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Exponential growth in spatial data volumes have occurred alongside in-
creases in the dimensionality of datasets and the rates at which observations
are generated. Rapid summarization and explorations of such datasets are
a precursor to several downstream operations including data wrangling,
preprocessing, hypothesis formulation, and model construction among oth-
ers. However, researchers are stymied both by the dimensionality and data
volumes that often entail extensive data movements, computation overheads,
and I/O. Here, we describe our methodology to support effective summa-
rizations and explorations at scale over arbitrary spatiotemporal scopes,
which encapsulate the spatial extents, temporal bounds, or combinations
thereof over the data space of interest. Summarizations can be performed
over all variables representing the dataspace or subsets specified by the user.
We extend the concept of data cubes to encompass spatiotemporal datasets
with high-dimensionality and where there might be significant gaps in the
data because measurements (or observations) of diverse variables are not
synchronized and may occur at diverse rates. We couple our data summariza-
tion features with a rapid Choropleth visualizer that allows users to explore
spatial variations of diverse measures of interest. We validate these concepts
in the context of an Environmental Protection Agency dataset which tracks
over 4000 chemical pollutants, presenting in natural water sources across
the United States from 1970 onwards.
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1 INTRODUCTION
Proliferation of data sources such as sensors, simulations, and sci-
entific models have all contributed to growth in data volumes. This
exponential growth in data volumes has continued uninterrupted
over the past couple of decades. The crux of this study focuses on
spatial data, where the data items are geocoded (data also have lati-
tude and longitude coordinates associatedwith them). Inmany cases,
chronological information in the form of timestamps representing
when the observation was made are also included.

Spatial data occur naturally in several domains and their growth
has been sustained by the ability to effectively and efficiently mon-
itor spatiotemporally involving phenomena. Miniaturization and
improvements in battery capacity alongside enhancements in the
quality and capacity of networks have led to a proliferation of mon-
itoring devices and their use in monitoring diverse phenomena. All
of these have contributed to a sustained growth in the diversity and
types of phenomena that are being monitored. The spatial extent to
which these measurements can be attributed may be either point-
based (geocoded using <lat,long> coordinates) or shape-based. In
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the case of shape-based geocodings the shapes may be expressed as
N-sided polygon where each vertex is identified using <lat,long>
coordinates. Spatiotemporally evolving phenomena are used to un-
derstand and inform decision-making in domains such as agricul-
ture, geosciences, epidemiology, monitoring of environmental and
ecological hazards, and commerce.

Rapid explorations of the dataspace are a precursor to data analy-
sis, wrangling and visualization. Because such explorations allow
the researcher to identify contours of the data space, they are critical
to informing several aspects of downstream analyses. In the case of
spatiotemporally evolving data, these explorations need to account
for spatial and temporal dimensions in addition to the inherent mul-
tidimensional nature of the data. As such, these explorations should
facilitate summarization across arbitrary spatiotemporal scopes. The
term spatiotemporal scope refers to the scope of the data of interest.
A user may be interested in specific spatial extents that may or may
not be geographically contiguous. Similarly, the temporal bounds
associated with the data of interest may vary from user to user.
Finally, a user may be interested in a combination of constraints
that are specified over the spatial and temporal dimensions.

Rapid summarizations of available data at arbitrary spatiotempo-
ral scopes are critical to (1) informing data wrangling, (2) informing
hypothesis formulation, (3) identifying broad brushstroke patterns
in the data, and (4) identifying data to fit models over among others.
A key requirement is that these summarizations are timely, scalable,
and performant alongside the ability to perform these explorations
at high throughput. The crux of this study to perform rapid summa-
rizations and explorations of the spatiotemporal dataspace.
Data cubes[Gray et al. 1997] are considered an effective mecha-

nism to facilitate such summarizations[Gray et al. 1997; Lins et al.
2013; Wang et al. 2023]: we extend this concept of data cubes to
spatiotemporal data spaces where the number of observations may
be very large. Crucially, we support these aggregations at scale, with
low latency, alongside the ability to perform these operations along
diverse spatial hierarchies (administrative, watersheds, quadtiles,
etc.). We explore these ideas in the context of our research prototype,
Rubiks.

1.1 Challenges
Rapid summarization of high-dimensional data spaces over arbitrary
spatiotemporal scopes faces several challenges. These include:

(1) Data volumes: The datasets we consider are voluminous. Inef-
ficient schemes that rely on multiple sweeps of the data may
exacerbate the I/O requirements.

(2) Dimensionality of the datasets: The datasets we consider are
high-dimensional and users may be interested in summa-
rization and exploration capabilities across all features. Our
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empirical benchmarks are performed over a dataset where
over 4,000 chemical pollutants are being tracked.

(3) The aggregations and summarization can be performed at
diverse spatiotemporal scopes i.e., users can specify arbi-
trary chronological bounds along spatial bounds. The spatial
bounds can be based on administrative boundaries, water-
shed, climatic regions, quad tiles, etc.

(4) The spatiotemporal characteristics of the data preclude ef-
ficiency of solutions that rely exclusively on indexing and
query evaluation efficiency.

1.2 ResearchQuestions
Within the broader overarching goal of summarization and aggrega-
tion capabilities at scale, specific research questions that we explore
include:
RQ-1: How can we preserve interactivity?
RQ-2: How can support effective summarizations across arbitrary
spatiotemporal scopes?
RQ-3: How can we scale with increases in data volumes, new data
sources coming online, and continual (or streaming) data genera-
tion?

1.3 Overview of Approach
We leverage a novel mix of algorithmic, statistical and systems
approaches to facilitate real time data summarization at scale across
user-specified spatiotemporal scopes. Our methodology places no
constraints on the size of these spatiotemporal scopes.

