
STASH : Fast Hierarchical Aggregation Queries for
Effective Visual Spatiotemporal Explorations

Saptashwa Mitra
Department of Computer Science

Colorado State University
Fort Collins, USA

sapmitra@cs.colostate.edu

Paahuni Khandelwal
Department of Computer Science

Colorado State University
Fort Collins, USA

paahuni@cs.colostate.edu

Sangmi Lee Pallickara
Department of Computer Science

Colorado State University
Fort Collins, USA

sangmi@cs.colostate.edu

Shrideep Pallickara
Department of Computer Science

Colorado State University
Fort Collins, USA

shrideep@cs.colostate.edu

Abstract—The proliferation of sensors and observational in-
struments enable scientists to explore natural, spatiotemporal
phenomena via explorative analysis and advanced modeling.
Geospatial visualization, in particular, is an intuitive tool to
identify patterns, enhance understanding of the data, and plan for
subsequent analysis. However, seamless interactions between end-
user devices and the sheer volume of data have been a challenge
due to the limited bandwidth and data access latencies.

In this paper, we introduce STASH, a distributed, in-memory
cache for hierarchical aggregation and query evaluations. STASH
is a middleware which can be loaded on top of a distributed file
system. Users perform queries from a lightweight visualization
interface at the front-end and the evaluations occur over the
back-end storage system housing the raw data over which sum-
marization and subsequent visualizations are to be performed.
STASH facilitates fast exploratory analytics by caching relevant
past query results based on their frequency and freshness to assist
similar, future queries and avoid expensive disk I/O and network
usage, thus reducing their latency. Additionally, STASH handles
any hotspot that might result from a spike in user requests due
to the spatial and temporal locality of their access patterns.

Our empirical benchmarks show that a STASH-enabled system
reduces query latency of a basic system by over 5-folds and
brings it down to interactive speed even for large country-sized
spatiotemporal queries. We have contrasted STASH with existing
cache-enabled analytics engines, such as ElasticSearch, and found
that our STASH-enabled system reduced the aggregation query
latency up to ∼70%. STASH also alleviated skewed workloads
through its dynamic replication scheme and improved throughput
by ∼40% in hotspot scenarios.

Index Terms—in-memory storage, distributed caching, aggre-
gation query, visual analytics, exploratory analytics

This research was supported by the Advanced Research Projects Agency-
Energy(ARPA-E), the US National Science Foundation [ACI-1553685, OAC-
1931363], the US Department of Homeland Security [D15PC00279], and a
Cochran Family Professorship.

I. INTRODUCTION

Interactive data visualization is a desirable feature for
understanding phenomena. This is especially the case with
voluminous georeferenced data harvested using IoT sensors
and observational networks. Visualization allows scientists to
explore the data at “rates resonant with the pace of human
thought” [13], [14]. Scientists and analysts explore datasets
using interactive visualization tools to identify patterns, for-
mulate hypotheses, and determine the scope for refinements
and subsequent analysis [31].

Within the visualization software, a user’s interactions are
transformed into a series of operations such as data retrieval,
processing, and rendering. The visual analytics software (e.g.,
Tableau [6], QlikView [12], SAP Lumira [5], etc.) generates a
set of queries based on the user’s navigation; which are then
issued to the backend data storage system such as a database
or networked file system. For extensive scalability, options for
cloud-based storage systems [1], [27] are often provided. How-
ever, since the query orchestration in the existing approach
relies on the individual visualization software, those scopes are
limited only to a single user. Moreover, the backend storage
system does not cope with any distinctive characteristics of
the visual exploration over the large-scale geospatial dataset.

