
Galileo: A Framework for Distributed Storage of
High-Throughput Data Streams
Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara

Department of Computer Science
Colorado State University

Fort Collins, USA
{malensek, sangmi, shrideep}@cs.colostate.edu

Abstract—We describe the design of a high-throughput storage
system, Galileo, for data streams generated in observational
settings. The shared-nothing architecture in Galileo supports
incremental assimilation of nodes, while accounting for
heterogeneity in their capabilities, to cope with data volumes.
To achieve efficient storage and retrievals of data, Galileo
accounts for the geospatial and chronological characteristics of
such time-series observational data streams. Our benchmarks
demonstrate that Galileo supports high-throughput storage
and efficient retrievals of specific portions of large datasets
while supporting different types of queries.

Keywords-data storage;commodity clusters; distributed systems;
scale-out architectures; observational streams; query evaluations

I. INTRODUCTION
There has been a steady increase in the number and type

of observational devices. Data from such devices must be
stored for (1) processing that relies on access to historical
data to make forecasts, and (2) visualizing how the
observational data changes over time for a given spatial
area. Data produced by such observational devices can be
thought of as time-series data streams; a device generates
the packets periodically or as part of configured change
notifications. Data packets generated in these settings
contain measurements from multiple, proximate locations.
These measurements can be made by a single device (e.g.,
volumetric scans generated by radars) or from multiple
devices (e.g., sensors send data to a base station that collates
multiple observations to generate a single packet).

Observational data have spatio-temporal characteristics.
Each measurement represents a feature of interest such as
temperature, pressure, humidity, etc. The measurement is
tied to specific location and elevation, and has a timestamp
associated with it. While individual packets within an
observational stream may not be large (usually a few KB),
the frequency of the reported measurements combined with
increases in the number and type of devices lead to
increasing data volumes.

A. Usage Scenarios
Our targeted usage scenario is in the atmospheric

domain where such data from such measurements are used
as inputs to weather forecasting models and visualization
schemes. These usage patterns entail access to historical

data to validate new models, identify correlations or trends,
and visualize feature changes over time. We need to be able
to access specific portions of the data efficiently to ensure
faster completions of the aforementioned activities.

B. Research Challenges
Research challenges in designing a storage framework

for such observational data include the following:
1. Support for a scale-out architecture: An extensible
architecture that can assimilate nodes one at a time to
support increased data storage requirements.
2. High throughput storage of data: Given the number of
data sources, we must be able to store data streams arriving
at high rates. We measure throughput in terms of the total
number of stream packets stored by the system over a period
of time.
4. Efficient retrievals of specific portions of the data: Given
the large data volumes involved we must support fast sifting
of stored data streams in response to queries that target a
specific feature at a specific time for a given geospatial area.
To accomplish this, we must account for the spatial and
temporal characteristics of the data while storing data that in
turn is the basis for efficient retrievals.
5. Fast detection of non-matching queries: Often the query
parameters are adjusted based on results from past queries.
To support fine-tuning of queries, we must have accurate
and efficient detection of situations when there are no data
that match a specified query.
6. Range query support: We must be able to support range
queries over both the spatial and temporal dimensions while
ensuring that support for such queries do not result in
unacceptable overheads.
7. Failure recovery: We must account for any possible
failures and data corruptions at individual nodes. Recovery
from failures must be fast and consistent.

C. Contributions
This paper describes the design of a demonstrably high-

throughput geospatial data storage system. The storage
framework is distributed and is incrementally scalable with
the ability to assimilate new storage nodes as they become
available. The storage subsystem organizes the storage and
dispersion of data streams to support fast, efficient range-
queries targeting specific features across the spatial and

temporal dimensions. To sustain failures and recover from
data corruptions of specific blocks the system relies on
replication. Most importantly, our benchmarks demonstrate
the feasibility of designing high-throughput data storage
from commodity nodes while accounting for differences in
the capabilities of these nodes. Leveraging heterogeneity in
the available nodes is particularly useful in cloud settings
where newer nodes tend to have better storage and
processing capabilities over time.

D. Paper Organization
In the following section, the architecture of Galileo will

be discussed, including an overview of how data is stored to
disk, the network layout, and how data is positioned and
replicated within the system. Next, the query system will be
explained in section III, followed by a brief survey of related
technologies in section IV. Section V presents benchmarks
of our system’s capabilities, and section VI reports
conclusions from our initial research and discusses the future
direction of the project.