We stage and disperse the data so that the data can be collated ef-
fectively without significant data movements. Data frommoderately
sized spatial extents (e.g., tracts, counties, or watershed boundaries)
are collated and stored on the same machine.
Summarizations allow a researcher to spot patterns that arise

at diverse spatiotemporal scopes. Summarizations provided by our
data cubes include min, max, mean, median, variance, standard
deviations, and distributional skew and kurtosis associated with in-
dividual features (or variables). We also supplement these measures
by tracking the covariance across a set of user-specified features.
Rubiks data cubes support pivot, aggregation, and disaggregation
operations. Pivots allow the data cube to be probed across a specific
dimension e.g., spatial, temporal, or any of the features encapsu-
lated within the cube. The roll-up and drilldown operations relate
to aggregation and disaggregation operations across spatiotempo-
ral scopes. For example, a user may be interested in exploring the
data space at coarse scales (roll-up) or at finer scales (drilldowns).
These operations allow a user to specify interest over the dataspace
at progressively larger or smaller spatial extents, time ranges, or
combinations thereof.

Rather than compute these data cubes exhaustively every time a
query is issued, we perform a limited number of one-time precom-
putations that we then leverage to support data cube operations.
The smallest unit of data summarization in the system is a cubelet
representing the smallest, indivisible spatiotemporal scope at which
summarizations are performed. In our methodology, the scope asso-
ciated with the cubelet is configurable. Data cubes are constructed
from cubelets. Data cubesmay either be constructed from cubelets or

hierarchically constructed from other cubes. We leverage Welford’s
algorithm to compute the cubelets in an online, single-pass fashion.
Information maintained within the data cubes are also amenable
to leveraging the same online method to compute data cubes at
ever coarser scales. Our methodology also allows data cubes to be
constructed from non-contiguous spatiotemporal cubes.

A challenge that we also consider that the measurements across
different variables are often not synchronized. For example, consider
the case where multiple monitoring stations are profiling a water
body for chemical pollutants. The pollutants may be measured at a
different timepoints and frequencies. Correlation analysis over such
measurements with non-concurrent sampling between the related
attributes require special consideration and interpolation. For such
irregular time-series of measurements, we implement kernel-based
weighting in the computation of correlation and covariance in our
cubelets.

Our pairwise covariance computations allow a user to first iden-
tify the pairs of covariances that are of interest. To reduce the num-
ber of pairwise covariances that need to be maintained in the data
cube – 𝑂 (𝑁 2) for 𝑁 variables – we allow users to identify the set
of M covariances that are of interest. Alternatively, the covariates
of interest may be domain-specific or computed dynamically by the
system based on occurrence of variables in queries.
In Rubiks, cubelets are space-efficient and persistently stored

since they are used in the computation of data cubes that may span
diverse spatiotemporal scopes. Persistent storage of the cubelets
also precludes duplicate computations alongside repeated sweeps
of the data involving I/O. The data cubes, on the other hand, are
ephemeral meaning they are garbage collected after a period of
time.

Our summarization capabilities are backed by a distributed cache
that serves two key purposes. First, the cache is used to store data
cubes that have been calculated based on user-specified queries. We
also store cubelets that were used to construct these data cubes;
the rationale for this is that it is often the case that users are incre-
mentally refining queries to customize the spatiotemporal scopes of
interest. As such, cubelets that are part of a query have a higher like-
lihood of inclusion in the refinement queries. Second, the cache can
reduce duplicate processing alongside any I/O that such refinements
entail. Our distributed cache relies on a LRU (least recently used)
caching scheme with an additional preference for storing cubelets
rather than data cubes when the cache needs to evict elements
during a cache miss.
We supplement the summarization feature with the ability to

visualize these summarizations using a Choropleth map to render
spatial variations ofmeasures of interest. As such, the queriesmay be
composed visually, and the roll-ups and drilldowns can be performed
using slider bars. We allow dynamically constructed data cubes to
be visualized using our Choropleth map service.

1.4 Paper Contributions
This study describes a framework for summarization over volumi-
nous, high-dimensional spatiotemporal dataspaces. Specific contri-
butions of our methodology include:
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(1) A scalable framework that supports continuous assimilation
of data, targeted I/O, and cache-residency schemes to mini-
mize duplicate processing.

(2) Our summarizations can be performed in near real-time re-
gardless of the spatiotemporal scopes involved. Except for
the pairwise covariances where users configure variable pairs
of interest, the other aspects of summarizations are available
for all variables of interest.

(3) Our summarization schemes are backed by a distributed
caching scheme that preferentially caches cubelets and data
cubes to reduce disk access times and re-computation costs.

(4) Finally, our methodology places no restrictions on the storage
frameworks that host the voluminous datasets.

Translational Impacts: Voluminous, high-dimensional spatiotem-
poral datasets continue to be made available in several domains
such as agriculture, epidemiology, monitoring of environmental and
ecological hazards, forest fire predictions, etc. The proposed effort
allows users to quickly explore the data space to identify portions
of the data space that are of interest.

1.5 Paper Organization
The remainder of this paper is organized as follows. Section 2 out-
lines related works, followed by the background in Section 3 that
introduces the nature of the actions and spatiotemporal user queries.
Section 4 describes the construction of Rubiks cubelets and its in-
memory data model. Section 5 details our in-memory data store and
its role in fast query evaluation. Experimental setups, performance
benchmarks, and analysis of results are outlined in Section 6. Finally,
Section 7 outlines our conclusions, followed by acknowledgements.

2 RELATEDWORK
Approaches to data summarization have been explored using sketch-
ing algorithms [Buddhika et al. 2021a, 2017, 2021b] that leverage
probabilistic data structures. Rubiks does not leverage probabilistic
data structures and produces aggregations that have lower uncer-
tainties associated with them. Some approaches have explored the
use of metadata graphs to support diverse queries [Malensek et al.
2015, 2017]; a disadvantage of these approaches is that the memory
footprint can be substantial and involve traversals that may be pro-
long query evaluation times. Brokering systems leverage distributed
data structures to perform such coarse grained matching [Pallickara
and Fox 2004], but are unable to support finer-grained queries of
the type Rubiks supports. Rubiks is well-suited for deployments in
traditional cluster-based settings and grid settings [Fox et al. 2003,
2005a,b].
The popularity of spatiotemporal data has intensified the de-

mand for efficient analysis and query processing techniques. The
confluence of spatial and temporal dimensions, along with the avail-
ability of a wide range of recordable attributes in these data, thanks
to the improvement in observational equipment, presents unique
challenges in terms of storage, retrieval, and analytical processing.
Traditional databases often struggle to efficiently manage these
attributes, necessitating the development of specialized solutions.
The concept of data cubes has gained traction as a structured