There are unique challenges to supporting query evaluations
for large-scale explorative visualization. First, at the scales that
we consider, the number of data points that match a user’s area
of interest often exceeds the perceptual scalability limit. In
particular, the resolutions of the resulting image is so high that
an individual pixel cannot be seen and unlikely to be beneficial
[34]. Therefore, an effective and flexible aggregation scheme
is critical. Second, a query is often related to subsequent
queries and they share properties (e.g. area, and attributes).
Also, many users frequently navigate similar area especially
if there are any national disasters or events. Both the frequency
and trajectory of queries should be considered during the978-1-7281-4734-5/19/$31.00 ©2019 IEEE

orchestration of query evaluations.
In this paper, we present STASH, a distributed in-memory

data structure that supports hierarchical aggregation queries
for the large-scale spatiotemporal visual exploration. Unlike
existing backend storage systems, STASH works with un-
derlying distributed file systems and provides an in-memory
data storage layer that can flexibly scale based on available
resources. STASH supports aggregation queries based on the
user’s navigation patterns such as slicing, dicing, zooming,
panning, rolling-up and drilling-down and caches the aggre-
gated results in main memory to provide reusability of the
query outputs. STASH also alleviates data retrieval hotspots
caused by popular areas-of-interest through a dynamic load-
balancing scheme.

A. Research Questions

As part of this study, we explore the following research
questions:
RQ-1: How can we facilitate low-latency, multi-level data
aggregations over voluminous datasets?
RQ-2 How can we take a user’s visual navigations into
consideration to improve query evaluations?
RQ-3 How can the system cope with skews in access pat-
terns (e.g. some geographical extents may be more heavily
accessed than others) while preserving latencies and assorted
functionalities?

B. Overview of Approach: Distributed cluster

In this study, we describe our methodology for effective
aggregation queries to support interactive visualization appli-
cations. We have designed a distributed data structure, STASH,
that allows users to cache, query and retrieve aggregated values
with multiple granularities over large scale data collections.
The data collections we consider comprise multidimensional
observations that are stored in files - each observation has spa-
tial coordinates (latitude and longitude) and an observational
timestamp associated with it. STASH aggregates data based on
the spatial coverage and temporal range using statistical data
aggregation methods. The vertices comprising the STASH are
organized as a distributed graph that maintains the level of
resolutions of the granularity used for data aggregation.

Each vertex within STASH stores a set of aggregated values
that share the same index key. Edges within STASH maintain
properties indicating the geospatial relations between other
vertices such as granularities or geospatial proximity. STASH
collectively caches query outputs from users’ queries. There-
fore, STASH may have varying density based on granularity
and spatiotemporal coverage. The system evaluates subsequent
queries over the cached data points and accesses underlying
file system only when the relevant portion is not available in
STASH.

To achieve near real-time latency for data discovery, STASH
maintains a map of distributed hash tables instead of a con-
ventional graph storage system. Each set of vertices with the
same granularity is dispersed over the cluster using a zero-hop
DHT. We use a simple map to navigate between the different

resolutions. This approach reduces the cost for data discovery
to a single lookup over the local map and a single lookup over
the DHT making the computational complexity O(1).

We have designed and implemented the query orchestration
scheme based on common data access patterns derived from
popular visual navigation features such as slicing, dicing,
panning, zooming, drilling-down, and rolling-up. STASH uses
these patterns to prioritize caching/pruning the aggregated
data. Finally, STASH provides a dynamic load balancing
scheme over the in-memory distributed data structure to man-
age high-throughput query evaluation.

On evaluation, our STASH-enabled system was found to
reduce query latency of a basic system by over 5-folds for
large spatiotemporal queries. Our system also reduced the ag-
gregation query latency up to ∼70% compared to Elasticsearch
(another caching-enabled analytics engine). STASH also allevi-
ates skewed workloads through its dynamic replication scheme
and improves throughput by ∼40% in hotspot scenarios.

C. Paper Contributions
Our methodology enables effective data retrievals that are

aligned with the needs of visual exploration to provide real-
time interactivity. In particular, our contributions include:
1) A distributed, dynamic caching scheme to alleviate I/O
overheads associated with disk accesses. Query outputs and
intermediate data are stored in our in-memory data structure
and reused during subsequent query evaluations.
2) Support for rapid data discovery using a DHT map that
minimizes query-forwarding between the storage nodes and
local traversals within the data structure.
3) A dynamic data caching and query orchestration scheme
that accounts for users’ visual navigational patterns, especially
those prevalent in dominant geospatial explorations. By im-
proving data reusability during query evaluations we make
frugal use of resources allowing us to do more with less.
4) A high-throughput visual query framework backed by a
shared, in-memory caching scheme and dynamic load balanc-
ing mechanism that scales to a large number of users.