II. SYSTEM ARCHITECTURE
Galileo runs as a computation on the Granules Runtime

for Cloud Computing [1]. Granules is an ideal platform to
build upon because it provides a basis for streaming
communication between nodes in the system and for
incoming data streams as well. As data enters the system, it
can be sifted and pre-processed with the Granules runtime
and then stored in a distributed manner across multiple
machines with Galileo. When accessing data, users have the
option of pushing their computations out to relevant Galileo
storage nodes where they can be run locally to avoid
incurring IO costs associated with transferring large amounts
of data across a network. This also makes it possible to
support distributed programming paradigms such as
MapReduce [2].

Much like Google File System (GFS) [3] or Amazon’s
Dynamo storage system, [4] Galileo is a high-level
abstraction that utilizes the underlying host file systems for
storing data on physical media. This allows Galileo to be
portable across operating systems and hardware while also
coexisting with other files. It also means that Galileo does
not require an entire disk or partition be devoted to the
system. In Galileo, storage units are called blocks and are
stored as files on the host file system. Each block is
accompanied by a set of metadata that is specifically tailored
for scientific applications.

As extremely large datasets can require massive
computing resources, Galileo is designed with scalability in
mind. The system employs a shared nothing architecture,
meaning storage nodes operate autonomously and do not
share their state with any other nodes. This simplifies the
process of meeting increased storage demands because
additional nodes can be added to the system without
requiring excessive communication or migration of data.

To ensure the system is as fault-tolerant as possible,
Galileo does not utilize master nodes or fixed entry points
that could result in single points of failure. In fact, Galileo
will continue to provide query and storage facilities even
when failures occur so that applications that do not require
complete access to all information in the system can continue
to run. Blocks are also replicated across machines to cope
with general hardware failures that are expected in
distributed setting.

A. Granules
Granules [1] is a light-weight distributed stream

processing system. In Granules computations can be
expressed as MapReduce or as directed cyclic graphs and
the runtime orchestrates these computations on a set of
available machines. In Granules individual computations
can specify a scheduling strategy that allows them to be
schedule for execution when data is available or at regular
intervals specified in milliseconds. Computations in
Granules can have multiple, successive rounds of execution
during which they can retain state. A computation can
change its scheduling strategy during execution, and the
runtime will enforce the new scheduling strategy during the
next round of execution. A computation is also allowed to
specify a ceiling on the maximum number of times that it
can be scheduled for execution. The runtime allows a
computation to specify a hybrid scheduling strategy that is a
combination of data availability, periodicity, and the
maximum number of execution.

Granules allows these computations to be developed in C,
C++, C#, Java, Python and R. Some of the domains that
Granules has been deployed in include bioinformatics,
brain-computer interfaces [5], multidimensional clustering
algorithms, handwriting recognition [6], and
epidemiological modeling. Granules is an open-source effort.

B. Blocks
A Galileo block is an multi-dimensional array of data,

similar to how data is represented in systems like SciDB [7,
8] or formats such as NetCDF [9] or FITS, [10] although in
the case of Galileo metadata files are stored separately on the
file system alongside their respective data blocks. This
separation simplifies operations: indexing, lookups, and
queries all operate on metadata, while storage and
modification operations occur on the blocks themselves. The
division also makes it possible to load and retain metadata
information in main memory without needing to read an
entire block from disk. Combined with the on-disk metadata
journal, a storage node’s entire state can be quickly
recovered after a crash.

Instead of just one or a few large directories containing
all the blocks present on a machine, Galileo separates blocks
into an on-disk hierarchical directory structure using the
blocks’ metadata. As the number of files in a directory
increases, reading directory indexes becomes more and more
time-consuming, so this structure spreads data across

multiple directories to avoid this performance penalty. The
structure also makes it possible to glean some of a block’s
metadata simply by knowing its location in the hierarchy on
disk. In the case of massive datasets where not all the
metadata in the system can be stored in main memory or
after a failure has occurred, the hierarchy makes it possible
to start searching from a starting point that is already close to
the desired information.

The initial directory structure is as follows: beginning
with temporal information, the year associated with the block
is used to determine the directory under the first (root)
storage directory for data in the system. Months, days, and
hours are used to further sub-divide the directory structure;
each year directory contains twelve month directories, and
each month directory contains up to 31 days, and so on.
Since temporal information could include a range of times,
the beginning of the range is used for the on-disk graph. The
next level of subdirectories is determined by using the data’s
spatial information to compute a Geohash [11]. Geohashes
are strings that can be used to divide data into arbitrarily-
sized spatial bounding boxes, where shorter strings
correspond with larger geographic regions, and therefore
more blocks. The precision of these strings determines the
number of subdirectories created on the file system, and can
be automatically tuned by Galileo to cope with different
geographic dispersions of data. Further details of the
Geohash algorithm are discussed in subsection E. If
incoming data does not fit into the configured directory
structure, it is automatically split into separate blocks by the
system.