means of aggregating and analyzing multi-dimensional data. These

are data structures constructed dynamically or through a prefetching
scheme[Battle et al. 2016; Mitra et al. 2019, 2021b] in anticipation of
data tiles being queried in the future to improve latency. Often, mul-
tivariate data cubes are maintained at various resolutions to enable
comprehensive and flexible analysis of data across varying reso-
lutions, providing a multi-dimensional analytical framework[Lins
et al. 2013; Mitra et al. 2023, 2021a; Pahins et al. 2017; Santos et al.
2011; Tao et al. 2019].
Techniques involving spatial hashing and distributed systems

have emerged to manage large-scale spatial data. These approaches
enhance scalability and enable efficient query processing in dis-
tributed environments. Cache-based storage of data in memory in a
distributed fashion has also proven to improve interactivity[Li et al.
2015, 2017, 2013; Pan et al. 2018; Paul and Fei 2001]. In dynamic
datasets, the evolving nature of data requires adaptive analytical
approaches. Existing solutions struggle to efficiently update and
maintain analytical structures while accommodating continuous
data changes.
The use of distributed clusters has become instrumental in han-

dling large-scale data processing. Techniques such as DHT-based
distribution and cluster synchronization have evolved to cater to the
complex requirements of spatiotemporal data[Whitman et al. 2014].
Several existing frameworks address spatiotemporal data analysis,
including GeoSpark[Yu et al. 2015], GeoMesa[Hughes et al. 2015],
and STARK[Hagedorn et al. 2017].
While these frameworks offer valuable insights, Rubiks distin-

guishes itself through its cubelets-based approach and its specialized
methods for handling evolving datasets. Additionally, algorithms
that can update aggregations incrementally, like Welford’s algo-
rithm, have demonstrated their efficacy in handling real-time data
changes while minimizing computational overhead[Rehfeld et al.
2011; Welford 1962]. The count-min (CM) sketch provides event
frequencies using sublinear memory space, where an event could
be a particular feature value or observation [Cormode 2009; Cor-
mode and Muthukrishnan 2005]. The CM sketch is closely related
to Bloom filters, which employ hash functions over a fixed-size bit
array to determine set membership. With Bloom filters, false posi-
tives are possible but false negatives are not [Bloom 1970]. Several
streaming algorithms have been developed to determine the number
of distinct (unique) elements in a multiset, such as HyperLogLog++
[Heule et al. 2013], HyperLogLog, LogLog, and Linear Counting
[Whang et al. 1990].Rubiks implements online update of statistics
in its cubelets leading to improved speed of update.

Rubiks’ novel framework improves spatiotemporal data analysis
over varying resolutions by effectively addressing the complexities
of evolving datasets. Its unique blend of cubelet aggregation, dy-
namic cubelet updates, distributed partitioning through spatiotem-
poral hashing, and distributed computing addresses a key need in
the domain of large-scale spatiotemporal data analysis.

3 BACKGROUND
A data cube is a data structure that allows for efficient analysis of
large volumes of data from multiple dimensions. It is commonly
used in the field of business intelligence and data analytics.
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A data cube organizes data in a multi-dimensional array format,
where each dimension represents a different attribute or measure of
the data. For example, in retail analytics, dimensions could include
time, product, store location, and customer segment. The measures
could include sales revenue, quantity sold, and profit.
Data cubes allow for efficient querying and analysis of data by

providing pre-computed aggregations along each dimension. These
aggregations, often referred to as “cuboids”, provide various levels
of granularity and summaries of the data. By pre-computing these
aggregations, queries can be executed much faster compared to
traditional relational database approaches.
In the context of distributed analytics, data cubes can be partic-

ularly beneficial. They enable distributed storage and processing
of large datasets across multiple nodes or machines in a cluster. By
partitioning the data cube and distributing its components across
the cluster, each node can independently process a portion of the
data, allowing for parallel and distributed analysis.
Distributed data cubes help in scaling analytics workloads by

distributing the computation and storage resources across multi-
ple machines. This approach allows for handling larger datasets,
processing queries faster, and accommodating increased user concur-
rency. It can significantly improve the performance and scalability
of analytics systems, enabling organizations to derive insights from
vast amounts of data more efficiently.

Scaling data cubes to handle ever-increasing data volumes and
user concurrency can be a challenge. Distributing the cube across
multiple nodes ormachines in a distributed environment can help ad-
dress scalability concerns, but it introduces additional complexities
in terms of data partitioning, synchronization, and load balancing.

4 METHODOLOGY
Our methodology facilitates construction of hierarchical datacubes.
Data cubes may be constructed from cubelets (smallest, indivisible
unit of aggregation in the system) or from other data cubes. Data
cubes generate aggregated summarization of measurements over a
spatiotemporal scope at varying levels of coarseness, based on their
resolution. Here, we demonstrate our methodology for computing
and analyzing data cubes over disjoint spatiotemporal extents.

4.1 Cubelets
In the Rubiks framework, a cubelet serves as the fundamental unit
of aggregation and analysis. These cubelets play a pivotal role in
encapsulating aggregated values across a diverse spectrum of mea-
surements within a well-defined spatiotemporal scope. With these
cubelets, we develop a dynamic analytical framework that facili-
tates iteratively identifying regions of interest that satisfy desired
properties or covariences.
Our cubelets encapsulate statistical summaries such as counts,

means, minimums, maximums, and standard deviations, alongside
distributional skew and kurtosis, for all observations for a partic-
ular variable within the specified spatiotemporal extent. The data
encapsulated within a cubelet is space-efficient and is amenable to
aggregations i.e., cubelets can combined to produce a new data cube
that encapsulates the aggregated measures of interest.

The ability to hierarchically aggregate cubelets (and cubes) facili-
tate a comprehensive exploration of spatiotemporal patterns, trends,
and relationships across the entirety of the dataset’s geographic and
temporal domain. By orchestrating queries that target data cubes,
we aim to pinpoint regions of interest that align with specific crite-
ria or exhibit correlated behaviors with a predefined set of features,
enabling targeted analysis of intricate spatial and temporal phenom-
ena and extraction of nuanced insights, contributing to informed
decision-making in a wide array of applications.
Cubelets are created over a configurable spatiotemporal scope.