D. Paper Organization
The remainder of this paper is organized as follows. Section

2 outlines the background, introducing the nature of the actions
and spatiotemporal user queries, followed by related works in
section 3. Section 4 provides a discussion of STASH’s data
model and its role in fast query evaluation. Section 5 details
STASH’s leveraging of common visualization patterns and
section 6 outlines the system architecture. Section 7 outlines
the replication strategy for skewed workloads. Experimental
setups, performance benchmarks, and analysis of results are
outlined in Section 8. Finally, our conclusions and future
research directions are described in Section 9.

II. BACKGROUND

A. Exploratory Visual Analytics
Visual exploration of voluminous spatiotemporal data in-

volves multiple steps of data processing and numerous inter-
actions between users and the system. To cope with the high

density and data volume, commonly performed operations
during explorations include navigating between segments of
dataset and/or adjusting resolutions [31]. The user’s interaction
is translated into a series of requests to the backend data server
by the front-end client application.

The front-end of the visual analytics system is usually a
light-weight user interface with two key tasks: (1) translate a
user action (e.g. panning, dicing, etc.) into a query over the
data storage system and (2) processing the server response to
extract a visual representation of the summary statistics (e.g.,
heatmap or histogram) over the visualization interface.

The back-end storage system processes a large number of
requests from the users to provide values that the front-end
system will render. For each request, the back-end system has
to identify the segment of the dataset relevant to the query,
aggregate over that segment at the desired resolution, and
return a set of values over the query’s spatiotemporal bounds.

B. Multi-Resolution Data Aggregation for the Spatiotemporal
Visual Exploration

The simple data aggregation query provides a summary of
the values that match the query. In contrast, the aggregation
query for visual applications generates a set of pixel-level
aggregations that matches the user’s query. For example, the
following SQL query shows an aggregation query for render-
ing maximum temperature values at a given spatial and tem-
poral resolution(spatial resolution, temporal resolution) over
an area and during a period specified in the Query Polygon
and Query Time, respectively.

s e l e c t max (t e m p e r a t u r e) , . . .
from NAM Dataset
where c o o r n i d a t e s in Query Polygon
and t ime s t amp in Query Time
group by s p a t i a l r e s o l u t i o n , t e m p o r a l r e s o l u t i o n

The values within a minimum bounding box will be
aggregated based on the temporal range specified by the
temporal resolution and the spatial range specified by spa-
tial resolution. These aggregations will be performed only
over the data records matching the query. If a user tries to
investigate an area with different resolutions, the query and
resolutions should be modified. Therefore, the back-end data
system should evaluate different aggregation queries for almost
every user interaction.

III. RELATED WORKS

Several frameworks have been designed to support scalable
visual analytics. Forecache [7] proposes a prefetching scheme
that predicts data-tiles to be queried in the future based on
the user’s past behavior and movements to improve latency.
Similar work involving pre-computations have been suggested
in [19], [20], [23], [26], [30]. In imMens [20], multivariate
data tiles are precomputed to provide scalable panning and
zooming like in Google Maps [26]. [19] uses a data cube
structure which stores all possible precomputed aggregations
at multiple levels of resolutions over the database. Redis [4] an
in-memory data storage system provides support for geospatial

data analysis by indexing them as a sorted-set, sorted by
geohashes. This ordered data-structure helps in faster indexing.
However, the above systems do not scale with dataset size as
they house the data structure in-memory. HashedCubes [23] is
built on a pivot/array scheme that maintains a partial ordering
scheme for all possible dimensions. It is more memory effi-
cient than Nanocubes [19] since it avoids precomputations and
uses sorted arrays to compute aggregations on-the-fly which,
but, leads to higher query latency. Another system used for
fast data visualization is Tableau [32], which can connect to
a variety of underlying databases and support spatiotemporal
queries over tabular data [10]. Bitmap indexing [29] store
dataset as compressed bitmaps to leverage high-speed bit-wise
operations. However, the increase of dimensionality in dataset
results in a rapid increase in the number of bitmaps. Further,
the bitmap generation is quite an expensive step. Our work
focuses on providing low latency by prefetching aggregated
values in the cache.