Our storage scheme offers a few advantages over using
one large, contiguous file for storing blocks. For instance, the
on-disk hierarchy encodes partial metadata in directory
names that is available without needing to read any files
directly. In addition, this scheme makes the storage format
flexible; if we decide to incorporate support for NetCDF, [9]
HDF5, [12] or FITS [10] as our file block storage format at a
later time, we can do so easily without needing to overhaul
major parts of the system. Migration of data in the face of
failures or for load-balancing purposes is also simplified, as
single units of storage can be copied directly to other nodes.

Since blocks are stored on top of the host file system, any
benefits the file system provides will also benefit Galileo.
Caching of frequently-used blocks can be handled by the
host operating system as long as it supports a disk-caching
mechanism. Performance characteristics of file systems often
involve tradeoffs, so this scheme allows the underlying file
system to be changed to better match specific workloads, if
necessary.

C. Metadata
When designing a database specifically for scientific

data, the creators of SciDB [7] identified some major
differences between scientific data and business-oriented
data. Two of these differences involve file metadata: first,
scientific data usually has a spatial aspect, involving location

or elevation information. Additionally, scientific data storage
needs are massive and continuously growing in size; systems
dealing with such information should be able to handle data
on the petabyte-scale. This generally involves an indexing
scheme to speed up access.

Galileo aims to address these scientific needs as well.
Each file in Galileo is accompanied by a rich set of metadata.
The metadata contains spatial information which can include
elevation and a range of coordinates that form a bounding
box or a single spatial point. This information can be used to
query and apply computations on specific geographic
regions. Since measurements are often performed over a
range of time, temporal information is also encoded in files’
metadata. This allows users to retrieve a wide array of
constantly-changing information bundled as a single dataset,
or apply transformations across a specific time interval.

In an effort to make Galileo data blocks self-describing,
meaning all the information needed to interpret the data is
included in the files, metadata contains a number of user-
defined features. Features could include environmental
attributes such as wind speed, pressure, humidity, or some
other application-specific attribute. Support is also included
for encoding device identifiers in the metadata so datasets
can be built from specific sensors or instruments. This gives
the file format flexibility to fit a wide range of use case
scenarios.

To cope with massive data storage needs, Galileo uses
temporal and spatial metadata attributes to create a
hierarchical graph-based index of the data residing in the
system. This index is stored in main memory on the Galileo
storage node, so locating data is as fast as possible.

Galileo metadata files also contain checksum information
for both the metadata itself and the blocks they are associated
with. This information is used to detect data corruption that
is generally expected when running in a distributed
environment on commodity hardware. When corruption
occurs, replicas are provided from other machines to replace
the faulty files.

D. Journaling
Making complex structural changes to the underlying

data structures in Galileo can often require many separate
disk operations. Power failures or system crashes that can
take place during such operations can leave these data
structures in an inconsistent, partially-modified state; the use
of journaling safeguards against such uncertainties. Every
change committed to the on-disk data stored in Galileo is
preceded by an update to the system journal. In the case of
failures, the journal serves as a checkpoint and the entire
journal is read from disk to determine the last operation that
was taking place before the failure occurred. Once the pre-
failure state has been determined, the operation can be
completed, if possible, or rolled back if the data required to
complete the operation was lost during the failure.

When adding a file to the system, partial metadata is read
to determine a location for the block in the in-memory graph.

The graph destination for the block may require a number of
vertices and edges to be created, so this information is
written to the journal before storing any files. When
recovering from a failure, this information allows the system
to recreate its in-memory graph quickly and begin servicing
queries without needing to re-read all the metadata from
disk.

E. Geohashes
The Geohash algorithm [11] can be used to divide

geographic regions into a hierarchical structure. A Geohash
is derived by interleaving bits obtained from latitude and
longitude pairs and then converting the bits to a string using
a base-32 character map. A Geohash string represents a fixed
spatial bounding box. For example, the latitude and
longitude coordinates of N 40.57°, W 105.08° fall within the
Geohash bounding box of 9xjqbce. Appending characters to
the string would make it refer to more precise geographical
subsets of the original string.