The cubelets can be aggregated hierarchically into data cubes at
varying spatiotemporal resolutions. We describe the hierarchical
organization of cubelets in section 4.6.

InRubiks, cubelets are perennialwhile the data cubes are ephemeral.
Cubelets are created and persisted on stable storage (and thus are
perennial) along with actual data points during ingestion. These
cubelets have a predetermined resolution and constitute the lowest
level of the cube hierarchy. Cubes are coarser in the sense that they
are computed on an on-demand basis from cubelets or other cubes
in a hierarchical fashion and are ephemeral (i.e., they may or may
not be persisted to disk).

4.2 Cubelet Content
Cubelets summarize data from a particular spatial extent and are con-
structed from persistent data stored on disk (we place no constraints
on the storage framework used to store such data). Each cubelet
summarizes data for a configurable but system-wide spatiotemporal
scope. The cubelet comprises a set of metadata attributes recorded
within that region. The supported metadata includes essential sta-
tistical measures such as count, mean, minimum, maximum, and
standard deviation for each attribute.

To enhance the analytical capabilities of cubelets, for a predefined
set of attribute pairs, we also maintain running covariances within
each cubelet. These covariances facilitate the evaluation of Pearson
correlation coefficients at runtime, enabling researchers to gain
insights into the relationships between different attributes within
the cubelet.

4.3 Cubelet Spatiotemporal Bound
Rubiks offers the flexibility to construct data cubes at different
spatiotemporal extents, tailored to the specific dataset, creating non-
overlapping regions as the foundation for construction of data cubes.
In Rubiks, we allow data cubes to be created over varying types
of disjoint geospatial bounds, such as quadtiles, Hydrologic Unit
Codes (HUC)[Seaber et al. 1987], and Federal Information Process-
ing Standards (FIPS) codes that are used by the U.S. Census Bureau.
This feature enables the analysis of data with diverse spatial char-
acteristics, accommodating datasets that might have irregular or
complex geographical boundaries. By supporting multiple geospa-
tial bounds, Rubiks allows researchers to perform detailed analyses
on localized regions while also gaining insights into broader ge-
ographic trends, fostering a more comprehensive exploration of
spatiotemporal patterns and relationships within the data.
Perennial cubelets represent the finest level of aggregation and

are persisted both on-disk over our distributed storage, as well as
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(a) Cubelet construction during ingestion (b) Cubelet fetching/ dynamic evaluation during queries

Fig. (1) Rubiks cubelet contruction and fetching

in-memory cache that we construct over the cluster nodes. These
can be hierarchically combined to create coarser aggregates – the
ephemeral cubes – facilitating a multi-resolution analysis of spa-
tiotemporal patterns and trends. This provides a powerful tool for
efficient and flexible exploration of large-scale point datasets with
varying granularities. Ephemeral cubes are constructed as client-
queries get evaluated server-side to enable collaborative query eval-
uation. At the finest level, perennial cubelets are constructed and
updated during data ingestion by aggregating and summarizing
point data that fall within a predefined spatiotemporal extent – for
instance, over a spatial bound of a HUC12 boundary and temporal
bound of a single day.

4.4 Distributed Ingestion: Perennial Cubelet Generation
Perennial cubelets are generated during data ingestion. In Fig. 1a,
we illustrate the process of generating these cubelets. Preprocessing
of incoming voluminous data in a standalone fashion can be time-
consuming and compute-intensive. Rubiks relies on a distributed
cluster of nodes for handling data ingestion, cubelet creation and
query evaluation.

During ingestion, incoming data-points are partitioned into chunks
and ingested in a distributed manner across our cluster nodes. Each
node independently computes its local set of cubelets, contributing
updates to a temporary set of cubelets in the distributed storage
backend. Subsequently, a coordinator node initiates an aggregation
query to combine local cubelets with overlapping keys, if any, into
usable perennial cubelets. Only cubelets are constructed and per-
sisted; data cubes themselves are constructed hierarchically on an
on-demand basis.

4.5 Cubelet Update
To adapt to the continuous updates to the underlying storage, we
ensure concurrent data ingestion and the update of cubelets in
persistent memory.

4.5.1 Welford’s Algorithm for Rapid construction/Updates. To en-
sure efficiency and scalability within Rubiks, we employ dynamic
merging and updates of cubelets using Welford’s algorithm, which
provides a computationally efficient (single-pass) approach for incre-
mentally calculating the mean and variance as new data are added or

cubelets are merged. This method allows for real-time updates and
analysis without the need to recompute the entire dataset, reducing
both computational complexity and memory requirements.
Leveraging Welford’s algorithm and associated metadata mean

that our cubelets can efficiently accommodate data updates and
adapt to changing input without sacrificing analytical accuracy.
The algorithm’s incremental, online nature makes it particularly
well-suited for handling continuous data ingestion and maintain-
ing up-to-date statistics within cubelets and across data cubes that
are hierarchically constructed using cubelets and other data cubes.
As a result, both cubelets and data cubes can dynamically adjust
to new data points, supporting real-time analyses and ensuring
a robust and scalable solution for data management and analysis.
Utilizing Welford statistics for aggregation over cubelets allows us
to 1) rapidly identify cubelets that require change/creation, and 2)
perform rapid, decentralized updates over our cluster.
Due to the disjoint nature of measurements of attributes at a

monitoring station, recorded measurements of any pair of desired
attributes at the same location is never guaranteed to be concurrent.
This complicates the process of measuring correlation between such
attributes. To account for this situation, we aim to estimate the
correlation measures in these cases by interpolating the recorded
values based on how distant their measurements are in time. We
explain the process of correlation computation for such misaligned
measurements next.

4.5.2 Correlation estimation for misaligned time series. If two time
series 𝑥 and𝑦 are observed at irregular time points {𝑠𝑖 }𝑛𝑥𝑖=1 ≠ {𝑡 𝑗 }

𝑛𝑦

𝑗=1,
the empirical means �̂�𝑥 , �̂�𝑦 and empirical standard deviations 𝜎𝑥 , 𝜎𝑦
for the two series can be computed directly. The empirical corre-
lation, however, can only be computed directly if the observation
times are aligned (𝑛 = 𝑛𝑥 = 𝑛𝑦 , 𝑠1 = 𝑡1, 𝑠2 = 𝑡2, . . . , 𝑠𝑛 = 𝑡𝑛):

𝜌𝑥𝑦 =
1

𝑛 − 1

𝑛∑︁
𝑗=1

{
𝑥 (𝑡 𝑗 ) − �̂�𝑥

𝜎𝑥

} {
𝑦 (𝑡 𝑗 ) − �̂�𝑦

𝜎𝑦

}
.