There are several existing data storage systems that can
support analytics. SciDB [28] is a column-oriented DBMS
designed for multidimensional data management and analytics
and provides support for complex analytics over multidimen-
sional data. Systems such as Spark [35] and Shark [9] load
datasets in memory in a distributed fashion and then allow
further analytics. A common problem these systems face is
lack of maintaining the geospatial relation between datapoints
while storing data, which makes indexing slow.

Load-balancing and cache replacement problems have been
explored in papers [16]–[18], [24], [25]. Paul et al. [25]
describe a centralized control architecture for distributed co-
ordinated caches to provide better web access times. Other
work has proposed a load-balancing method that considers
both localized access control and balanced load allocation
[18]. This leverages a static caching approach that assigns
hotspotted data to the server with higher processing power. The
system also includes queuing theory and cache distribution
strategy to achieve optimum processing time for data requests.
However, it doesn’t incorporate a cache replacement scheme
to deal with changing hotspots. In [17], a replication strategy
based on access characteristics of data is suggested to provide
a high-speed caching. They propose a scheme to allocate cache
by replicating hotspot tiles to multiple servers. Although, this
can result in the fast depletion of the cache and may cause
more delays due to frequent cache replacements.

IV. DATA MODEL AND QUERY EVALUATION [RQ-1]

STASH’s data model is designed to efficiently store previ-
ously generated summary results in-memory from past queries
and reuse them in case similar queries are performed by users
in the future. This requires the summary data to be stored in
the form of a collection of identifiable blocks or chunks with
specific spatiotemporal bounds (we call them Cells) that can
be rummaged and reused from the in-memory store.

STASH is logically organized as a multi-relational property
graph with data that is aggregated at multiple levels of spa-
tiotemporal resolutions. This graph is defined as GSTASH =

TABLE (I) STASH Cell Components

Content Description
Summary Data Summary Statistics over datapoints lying in the spatiotemporal bounds of this Cell

Spatiotemporal Bounds The spatiotemporal bounds of current Cell Geohash
Time interval (eg. ’2015-03’)

Spatiotemporal Relationship
Information (SRI)

Information identifying spatiotemporal parents, neighbors
and children of current Cell

Spatial Parent(s), Temporal Parent(s) ∈ EH

Spatial Neighbors, Temporal Neighbors ∈ EL

Spatial Children, Temporal Children ∈ EH

(a) Spatial (b) Temporal

Fig. (1) Spatiotemporal Relationship Among Individual Cells

(V,E), where V is a set of vertices and E = {EH , EL} is a
family of edge-sets. Vertices are labeled by their spatial and
temporal information and have a set of properties represented
as attributes. The set of hierarchical edges, EH , represents
an ordering between vertices that are one level apart in the
spatiotemporal hierarchy. Hence, edge e ∈ EH with a source
vertex VS and a destination vertex VD indicates that VS’s
resolution is one spatial and/or temporal resolution greater than
VD. Therefore, VS has a higher precision data aggregation than
VD and also the spatiotemporal bounds of VD fully encloses
that of VS . Vertices with the same spatiotemporal resolution
will be at the same depth/level in the hierarchy. The set
of lateral edges, EL, maintains the proximity of geospatial
locations and temporal ranges between vertices in the same
level. If there is an edge e ∈ EL between two vertices Vi

and Vj , these vertices contain data for the two adjacent areas,
i.e., their spatiotemporal bounds share boundaries. Each edge-
set provides a distinctive traversal function and helps in the
spatiotemporal neighborhood discovery for any region of Cells
over GSTASH .

A. Vertex: The STASH Cell

Data aggregation involves grouping data points into bins of
equal spatiotemporal extents and generating aggregated values
for each attribute for all the points that fall within a certain
bin. The array of aggregated attribute values for each bin is
referred to as a Cell. A Cell is the minimum unit of data
storage in STASH and represents a vertex of GSTASH .

1) Properties of a Cell: Each STASH Cell, Ci,
contains three main properties: (a) spatiotemporal
labels, (b) aggregated summary statistics and (c) edge
information({EHi

, ELi
}|EHi

∈ EH and ELi
∈ EL), as

shown in Table I. The summary statistics are the main content
of a Cell and is the information returned to a client program
in response to a spatiotemporal request. The spatiotemporal
labels describe the scope including the spatial bounding box
encoded as Geohash value and the chronological range for

the observations. The edge information keeps the Cell aware
of its immediate spatiotemporal neighborhood.