To obtain the latitude and longitude bits from an initial
pair of coordinates representing a target point in space, the
algorithm is applied recursively across successively more
precise geographical regions bounding the coordinates. The
remaining geographical area is reduced by selecting a half-
way pivot point that alternates between longitude and
latitude at each step. If the target coordinate value is greater
than the pivot, a 1 bit is appended to the overall set of bits;
otherwise, a 0 bit is appended. The remaining geographic
area that contains the original point is then used in the next
iteration of the algorithm. Successive iterations increase the
accuracy of the final Geohash string.

An appealing property of the Geohash algorithm is that
nearby points will generally share similar Geohash strings.
The longer the sequence of matching bits is, the closer two
points are. This property is exploited in Galileo to support
simple range-based spatial queries that return data in a given
Geohash region, allowing users to specify more- or less-
precise hashes to select smaller or larger areas. It is also
possible to use Geohashes for quick proximity searches. In
addition to queries, Geohashes can also be used to group
similar data. If a collection of data gets too large, simply
using more precise Geohashes allows the system to create
more specific, and therefore smaller, groupings of data. This
property also allows quick retrieval of similar data blocks for
use in computations.

F. Network Organization
Galileo employs many features of distributed hash

tables, (DHTs) much like systems such as Chord [13] or
Dynamo [4]. Like Dynamo, Galileo is a zero-hop DHT,
where each node knows enough about the network topology
to route requests directly to their destination. Individual
storage nodes running on machines in the system are divided
into groups. These groups can represent arbitrary collections
of machines, or could be used to arrange machines with
geographic locality or common hardware attributes. Each

group is assigned its own UUID stream, so it is also possible
to broadcast information to an entire group if necessary.
Group members form a ring and communicate with their
neighbors over a socket connection on a separate thread. This
connection is used for detecting when a neighboring node
has failed and maintaining replication levels when failures
occur. Groups operate in isolation from the other nodes in
the system, apart from storage nodes being able to route
incoming data directly to its destination stream, which may
be handled by a node in a different group.

In DHTs, a hash function is used to locate where data
will be stored in the system. In the case of Galileo, a two-
tiered hashing scheme is used: first, the destination group for
the data is determined by computing a Geohash based on the
data’s spatial information. Then, to determine the storage
node within a group, a SHA-1 hash is computed using the
data’s temporal and feature metadata sets. Using the group
and storage node hashes, clients can determine a UUID for
the particular node they wish to communicate with and begin
publishing data on the node’s UUID stream. In the system’s
present state, this scheme simply distributes data evenly
across all available machines, but in the future the algorithm
could be changed to group data based on its content or
metadata.

To cope with heterogeneous systems, machines can also
join multiple groups or represent multiple “virtual” machines
within a group. This allows more powerful storage nodes to
be added to the system later and still balance load across
available machines efficiently.

Galileo is an eventually consistent system. Nodes and
groups can be added or removed from the system at will, but
this may affect the availability of data that must be migrated
during changes to the network topology. This property
allows applications to continue with their computations if
they can be completed with partial information. Once data
migrations are complete, the system resumes its usual
operating state and all the information stored in the system is
available once again.

G. Data Replication
Each storage node in Galileo executes a separate thread

that oversees the verification and replication of data. The
designers of Hadoop Distributed File System (HDFS) at
Yahoo! observed that around 0.8 percent of their nodes fail
each month and that with a replication level of three, the
probability of losing a block during one year is less than
0.005 [14]. Therefore, it is ideal to allocate at least three
machines per group since replication is done at the group
level.

Within a group, machines act as a circular buffer. The
parent node for a block will receive the first copy of the
block, store it, and then forward the block on to its neighbor.
The neighbor then stores and forwards the block on to its
neighbor, continuing until the configured replication level is
achieved. In the case of machines acting as multiple virtual
nodes in the system, the data is forwarded on to the next non-

virtual node. This scheme has a few advantages. For one,
network load is distributed evenly among nodes participating
in replication since multiple copies do not need to be sent to
the system directly. Additionally, the parent node will know
where replicas will be stored without needing to
communicate with any other nodes. Replicated blocks are
not included in query results.

When corruption is detected using checksums stored in
metadata files, a node may request a replica from its
neighbor. Replication requests are logged and used to
determine if a particular node is experiencing a higher rate of
corruption than the rest of the nodes. In cases where a node
has been determined to be faulty based on its corruption rate,
it can be automatically removed from the system.