If observation times for the two series are misaligned, we use the
non-rectangular kernel approach described in [Rehfeld et al. 2011]
to approximate the correlation. Let

𝐾ℎ (𝑠, 𝑡) =
1

ℎ
√
2𝜋

exp
{
−(𝑠 − 𝑡)2

2ℎ2

}
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denote the Gaussian kernel function with bandwidth parameter ℎ.
This kernel function is used to determine which time points between
the 𝑥 and 𝑦 series are close enough to be used in estimating the
correlation, via

𝜌𝑥𝑦 =
1∑𝑛𝑥

𝑖=1
∑𝑛𝑦

𝑗=1 𝐾ℎ (𝑠𝑖 − 𝑡 𝑗 )

×
[
𝑛𝑥∑︁
𝑖=1

𝑛𝑦∑︁
𝑗=1

𝑥 (𝑠𝑖 )
𝜎𝑥

𝑦 (𝑡 𝑗 )
𝜎𝑦

𝐾ℎ (𝑠𝑖 − 𝑡 𝑗 )

−
�̂�𝑦

𝜎𝑦

𝑛𝑥∑︁
𝑖=1

𝑛𝑦∑︁
𝑗=1

𝑥 (𝑠𝑖 )
𝜎𝑥

𝐾ℎ (𝑠𝑖 − 𝑡 𝑗 )

− �̂�𝑥
𝜎𝑥

𝑛𝑥∑︁
𝑖=1

𝑛𝑦∑︁
𝑗=1

𝑦 (𝑡 𝑗 )
𝜎𝑦

𝐾ℎ (𝑠𝑖 − 𝑡 𝑗 )

+ �̂�𝑥
𝜎𝑥

�̂�𝑦

𝜎𝑦

𝑛𝑥∑︁
𝑖=1

𝑛𝑦∑︁
𝑗=1

𝐾ℎ (𝑠𝑖 − 𝑡 𝑗 )
]
. (1)

We compute the average distances Δ𝑠 ,Δ𝑡 between consecutive time
points in {𝑠𝑖 }𝑛𝑥𝑖=1, {𝑡 𝑗 }

𝑛𝑦

𝑗=1, respectively, and choose ℎ = 0.25 ×
max {Δ𝑠 ,Δ𝑡 }, following [Rehfeld et al. 2011]. As noted in [Rehfeld
et al. 2011], 𝜌𝑥𝑦 is not guaranteed to lie within [−1, 1]; we set it
equal to the closest boundary value if it falls outside.

If information from two cubelets is to be combined, let {𝑠 (𝑘 )
𝑖

}𝑛
(𝑘 )
𝑥

𝑖=1

and {𝑡 (𝑘 )
𝑗

}𝑛
(𝑘 )
𝑦

𝑗=1 denote the observation time points for cubelets 𝑘 =

1, 2. Assume that from pilot analysis a single value of ℎ can be
determined across cubelets. Further, assume that

𝐾ℎ

(
𝑠
(1)
𝑖
, 𝑡

(2)
𝑗

)
≃ 0, 𝐾ℎ

(
𝑠
(2)
𝑖
, 𝑡

(1)
𝑗

)
≃ 0;

that is, a misaligned pair in two different cubelets has time points
sufficiently far apart to contribute nothing to the correlation com-
putation. Then replace each cubelet mean and standard deviation
in equation (1) by the combined mean and standard deviation; and
replace each double sum in (1) by adding the two corresponding
double sums (one for each cubelet); e.g., replace the first double sum
in the numerator by

2∑︁
𝑘=1

𝑛
(𝑘 )
𝑥∑︁
𝑖=1

𝑛
(𝑘 )
𝑦∑︁
𝑗=1

𝑥 (𝑠 (𝑘 )
𝑖

)
𝜎𝑥

𝑦 (𝑡 (𝑘 )
𝑗

)
𝜎𝑦

𝐾ℎ (𝑠
(𝑘 )
𝑖

− 𝑡 (𝑘 )
𝑗

) .

In addition to the information already required for updating the
mean and standard deviation when combining cubelets, this correla-
tion computation requires storing for each cubelet the four distinct
double sums in (1).

4.5.3 HashGrid for Updating Cubelets. In Rubiks, the need for con-
tinuous cubelet updates to ensure query accuracy stems from the
dynamic nature of the underlying data store. To effectively accom-
modate this evolving data landscape, concurrent data ingestion and
cubelet updates within persistent memory are critical. This process
is orchestrated through a hashgrid-driven approach, aimed at en-
suring accuracy of constructed data cubes with the evolving dataset
through the following steps:

Binary Hierarchical Hashgrid: Rubiks maintains a binary hier-
archical hashgrid, wherein each element corresponds to a specific
cube. This hashgrid serves as a reference to indicate whether a cube
is up-to-date or requires updating due to changes in the underlying
data.
Coordinator-Initiated Updates: During execution of the aggre-
gation, the coordinator node also monitors and tracks cubes that
have undergone modifications since the last update. The coordina-
tor node updates the hashgrid based on the modifications detected.
Each corresponding element in the hashgrid is updated to reflect
the current status of its respective cube – indicating whether it is
up-to-date or not.
Hierarchical Update Propagation: The hierarchical structure of
the hashgrid streamlines the propagation of updates. The coordi-
nator node can efficiently update higher-level hashgrid elements
based on changes in the lower levels. This hierarchical mechanism
ensures a streamlined and efficient update process.
Cluster-Wide Synchronization: Once the hashgrid is updated
by the coordinator, this updated hashgrid is disseminated to all the
cluster nodes. This push informs each node about the cube that are
currently out-of-sync and cannot be used for query evaluation due
to outdated information.