2) Nested Coverage: STASH Cells can be thought of as
3-dimensional cubes in the spatiotemporal space, with fixed
bounds marked by their spatiotemporal labels. Cells connected
by a hierarchical edge have nested spatiotemporal bounds,
i.e., the bounds of the lower resolution Cell fully encloses
the higher resolution Cell. Fig.2b shows a 2-dimensional
representation of the nested bounds of Cells in the hierarchy.
A Cell’s spatiotemporal extent is inversely proportional to its
spatiotemporal resolution. With every increase in spatial or
temporal resolution, a single parent Cell gets broken into a
fixed number of child Cells. For instance, Geohashes represent
a hierarchy of successively higher-resolution spatial bounding
boxes using a string of Base32 characters. So one spatial
resolution increase splits each lower-resolution Cell into 32
equally-sized smaller Cells.

B. Edge: The Inter-Cell Relationship

STASH maintains two edge sets to represent distinctive
relations between Cells. The hierarchical edges represent the
spatiotemporal parent(s)/children of each Cell (see Table I).
Each Cell can have 3 different parent precisions (one step
lower spatial precision, one step lower temporal precision, and
one step lower spatiotemporal precision). This refinement is
applicable to the children nodes as well. The lateral edges
help identify the spatiotemporal neighborhood of a Cell.

As shown in Fig.1 and Fig.2a, a Cell covering a geohash
9q8y7 and time 2015-03 has a spatial resolution of 5 (length of
the Geohash) and temporal resolution ‘Month’. The Cell has
8 adjacent spatial neighbors - 9q8yd, 9q8ye, 9q8ys, 9q8yk,
9q8yh, 9q8y5, 9q8y4, 9q8y6 (see Fig.1a) and 2 temporal
neighbors 2015-02 and 2015-04, which represent its lateral
edge. Similarly parentage and children can be deduced from
the Cells spatiotemporal information. For instance, the spatial
parent of Geohash region 9q8y7 is 9q8y (spatial resolution

(a) (b)

Fig. (2) Spatiotemporal Hierarchical Positioning of Cells

of 4) and each Geohash box encloses 32 nested Geohashes,
which would represent the spatial children.

C. Hierarchical Cell Organization

To exploit the lineage and inter-relationship among the
Cells, the STASH framework is organized in a hierarchical
graph structure to support fast population and updates. The
graph level for a given spatiotemporal resolution is calculated
as (nj ∗nt+ni) where ns and nt are the total possible spatial
and temporal resolutions, respectively and ni and nj are the
current spatial and temporal resolution, respectively. Fig.2a
gives a view of the relative positioning of two levels with
varying resolutions.

D. Query Evaluation Strategy

The STASH graph is dispersed over the cluster; specifically,
the main memory of the nodes. This dispersion attempts to
maximize data locality, with the STASH graph at each node
holding data related to that node. Although STASH is organized
as a graph, the query evaluation does not rely on traditional
graph traversal algorithms that often result in excessive net-
work communications and iterations. Rather, STASH provides
a set of composable vertex discovery schemes (through hierar-
chical and linear edge), instead of each Cell storing pointers to
all its neighborhood Cells, that reduce the memory requirement
and network communications significantly.

Each STASH level is dispersed over the zero-hop distributed
hash table (DHT) based on their Geohash. Since the zero-
hop DHT maintains the hosting information of the entire key
ranges in each node, the query evaluation requires up to one
query forwarding to locate the node holding the necessary
segment. For a STASH cluster with N nodes, the computational
cost to locate a Cell of a given level is O(1).

Across multiple precision levels, STASH relies on precision-
level map (PLM) to check for completeness of the in-memory
data. The PLM is a memory-resident bitmap that associates
the Cells contained in-memory for a given level to the actual
data blocks in the distributed storage. In case of systems with
real-time data, the PLM can be adjusted during an update to
keep track of up-to-date Cells, so that stale data summaries
are recomputed in case of future access. STASH consults the

PLM to identify and retrieve missing chunks to complete the
query evaluation.