III. INFORMATION RETRIEVAL: DATASETS
Galileo’s information retrieval process is different from

traditional databases or key-value stores. Instead of matching
user-submitted queries against the data available in the
system and returning the raw data, Galileo streams metadata
of the matching blocks back to the requestor and our client-
side API transparently collates these metadata blocks into a
traversable dataset graph. This dataset is a subset of
Galileo’s in-memory metadata graph, and describes the
attributes of the blocks that match a query. This allows
applications to determine how many result blocks are
available and what their various attributes contain without
needing to read any data from the disk. The dataset also
contains information about the size of the data blocks it
describes. Once a dataset has been obtained, applications can
have blocks transferred directly to them or further fine-tune
the dataset by traversing through it or selecting more specific
portions of the graph. Knowing the location of the data also
allows applications to push computations directly to relevant
storage nodes instead of requesting the blocks be transferred,
avoiding network IO costs.

Since some storage nodes may respond faster than others
depending on server load or the size of the data requested,
datasets are streamed incrementally to client applications.
This way processing can start before the entire dataset has
been returned.

IV. RELATED WORK
Hadoop [15] and its accompanying file system, HDFS

[14] share some common objectives with Galileo. Hadoop is
an implementation of the MapReduce framework, and HDFS
can be used to store and retrieve results from computations
orchestrated by Hadoop. A primary difference between
HDFS and Galileo is the role of metadata in the two systems;
HDFS is designed for more general-purpose storage needs,
and cannot perform the indexing optimizations Galileo’s
geospatial metadata makes possible. In addition, the
Granules runtime allows computations to build state over
time, which contrasts with Hadoop’s exactly-once semantics.

The Hadoop and HDFS combination has been used
specifically for geospatial data [16, 17]. Akdogan,

Demiryurek, Banaei-Kashani, and Shahabi found that the
MapReduce paradigm is effective for a number of geospatial
operations and scales linearly as nodes are added to the
system [16]. Their implementation uses an index based on
Voronoi diagrams, which helps speed up operations on
geospatial areas, but does not include a temporal component.

SciDB [7, 8] also shares many characteristics with
Galileo. It is a science-oriented database management system
(DBMS) which deals with multi-dimensional arrays of data
in a shared nothing architecture. SciDB has modular support
for data processing and querying facilities, allowing users to
write their own extensions to run within SciDB. This makes
writing powerful, application-specific queries possible.
Conversely, Galileo places computational responsibilities
outside the system and frameworks such as Granules [1, 18]
are used for processing information. Another key difference
between the two systems is metadata handling. In SciDB,
metadata and information about nodes in the system are
indexed in a centralized system catalog which is backed by
the PostgreSQL Object-Relational Database Management
System (ORDBMS) [19]. Galileo distributes metadata and
index information across all the nodes in the system.

PostGIS [20] provides an alternative approach to storing
data with geospatial attributes: instead of being designed as a
standalone system, it is an extension that runs on the
PostgreSQL ORDBMS [19]. PostGIS includes geospatial
data types and queries that coexist with traditional database
functionality. The geospatial queries allow some processing
work to be offloaded to the database itself. PostGIS is an
ideal system for users with information that fits the tabular
database storage model well, but in general multi-
dimensional arrays are often a better fit for many forms of
scientific data, as discovered in a panel held by the SciDB
creators [8]. Scaling PostGIS may also be more difficult, as
scaling options frequently involve replicating the database to
other servers or splitting data manually between multiple
servers, complicating the application logic used to interact
with the database.

BigTable [21] is a database-like storage platform that
maps row, column, and time values to byte arrays. In
BigTable, data is stored in lexicographic order by row keys.
Rows with consecutive keys are grouped into tablets, which
are distributed across machines to provide load balancing.
Since multiple versions of data can be present in the database
at a given time, timestamps are used to distinguish between
different versions. BigTable stores its data on the Google
File System [3], which handles the splitting and distribution
of files. While BigTable has been used for Google Earth,
queries that are explicitly geospatial are not supported by the
system.

Cassandra [22] was created by Facebook for dealing with
massive amounts of textual data in the form of user message
inboxes. Unlike other distributed data stores that focus on
read performance, Cassandra is heavily optimized for write-
heavy workloads. This feature is provided by doing
extensive journaling and flushing large amounts of buffered

data to the disk while performing large, sequential writes.
Cassandra is similar to BigTable [21] in its map-based data
model and Dynamo [4] in its network organization. In
Cassandra, node addition and removal is a more involved
process than in Galileo and may require data migration.
Cassandra is also not designed for geospatial queries.