By leveraging this hashgrid-driven approach, Rubiks seamlessly
incorporates continuous data updates into its cubes. This process en-
sures that the cubes remain relevant and accurate, enabling accurate
and up-to-date query evaluations even over dynamic, continually-
evolving datasets.

4.6 Hierarchical Aggregation of Cubelets
The computed cubelets, which represent fine-grained spatiotem-
poral aggregates, are systematically organized into a hierarchical
structure. This hierarchical organization is achieved through the
aggregation of lower-level cubelets that lie within the bounds of a
given parent cubelet, ensuring efficient representation and manage-
ment of the cubelets. Additionally, specific hierarchical structures
such as quadtiles, Hydrologic Unit Codes (HUC), and Federal Infor-
mation Processing Standards (FIPS) codes are employed to cater to
diverse geospatial bounds. Temporally, we allow aggregation to be
in units of days, weeks, months, or years.
To form coarser aggregates at higher levels of the hierarchy,

cubelets are combined. This merging process allows the creation
of larger aggregations, providing a multi-resolution perspective of
the data (Fig. 2). Moreover, higher-level spatiotemporal extents are
applied to encompass multiple cubes of varying types, further en-
hancing the versatility of the hierarchical framework. By employing
these methods, the hierarchical organization enables more insightful
analysis of spatiotemporal patterns and trends within the datacubes.

The cube hierarchy (with cubelets at the lowest level and dynam-
ically, recursively constructed data cubes) is maintained in the form
of a metadata graph. However, since we can deterministically and
hierarchically aggregate based on spatiotemporal bounds, there is
no need to maintain actual links between the cubes themselves. We
maintain these cubes as a set of hashmaps, grouped by their spatial
and temporal keys, allowing targeted, efficient 𝑂 (1) retrievals.
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Fig. (2) Dynamic construction of cubelet hierarchy

4.7 Query Evaluation
The following is a sample spatiotemporal query that we support
at client-side. Rubiks supports spatiotemporal queries at varying
levels of resolution (spatial_resolution, temporal_resolution) over
any given viewport (Polygon) and timerange(Query_Time).

s e l e c t pear son ( i ron , mercury ) , . . .
from Aqua_Dataset
where c o o r n i d a t e s in Polygon
and t ime_stamp in Query_Time
group by s p a t i a l _ r e s o l u t i o n , t empo r a l _ r e s o l u t i o n

Fig. 1b provides an insight into the query evaluation process or-
chestrated by Rubiks. The system handles analytical queries over
spatiotemporal data through the utilization of datacubes. We elab-
orate on the overall query evaluation mechanism of Rubiks in a
distributed context. When a client query is initiated, it is initially
directed towards the relevant cluster nodes (as explained further
in the subsequent section). At each node, a search is conducted
within the in-memory cache for cubes that either precisely match
or can be repurposed to meet the requirements of the current query.
Subsequently, the query is enhanced to retrieve any unfulfilled spa-
tiotemporal extents from the backend storage.

In the backend storage, Rubiks engages in a search for ephemeral
cubes that can be effectively employed or repurposed to furnish
accurate responses for the ongoing query. For any cubes that are
found missing, they are dynamically constructed from the collection
of perennial cubelets and subsequently dispatched to the request-
ing node. In addition to addressing the query at hand, these newly
formed data cubes are added to the roster of ephemeral cubes for
future potential use. Data cubes created using this dynamic and
targeted process are cached. By orchestrating this interplay of cache
utilization, dynamic data cube construction, and query enhance-
ments, Rubiks realizes a robust and responsive query evaluation
mechanism that ensures efficient utilization of available data and
computational resources. Crucially, correctness is preserved while
ensuring efficient analysis of spatiotemporal datasets.

5 SYSTEM ARCHITECTURE
The Rubiks framework, along with its hierarchy of perennial and
ephemeral cubelets, comprises a distributed query evaluation and
graph-based caching system. We explain each of these components
in detail.

5.1 Distributed cluster
We have designed a distributed data structure, Rubiks, that allows
users to retrieve aggregated values over arbitrary spatiotemporal
granularities over large-scale data collections. The data collections
we consider comprise multidimensional observations that are stored
in files - each observation has associated spatial coordinates (latitude
and longitude) and an observational timestamp. Rubiks aggregates
data based on the spatial coverage and temporal range using statis-
tical data aggregation methods. The distributed nodes comprising
Rubiks are organized as a distributed graph that maintains the level
of granularity used for data aggregation. Rubiks’ distribution across
the cluster is orchestrated through a zero-hop Distributed Hash Ta-
ble (DHT) architecture. The overall spatiotemporal scope of the data
is uniformly partitioned among cluster nodes via a fusion of spatial
and temporal hashing mechanisms, ensuring efficient identification
of the responsible node(s) for any requested boundary. Depending
on the specific dataset, we allow the spatial hashing to take var-
ious forms such as quadtiles, HUC12, or FIPS codes, involving a
segment of the spatial code along with timestamps to distribute
data across nodes. It’s crucial to highlight that Rubiks’ node ar-
chitecture doesn’t store raw data. Rather, it focuses on retaining
cubelets that dynamically populate their in-memory cache over time.
This approach optimizes resource usage by capitalizing on cubelets,
which are compact and versatile analytical units. In essence, Rubiks
cluster distribution, rooted in spatial and temporal hashing, and its
cubelet-centric storage strategy collectively ensure efficient data
organization and rapid retrieval, underscoring its ability to handle
complex spatiotemporal queries with heightened efficacy.

5.2 In-memory Cache

Fig. (3) Cubelet spatiotemporal bounds

Rubiks’ architecture includes a distributed cache on each node,
organized to accommodate the spatiotemporal partitioning of the
overall data domain. Cubelets pertinent to each node’s assigned
partition are maintained within their respective cache, establishing
a sparse hierarchical metadata graph.

The in-memory cache structure within Rubiks diverges from con-
ventional graph storage. Vertices correspond to sets of aggregated
values sharing a common index key, while edges capture geospatial
relations like granularities and proximity. Cached query outputs
and interim results optimize density based on granularity and spa-
tiotemporal coverage. Rubiks’ response time is nearly real-time
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as it navigates through its distributed hash tables, circumventing
traditional graph traversal costs.
Rubiks optimizes response times by utilizing a distributed hash

table architecture, replacing conventional graph storage structures.
Each level, comprising sets of vertices with the same granularity,
operates within a zero-hop DHT framework. These levels are navi-
gated using a simplified array structure. This design significantly
reduces computational complexity to O(1), enhancing Rubiks’ effi-
ciency and speed.