V. LEVERAGING VISUAL NAVIGATIONAL PATTERNS
[RQ-2]

A. Proximity-Aware Data Dispersion

Since our work focuses on rapid aggregation over large
spatiotemporal data, preserving spatiotemporal proximity and
inter-Cell relationships in our data structure provides data lo-
cality. As mentioned in Section I-B, spatiotemporal proximity
is preserved by DHT-based distribution of the STASH graph.

To preserve Cell relationships, we leverage the strong spatial
and temporal locality of access [11] which is characteristic
of spatiotemporal user requests. Spatial locality implies that
if a spatiotemporal region is accessed, its neighborhood also
has high chance of future access, while temporal locality
implies that a region’s popularity is directly proportional to
its probability of being accessed in the near future, which is
in line with Zipf’s Law [17].

B. Collective Caching

STASH provides a query optimization scheme tailored for
explorative analytics through OLAP operations [8] for multi-
dimensional data. It adapts popular data mining operations that
are encapsulated within OLAP operations, particularly those
related to visualization, such as slicing, dicing, panning, zoom-
ing, drilling-down, and rolling-up. Slicing is the act of picking
a subset by choosing a single dimension. Dicing produces a
subset by allowing the analyst to constrain inclusions based
on specific values across multiple dimensions. Panning allows
users to explore a neighborhood. Drill-down and roll-up allow
users to navigate through more finer-grained resolution level
and coarser-grained resolution, respectively.

These operators are translated to a query with expressive
predicates specifying spatiotemporal coverage along with the
data aggregation requirements. A sequence of operators often
involves partially overlapping or nested queries (e.g., a series
of panning operators may involve overlapping areas and zoom-
ing or rolling-up results in nested queries). Although existing
scalable databases support sophisticated aggregation schemes
with caching mechanisms [1], the query output is not reusable

by other partially similar queries or by other users. STASH’s in-
memory cache is collectively built through query evaluations
from multiple users. Any subsequent query will be evaluated
over the cached values first. Disk access is required only if,
(a) there are missing values for completing query evaluation,
and (b) those missing values are not available by computing
from the existing cached values.

Fig. (3) STASH Freshness Dispersion Scheme

C. Cell Replacement Strategy

The total number of possible Cells is much larger than
the number of Cells that can be persisted in-memory. The
threshold for the total number of Cells allowed in STASH is
configurable and limited. For our Cell replacement strategy,
rather than focus on the demand of Cells individually by only
calculating their frequency of access, we focus more on the
spatiotemporal regions of interest, i.e. the regions that are
experiencing the most user queries at a particular instant.

1) Cell Freshness: The effectiveness of STASH lies in its
ability to maintain the most relevant regions in the memory,
and to efficiently detect stale Cells and swap them out for
more requested regions, in case we reach a threshold due to
overpopulation of Cells.

In order to determine which Cells to persist in-memory in
case of a threshold breach, we use the metric of freshness
to evaluate the importance of a Cell in the STASH Graph.
Freshness is calculated as the product of the number of
accesses to a Cell (updated every time it gets accessed), and
a time decay function. Hence, both frequency and recency of
access are contributors to the freshness of a Cell. Cells in
STASH are replaced based on this freshness score.

2) Cell Replacement Based on User Access Patterns: In
accordance with the spatial and temporal locality of access
patterns, when a request for a spatiotemporal region comes in,
we mark both the set of Cells in that region and the immediate
spatiotemporal neighborhood of that region as being of future
interest, to prepare for possible overlapping requests in the
immediate future and update their freshness.

To explain freshness dispersion among Cells, we refer
to Fig.3, that gives a two-dimensional view of a particular
spatiotemporal resolution and the Cells contained therein. Let
us say that spatiotemporal regions R1 and R2, highlighted
by light-colored Cells, have been accessed by one or more
end-users recently. Temporal locality of access dictates that
Cells accessed recently have a higher probability of access
in the near future. Therefore, in our freshness dispersion

scheme, when regions R1 and R2 get accessed, we increase
their freshness (by, say, finc, which is configurable). Also,
spatial locality of access suggests that if regions R1 and R2

are currently of interest, their spatiotemporal neighborhood
will also be a region of interest. To reflect this property, we
also disperse a fraction of finc to the Cells in the immediate
neighborhood of R1 and R2 (grey Cells). This scheme prevents
the spatiotemporal neighborhood from being deemed stale,
even though they might not have been accessed recently.