V. BENCHMARKS
To test the capabilities of Galileo’s storage system, we

ran benchmarks on a 48-node Xeon-based cluster of servers
with a gigabit Ethernet interconnect. Each server in the
cluster was equipped with 12GB of RAM and a 300-
gigabyte, 15,000 RPM hard disk formatted with the ext4 file
system. The benchmarks were run on the OpenJDK Runtime
Environment, version 1.6.0_20.

One billion random data blocks were generated for the
experiments and dispersed across the 48 machines, each
containing 1,000 simulated sensor readings and
accompanying metadata. Readings had a feature set that
included pressure, temperature, and humidity. This
configuration resulted in blocks that consumed 4,000 bytes
of disk space each and metadata files that were
approximately 120 bytes each. Random temporal ranges
were chosen within the years of 2002-2011, and random
spatial locations for the data were constrained to the
continental United States. In the interest of testing the system
with the biggest dataset possible, replication was disabled on
the storage nodes to conserve disk space. The total size of the
billion-block dataset was approximately 8TB.

To simulate source “sensor arrays” that stream data into
the system, machines outside the cluster were used to
generate the random blocks and stream them into the system
across the network. We also generated “realistic” data by
having subsequent blocks share some characteristics with
previously generated blocks. For example, one block may be
generated with metadata for July 1st at 3:00 and the next
block would contain information about readings from July 1st
at 4:00.

A. Storage
Data blocks enter the system as a stream of bytes. Once

the data is received, the metadata portion of the block is de-
serialized so it can be read and indexed in the in-memory
graph, and then the data is written to disk. TABLE I.
contains timing information for each part of the process in a
scenario where a 10,000-block burst of data is streamed into
the system.

TABLE I. PER-BLOCK MEAN STORAGE TIME: 10,000 BLOCKS

Operation Mean Time (ms) Standard Deviation (ms)
De-serialization 0.0298933 0.0283722
Indexing 0.0186978 0.0129819
Writing to Disk 0.133983 0.0425601

In these tests, the majority of the time storing a block is

spent writing to disk. In cases where files much larger than

4kB are stored, the overhead incurred by de-serialization and
indexing should be even more insignificant when compared
to write times.

Our storage scheme involves creating several filesystem-
level objects. As a block enters the system, its metadata and
content are stored separately on disk, which creates two files
and therefore consumes two inodes on the ext4 file system.
In addition, directories are also created for the on-disk
hierarchy that resembles the in-memory graph. TABLE II.
contains a summary of disk space usage (using the number
of 1024-byte blocks consumed) and inode utilization as more
blocks are added to the system.

TABLE II. DISK USAGE

Number of Blocks 1-K Disk Blocks Used Inodes Used
1,000,000 9,020,432 2,069,110
10,000,000 88,009,576 21,217,563
20,000,000 166,358,044 40,239,375

B. Recovery
In the event of a system crash, power loss, or scheduled

reboot, Galileo must recover its state from disk after being
restarted. Recovery first involves reading the system journal,
which contains enough edge information to restore the
system graph that is used to create datasets. TABLE III.
outlines recovery times for a single node after a system
failure for three scenarios involving different number of
stored blocks.

TABLE III. RECOVERY TIMES

Blocks Stored at a Node Graph Recovery (sec)
1,000,000 3.062
10,000,000 28.91
20,000,000 65.18

C. Retrieval
For our initial query tests, 100 million random blocks

were submitted and stored in the system in the manner
discussed earlier. Then we queried for all pressure readings
generated in July of 2011 within a spatial range roughly
covering the state of Colorado.

TABLE IV. summarizes the results of the query. It
includes timing information for creating a dataset from
memory, creating a dataset from disk, (simulating post-
failure conditions) and also for transferring raw data blocks
across the network to a client (“downloading” the dataset
contents).

TABLE IV. SMALL DATASET QUERY RESULTS

Result Type First Result (ms) Last Result (ms)
Dataset
(in-memory metadata)

60.76 668.42

Dataset
(metadata from disk)

84.81 1309.12

Block Download 542.96 5769.21
The query returned 105,556 blocks, which results in a

dataset of about 10 megabytes and roughly 400 megabytes of
raw block data.

Our next query benchmark involved the entire billion-
block dataset. We created six different query types to test
various access patterns:

1. No Match – This is the case where none of the blocks in

the system match the query.
2. One Match – This is a specially designed query where

only a single block (of 109 blocks) matches the query.
3. Standard Query – The query requests blocks for a

particular feature over a given geospatial location at a
specific time (specified using year, month, day, hour).