5.3 Dynamic Construction of Cubelet Hierarchy
Rubiks’ hierarchical cubelets framework orchestrates the construc-
tion of coarser aggregates as part of the query evaluation process.
This dynamic procedure enhances the versatility of cubelets, en-
abling their transformation into higher-level aggregations for multi-
resolution analysis.
Initiated by query execution, the process commences with the

retrieval of pertinent cubelets based on their spatiotemporal ex-
tents. Once retrieved, the system assesses the feasibility of merging
neighboring cubelets to generate more comprehensive aggregations.
Predefined rules guide this evaluation, ensuring that the resulting
coarser cubelets align with desired parameters.

Upon identification of compatible cubelets, the system performs
mathematical operations to fuse metadata attributes. These oper-
ations range from summing counts to updating various summary
statistics including cross-feature covariances.
As queries progress, the hierarchical aggregation continually

assembles coarser cubelets at higher levels. This adaptive approach
integrates new aggregations into the query outcomes, affording
users the flexibility to explore data at varying levels of detail. This
allows Rubiks’ to provide adaptable and efficient data exploration
within its hierarchical cubelets framework.

5.4 In-Memory Storage and Cache Eviction Scheme
To ensure efficient storage and retrieval of cubelets within the hier-
archical datacubes framework, we propose an in-memory storage
scheme coupled with a cache eviction strategy to handle potential
overflow. This section presents the design and implementation of
this scheme.

5.4.1 Cubelet Eviction and Freshness. Rubiks leverages an eviction
strategy that aligns with spatiotemporal user access patterns, priori-
tizing regions of interest over individual cubelets. Since the number
of possible cubelets substantially outpaces the in-memory capacity,
Rubiks allows configuration of thresholds for the count of cached
cubelets.

Focusing beyond individual cubelet demand, the eviction strategy
emphasizes regions of interest—frequently used spatiotemporal
scopes at a specific instance. Rubiks’ discerns relevance, identifies
stale cubelets and swaps them for requested regions in case of
memory pressure.
Rubiks uses the metric of freshness for this eviction strategy,

calculated bymultiplying cubelet access frequencywith a time decay
function, thus encapsulating both usage frequency and recency.
Cubelets are selected for replacement based on their freshness score.
Fig. 3 provides a two-dimensional depiction of a spatiotemporal

Table (1) Cubelet Generation: Comparison between time (seconds) taken
to create cubelets in a cold-start scenario vs daily updates

County Quadtiles HUC-12

Cold-Start 187.53 219.90 363.77
Daily Updates 4.91 5.84 17.74

resolution with contained cubelets. Given recent access to regions
𝑅1 and 𝑅2, with spatiotemporal proximity implying future interest,
our dispersion scheme extends a fraction of the freshness score to
immediate neighborhood cubelets as well. This strategy safeguards
against staleness in the immediate region, despite infrequent access.

The rationale for prioritizing regions over precise query extents
is twofolds. First, users’ queries often form a sequence, with queries
spanning UI actions. Our methodology discerns spatiotemporal
neighborhoods of interest encompassing potential future queries.
Second, considering multiple users’ queries, spatial access patterns
cluster around small spatiotemporal areas. Thus, focusing on imme-
diate query neighborhoods reconciles similar requests.

Cubelet replacement within Rubiks entails evicting stale cubelets
with low-freshness scores till such time that memory pressure is
relieved. This freshness-focused scheme ensures in-memory persis-
tence of heavily accessed regions, enhancing query performance
and latency.

5.5 Visualization of Cubelets
Cubelets allow exploratory data analysis over backend data such as
heatmaps, time series plots, and interactive visualizations to identify
patterns and trends across different levels of the cubelet hierarchy.
We have used cubelets to generate heatmaps of water contaminant
proliferation at the county, watershed boundary, and individual
water body scales across the continental United States. We used a
JavaScript front-end leveraging the DeckGL mapping framework to
visualize heatmaps.

6 SYSTEM EVALUATION
6.1 Experimental Setup
To evaluate compute-intensive spatiotemporal queries and ingestion
rates over our system, we profiled Rubiks over a cluster of 20 nodes.
The data ingestion and query evaluation occurs in a spatiotempo-
rally partitioned manner over the same cluster of 20 nodes. Each
node in our distributed cluster is an Intel Xeon E5-2620v3, with 64
GB RAM, each with a Quadro P2200 GPU (5GB of memory) with
1280 cores and several local 7200RPM SATA hard disks. The data
ingestion operations and spatiotemporal queries over the cluster
get partitioned throughout the cluster uniformly based on the first
6 characters of their Quadtile key[qua 2018]. A sharded, replicated
MongoDB cluster of 50 nodes was set up as our persistent storage
that houses both raw data nd cubelets. The machines were orga-
nized into the following configurations: (1) 5 machines with mongos
routers (2) 39 machines running mongod instances, co-located (3) 3
machines dedicated to running a Mongo config replica set.
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Fig. (4) Breakdown of overall cubelet construction time. From left to right:
total time (blue), pre-processing (yellow), data movement (red), and cubelet
computation (purple).

6.2 Dataset and Spatiotemporal Extent
In order to test our framework against large-scale data, we use the
Environmental Protection Agency’s water quality dataset[epa 2023],
which comprises over 4,000 different types of water quality-related
measurements recorded for the vast majority of water bodiues in
the United States from January 1st, 1970 through today. The dataset
includes measurements from over 991,000 monitoring stations with
a total of over 226 million data points, with new data ingested daily.
Spatiotemporal queries over a dataset this voluminous present a
significant challenge to query evaluation time, which the RUBIKS
framework manages elegantly.

