dataset 
(in-memory metadata) 

60.76 668.42 

Dataset 
(metadata from disk) 

84.81 1309.12 

Block Download 542.96 5769.21 
The query returned 105,556 blocks, which results in a 

dataset of about 10 megabytes and roughly 400 megabytes of 
raw block data. 



Our next query benchmark involved the entire billion-
block dataset. We created six different query types to test 
various access patterns: 
 
1. No Match – This is the case where none of the blocks in 

the system match the query. 
2. One Match – This is a specially designed query where 

only a single block (of 109 blocks) matches the query. 
3. Standard Query – The query requests blocks for a 

particular feature over a given geospatial location at a 
specific time (specified using year, month, day, hour). 

4. Temporal Range – Returns all blocks with the desired 
feature for a given geospatial area that fall between a 
specified start and end time range. 

5. Spatial Range – Blocks that fall within coarser or finer 
grained ranges of a specified geospatial bounding box. 
Our tests include querying for blocks within the entire 
continental United States, Colorado, and the northeast 
quarter of Colorado. 

6. Exhaustive feature search – Within a given year, locate 
all measurements of a specific feature regardless of the 
corresponding geospatial location. This query evaluation 
requires an exhaustive search of the year’s subgraph.  

Timing data for each query type is outlined in TABLE V.  
This includes the time to return the dataset’s metadata 
components, the size of the dataset, how long the system 
spent creating the dataset (which requires traversing the in-
memory graph) and also how long it took to download the 
block information for each dataset. Each data point 
represents the result of running queries 100 times to ensure 
stable results were collected; we also report the 
corresponding standard deviations.  

 
Figure 1.  Cumulative storage throughput over 60 seconds 

D. Storage Throughput 
To further test the storage capabilities of Galileo, we also 

performed a cumulative storage throughput test. Data blocks 
were streamed into the system from five separate sources 
outside the cluster and stored on disks that were initially 
empty.  We sampled the number of blocks being stored for a 
60 second window at each node, and then the readings were 
summed to determine the cumulative storage rate. Results 
from this benchmark are depicted in Figure 1.  

These results show that our realistic data simulation does 
yield higher performance than completely random data.  This 
trend is largely due to disk write access patterns; in the case 
of random data there will generally be no commonality in 
destination directory between subsequent blocks, whereas 
the realistic dataset produced less variance in destination 
directory. For the realistic scenario we were able to achieve a 
sustained cumulative throughput of 28,269 blocks per 
second. 

TABLE V.  QUERY RESULTS FOR 1 BILLION BLOCKS: EACH DATA POINT IS THE RESULT OF REPEATING THE EXPERIMENT 100 TIMES 

Query First 
Result 
(ms) 

First 
Result Std. 
Dev. (ms) 

Last Result 
(ms) 

Last Result 
Std. Dev. 

(ms) 

Dataset 
Size 

Dataset 
Creation 

(ms) 

Creation Std. 
Dev (ms) 

Download 
Time (ms) 

Download 
Std. Dev. 

No Match 42.09 0.67 47.05 1.72 0 0.01 0.004 N/A N/A 
One Match 42.96 1.07 50.39 4.29 1 0.01 0.008 50.47 4.22 
Standard 
Query 

44.10 5.26 55.57 9.11 1,411 0.02 0.01 241.45 69.05 

Temporal 
Range 

47.54 5.40 588.80 17.12 98,535 0.29 0.57 9,142.36 119.92 

Spatial 
Range 
(US) 

48.07 14.99 261.81 26.50 31,413 0.05 0.01 1,845.67 42.97 

Spatial 
Range 
(CO) 

43.08 0.45 57.73 8.92 1,643 0.01 0.01 252.03 41.63 

Spatial 
Range (NE 
CO) 

42.81 0.52 57.23 2.45 398 0.01 0.01 62.13 9.50 

Exhaustive 
Feature 
Search 

53.97 2.84 64,069.30 444.42 8,230,612 3.66 0.17 459,297.52 169.33 

 



VI. CONCLUSIONS AND FUTURE WORK 

A. Conclusions 
A shared-nothing architecture allows incremental 

addition of nodes into the storage network with a 
proportional improvement in system throughputs. Efficient 
evaluation of queries is possible by (1) accounting for 
spatio-temporal relationships in the distributed storage of 
observational data streams, (2) separating metadata from 
content, (3) maintaining an efficient representation of the 
metadata graph in memory, and (4) distributed, concurrent 
evaluation of queries. Continuous streaming of partial 
results to a query enables us to achieve faster response 
times. Returning only the metadata associated with the 
content in the query response allows selective downloads 
and quick estimates for the total size of the dataset and 
expected download times. Two query evaluation features in 
our system enable fine-tuning of queries – fast turnarounds 
for queries with non-matching data and support for range-
queries over the spatial and temporal dimensions. The use of 
journaling at individual storage nodes allow us to make (and 
complete) complex structural changes to on-disk data 
despite failures that may take place at the node. Journaling 
also reduces recovery times after a failure. Replication of 
content allows us to sustain failures and data corruptions 
while satisfying queries that match data held in affected 
blocks. Finally, our benchmarks demonstrate the feasibility 
of designing a scalable storage system from commodity 
nodes. 

B. Future Work 
While exact-match and range-based queries are useful for 

a number of applications, we plan to continue to add 
functionality to the query system. This may involve 
implementing support for an existing query language or 
creating a simple language that interacts with our dataset 
format directly. 

A possible improvement to the on-disk storage format 
would involve combining multiple blocks, or possibly even 
entire directory structures, into single indexed blocks. This 
approach will reduce inode consumption and may allow for 
faster disk access patterns; often queries will involve blocks 
that are spatially or temporally similar, so combining the 
related blocks into a single file will reduce the number of 
operations when opening and closing files. Another option 
may be to combine metadata files to improve recovery times 
and dataset generation.  

Finally, given our separate-file storage scheme, we also 
may explore adding support for NetCDF, HDF5, or another 
well-known and supported scientific format. This would 
make the Galileo platform more appealing for users that are 
already invested in a particular data format but wish to store 
and retrieve their data in a distributed setting. This would 
also make in situ access possible, where the system can 
apply computations to datasets that have not been previously 
entered into the system. SciDB [7] supports this feature, as 

the overhead for importing data into a running system can be 
quite high. 
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