4. Temporal Range – Returns all blocks with the desired
feature for a given geospatial area that fall between a
specified start and end time range.

5. Spatial Range – Blocks that fall within coarser or finer
grained ranges of a specified geospatial bounding box.
Our tests include querying for blocks within the entire
continental United States, Colorado, and the northeast
quarter of Colorado.

6. Exhaustive feature search – Within a given year, locate
all measurements of a specific feature regardless of the
corresponding geospatial location. This query evaluation
requires an exhaustive search of the year’s subgraph.

Timing data for each query type is outlined in TABLE V.
This includes the time to return the dataset’s metadata
components, the size of the dataset, how long the system
spent creating the dataset (which requires traversing the in-
memory graph) and also how long it took to download the
block information for each dataset. Each data point
represents the result of running queries 100 times to ensure
stable results were collected; we also report the
corresponding standard deviations.

Figure 1. Cumulative storage throughput over 60 seconds

D. Storage Throughput
To further test the storage capabilities of Galileo, we also

performed a cumulative storage throughput test. Data blocks
were streamed into the system from five separate sources
outside the cluster and stored on disks that were initially
empty. We sampled the number of blocks being stored for a
60 second window at each node, and then the readings were
summed to determine the cumulative storage rate. Results
from this benchmark are depicted in Figure 1.

These results show that our realistic data simulation does
yield higher performance than completely random data. This
trend is largely due to disk write access patterns; in the case
of random data there will generally be no commonality in
destination directory between subsequent blocks, whereas
the realistic dataset produced less variance in destination
directory. For the realistic scenario we were able to achieve a
sustained cumulative throughput of 28,269 blocks per
second.

TABLE V. QUERY RESULTS FOR 1 BILLION BLOCKS: EACH DATA POINT IS THE RESULT OF REPEATING THE EXPERIMENT 100 TIMES

Query First
Result
(ms)

First
Result Std.
Dev. (ms)

Last Result
(ms)

Last Result
Std. Dev.

(ms)

Dataset
Size

Dataset
Creation

(ms)

Creation Std.
Dev (ms)

Download
Time (ms)

Download
Std. Dev.

No Match 42.09 0.67 47.05 1.72 0 0.01 0.004 N/A N/A
One Match 42.96 1.07 50.39 4.29 1 0.01 0.008 50.47 4.22
Standard
Query

44.10 5.26 55.57 9.11 1,411 0.02 0.01 241.45 69.05

Temporal
Range

47.54 5.40 588.80 17.12 98,535 0.29 0.57 9,142.36 119.92

Spatial
Range
(US)

48.07 14.99 261.81 26.50 31,413 0.05 0.01 1,845.67 42.97

Spatial
Range
(CO)

43.08 0.45 57.73 8.92 1,643 0.01 0.01 252.03 41.63

Spatial
Range (NE
CO)

42.81 0.52 57.23 2.45 398 0.01 0.01 62.13 9.50

Exhaustive
Feature
Search

53.97 2.84 64,069.30 444.42 8,230,612 3.66 0.17 459,297.52 169.33

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions
A shared-nothing architecture allows incremental

addition of nodes into the storage network with a
proportional improvement in system throughputs. Efficient
evaluation of queries is possible by (1) accounting for
spatio-temporal relationships in the distributed storage of
observational data streams, (2) separating metadata from
content, (3) maintaining an efficient representation of the
metadata graph in memory, and (4) distributed, concurrent
evaluation of queries. Continuous streaming of partial
results to a query enables us to achieve faster response
times. Returning only the metadata associated with the
content in the query response allows selective downloads
and quick estimates for the total size of the dataset and
expected download times. Two query evaluation features in
our system enable fine-tuning of queries – fast turnarounds
for queries with non-matching data and support for range-
queries over the spatial and temporal dimensions. The use of
journaling at individual storage nodes allow us to make (and
complete) complex structural changes to on-disk data
despite failures that may take place at the node. Journaling
also reduces recovery times after a failure. Replication of
content allows us to sustain failures and data corruptions
while satisfying queries that match data held in affected
blocks. Finally, our benchmarks demonstrate the feasibility
of designing a scalable storage system from commodity
nodes.

B. Future Work
While exact-match and range-based queries are useful for

a number of applications, we plan to continue to add
functionality to the query system. This may involve
implementing support for an existing query language or
creating a simple language that interacts with our dataset
format directly.