6.3 Cubelet Construction Time
We evaluate the time taken to construct the perennial cubelets over
Rubiks in a cold-start scenario, where we have to ingest ∼ 226𝑀
entries into our distrubuted storage. Table 1 compares the time taken
to construct cubelets constructed over varying non-overlapping
geospatial bounds. We can see compared to the total number of
records being ingested, the overall time to construct cubelets is quite
low, in the order of a few minutes. Additionally, we note that the
overall time taken to construct the cubelets is directly proportional
to the total number of cubelets being constructed. For instance, for
the total geospatial extent of the CONUS, the number of unique
counties is 3163, the total number of quadtiles within the bounds is
∼ 15,000, whereas the total number of HUC-12 regions is ∼87,000,
which directly impacts the total number of cubelets required to be
created and saved into our framework. As expected, the overall
cubelet construction time is proof of that and it is to be noted that
ideally, cubelet construction would occur alongside data ingestion.
We can also see that the update time for cubelets for incoming

daily measurements is significantly low compared to a cold-start
scenario. The difference in times taken for various geospatial cubelet
bounds is also reflected here, as in the case of the cold-start scenario.
We also profile a breakdown of the overall operation of cubelet con-
struction during ingestion. During cold-start generation of perennial
cubelets, we need to fetch the relevant distributed data to each com-
puting node, perform preprocessing to load shapefiles to identify
specific geospatial cubelet boundaries and perform aggregation
and computation of cubelets, followed by persisting them. Fig. 4
demonstrates the percentage of overall cubelet generation time for
a cold-start scenario where we create county-wise cubelets for each
month over records starting from 1970 till current day. We note
that data movements, which constitutes both moving ingested data

Table (2) Spatiotemporal Query: Comparison between latency (seconds)
for varying sizes

1 Month 1 Year 10 Years

Rubiks 3.3 3.32 6.51
Brute Force 12556.6 12606.2 12686.9

to the cluster nodes and computed cubelets back to the persistent
storage takes up a majority of the overall time.

6.4 Comparison of Accuracy
Since theRubiks cubelets form the backbone of its query evaluations,
we compare the accuracy of Rubiks’ aggregate statistics against
those computed through brute force. Since we use Welford’s online
algorithm to compute and update our cubelets, we expect them to
accurately represent independent statistical measures such as mean,
standard deviations, skewness and kurtosis, which are derived from
the first four order of moments.

Fig. 5 depicts choropleth maps computed using both brute-force
and through aggregation of Rubiks’ perennial cubelets. The geospa-
tial bounds used here are US counties. We compare the mean for
the decades 1990s, 2000s, and 2010s for the water temperature in
Celsius. We can see that along with significantly improved fetch
latency the cubelets are constructed accurately (i.e., no deviations
observed versus brute force traditional calculations) in an online
fashion.

6.5 Query Evaluation Latency
We profile the improvement in latency through our Rubiks frame-
work, compared to that of a spatiotemporal query over raw data.
Here, we profile the latency over queries of varying size. We eval-
uate the time taken to compute county-wise aggregate statistics
per month. By keeping the spatial bounds of the query fixed to the
entire CONUS, we vary the temporal extent of the query to a month,
a year and a decade. Table 2 profiles the average time taken for
each of these 3 types of queries with and without the use of Rubiks
cubelets. We can see significant improvement in query times

compared to fetching of raw data, with improvement ranging

from ∼3800-2000x.

6.6 Improvement in Latency Through Caching
Rubiks’ hierarchical distributed caching scheme at the cluster nodes
helps avoid redundant processing and network communication. We
evaluate the improvement in latency of various levels of overlapping
queries. To profile the efficacy of our caching scheme, we populate
our in-memory cache with 25, 50, and 100% of the query domain and
execute random queries of a fixed size (CONUS, monthly) over that
fixed domain. The average latency results for each of the 3 cases are
shown in Table 3. We can see that the reduction in query latency is
directy proportional to the amount of potential cache-hits which
helps reduce the amount of cubelets that would need to be queried
and fetched from the persistent store.

7 CONCLUSION
Here we described, Rubiks, our framework for rapid summarization
and explorations of high-dimensional, voluminous spatiotemporal
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(a) Brute Force Computation for 1990s (b) Brute Force Computation for 2000s (c) Brute Force Computation for 2010s

(d) Cubelet-based Computation for 1990s (e) Cubelet-based Computation for 2000s (f) Cubelet-based Computation for 2010s

Fig. (5) Comparing choropleth maps vertically. The top row was generated using raw data, and the bottom row was generated using data cubes. Each
choropleth map visualizes mean water temperature measured in degrees celcius, aggregated across counties. Rubiks queries return accurate (i.e. identical to
brute force) results but do so substantially (2000x - 3800x) faster.

Table (3) Query Latency: Comparison between query time (seconds) with
varying levels of cache-hit

25% 50% 100%

Latency (secs) 2.8 2.47 0.86

datasets.
RQ-1: Preservation of interactivity is predicated on precomputing
cubelets (atomic units) that can be leveraged in the computation
of data cubes. Space efficiency of the cubelets alongside storage
of additional metadata allows the same data cube to be leveraged
in the computation of diverse data cubes. Relying on hierarchical
spatial aggregations allows the operations to be targeted while also
limiting the number of I/O operations that need to be performed.
Our distributed caching schemes reduce duplicate processing and by
prioritizing the residency of cubelets over ephemeral cubes reduce
I/O requirements.
RQ-2: Hierarchical aggregations alongside the online Welford’s
algorithm lay the groundwork for effective summarizations across
diverse spatiotemporal scopes. We supplement this with a kernel-
based weighing of misaligned measurements to cope with the com-
plexity of covariance computations when the measurements across
variables are not synchronized in time and when the number of
discrete measurements across variables are different. Deterministic
identification of spatial scopes for aggregation (based on hierarchi-
cal prefix matching) alongside identification of temporal bounds
allow us to be very targeted in the cubelets that are involved the
calculation of data cube. We support diverse spatial extents: schemes
that we currently support include administrative boundaries, water-
shed boundaries, and quad tiles.
RQ-3: Summarizations at scale are predicated on minimizing du-
plicate processing, leveraging hierarchical aggregations, and a dis-
tributed cache. The incremental creation of cubelets allows the

framework to cope with continuous data arrivals and targeted up-
dates. Persistent cubelets preclude recomputations while their space
efficiency allows cache residency of a large number of cubelets to
reduce disk I/O.
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