A possible improvement to the on-disk storage format
would involve combining multiple blocks, or possibly even
entire directory structures, into single indexed blocks. This
approach will reduce inode consumption and may allow for
faster disk access patterns; often queries will involve blocks
that are spatially or temporally similar, so combining the
related blocks into a single file will reduce the number of
operations when opening and closing files. Another option
may be to combine metadata files to improve recovery times
and dataset generation.

Finally, given our separate-file storage scheme, we also
may explore adding support for NetCDF, HDF5, or another
well-known and supported scientific format. This would
make the Galileo platform more appealing for users that are
already invested in a particular data format but wish to store
and retrieve their data in a distributed setting. This would
also make in situ access possible, where the system can
apply computations to datasets that have not been previously
entered into the system. SciDB [7] supports this feature, as

the overhead for importing data into a running system can be
quite high.

REFERENCES
[1] S. Pallickara, J. Ekanayake, and G. Fox, "Granules: A lightweight,

streaming runtime for cloud computing with support for Map-
Reduce," in Cluster Computing and Workshops, 2009. CLUSTER '09.
IEEE International Conference on, 2009, pp. 1-10.

[2] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing
on large clusters," Communications of the ACM, vol. 51, pp. 107-113,
2008.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google file system,"
2003, pp. 29-43.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
"Dynamo: amazon's highly available key-value store," ACM SIGOPS
Operating Systems Review, vol. 41, pp. 205-220, 2007.

[5] K. Ericson, S. Pallickara, and C. W. Anderson, "Analyzing
Electroencephalograms Using Cloud Computing Techniques," in
Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, 2010, pp. 185-192.

[6] K. Ericson, S. Pallickara, and C. W. Anderson, "Handwriting
Recognition Using a Cloud Runtime."

[7] P. G. Brown, "Overview of sciDB: large scale array storage,
processing and analysis," presented at the Proceedings of the 2010
international conference on Management of data, Indianapolis,
Indiana, USA, 2010.

[8] P. Cudré-Mauroux, H. Kimura, K. T. Lim, J. Rogers, R. Simakov, E.
Soroush, P. Velikhov, D. Wang, M. Balazinska, and J. Becla, "A
demonstration of SciDB: a science-oriented DBMS," Proceedings of
the VLDB Endowment, vol. 2, pp. 1534-1537, 2009.

[9] R. Rew and G. Davis, "NetCDF: an interface for scientific data
access," Computer Graphics and Applications, IEEE, vol. 10, pp. 76-
82, 1990.

[10] D. Wells, E. Greisen, and R. Harten, "FITS-a flexible image transport
system," Astronomy and Astrophysics Supplement Series, vol. 44, p.
363, 1981.

[11] W. Contributors, "Geohash," Wikipedia.org, 2011.
[12] Q. Koziol and R. Matzke, "HDF5–A New Generation of HDF:

Reference Manual and User Guide," National Center for
Supercomputing Applications, Champaign, Illinois, USA,
http://hdf.ncsa.uiuc.edu/nra/HDF5, 1998.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
"Chord: A scalable peer-to-peer lookup service for internet
applications," ACM SIGCOMM Computer Communication Review,
vol. 31, pp. 149-160, 2001.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The hadoop
distributed file system," 2010, pp. 1-10.

[15] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley, "Hadoop: a
framework for running applications on large clusters built of
commodity hardware," http://hadoop.apache.org/, 2005.

[16] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi,
"Voronoi-based Geospatial Query Processing with MapReduce,"
2010, pp. 9-16.

[17] Y. Wang and S. Wang, "Research and implementation on spatial data
storage and operation based on Hadoop platform," 2010, pp. 275-278.

[18] S. Pallickara, J. Ekanayake, and G. Fox, "An Overview of the
Granules Runtime for Cloud Computing," in eScience, 2008. eScience
'08. IEEE Fourth International Conference on, 2008, pp. 412-413.

[19] P. G. D. Group, "PostgreSQL, http://www.postgresql.org/," 2011.
[20] P. Ramsey, "PostGIS manual," Refractions Research Inc, 2005.
[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, "Bigtable: A
distributed storage system for structured data," ACM Transactions on
Computer Systems (TOCS), vol. 26, pp. 1-26, 2008.

[22] A. Lakshman and P. Malik, "Cassandra: a decentralized structured
storage system," ACM SIGOPS Operating Systems Review, vol. 44,
pp. 35-40, 2010.