Practically speaking, the reason behind focusing on regions
instead of the queries’ exact spatiotemporal bounds is two-
fold. First, from a single user’s perspective, an incoming query
is one among a series of queries to the server, each correspond-
ing to an action over the front-end UI. Rather than focus on
the exact region of query, our methodology determines the
combined spatiotemporal neighborhood of interest (both light
and gray areas in Fig.3), since those are the regions likely to be
requested in subsequent requests. Second, considering multiple
users and their queries, spatial locality of access dictates that
their requests will be focused around small clusters of the total
spatiotemporal space. Thus, focusing on the spatiotemporal
neighborhood of a single query’s extent as well helps us
prepare for similar queries in the immediate neighborhood.

STASH Cell replacement involves evicting the Cells with
the lowest freshness score till the capacity goes below a safe
limit. The freshness dispersion scheme described above helps
entire regions that are heavily accessed to be persisted in
memory during replacement, instead of disconnected patches
that would reflect the actual query areas that were fetched but
might hamper the performance and latency of future queries.

Fig. (4) STASH System Architecture

3) Advantage of the Hierarchical Graph Organization:
Updating the freshness of a set of Cells belonging to a user-
requested region out of a large collection of in-memory Cells
and their spatiotemporal neighborhood is a time-consuming
operation that can potentially slow down the query evaluation.
To accomplish the above goal efficiently, we need to be
able to (1) effectively isolate and quantify regions that are
in demand with respect to regions that are less requested
and (2) quickly identify the spatiotemporal neighborhood of
a requested region. The hierarchical organization of STASH
Cells allows us to perform the aforementioned functionalities
fast and effectively. First, it allows us to isolate the set of
Cells belonging to the current spatiotemporal resolution, as
well as their parent and child-level resolutions, thus narrowing

down the scope of relevant Cells. Second, once Cells have been
identified as part of a queried region, we can easily use their
lateral and hierarchical relationship(edges) to find the Cells in
their immediate spatiotemporal neighborhood and update their
freshness values in a fast manner.

VI. SYSTEM OVERVIEW

STASH is designed as an in-memory data storage frame-
work that is positioned as an intermediary between the users
interacting with a lightweight front-end UI and a back-end
distributed storage and analytics engine. The front-end UI
internally converts each user interaction into a request to the
back-end server and parses and displays the server’s responses
on the display window. Fig.4 demonstrates the various com-
ponents of our system.

A. Front-end Visualization UI

In our system, the front-end visualization is performed by
using Grafana [2]; we can interoperate with any visualization
framework that is capable of parsing and displaying sum-
marization responses in JSON. Grafana is an open-source
visualization and metric-analysis tool and we have used its
WorldMap panel to display spatiotemporal results.

B. In-Memory Summary STASH-ing Framework

STASH acts as a caching middleware between incoming
user-requests and the back-end distributed analytics engine.

C. Back-end Distributed Storage

In our implementation, for the back-end storage and analyt-
ics engine, we use Galileo [21], a distributed storage and an-
alytics framework for large multidimensional, spatiotemporal
datasets. Galileo is a zero-hop Distributed Hash Table(DHT)
based storage system that uses Geohash [22] to generate data
partitions that store and colocate geospatially proximate data
points. The granularity of the coverage of a data block is
determined by the length of geohash code managed by the
nodes. STASH builds on Galileo’s distributed query evaluation
capability to efficiently query and then summarize over data
points that match a user query at varying spatiotemporal
resolutions.

VII. AUTOSCALING FOR HIGH THROUGHPUT QUERY
EVALUATION [RQ-3]

The spatial and temporal locality of user access patterns
makes it highly likely for hotspots to emerge over the dis-
tributed data storage system [33]. A large number of queries
focused over a small spatiotemporal portion of the entire data
space would lead to only a few nodes servicing a large chunk
of queries, leading to a bottleneck. Also, these hotspots are
dynamic [15]. In STASH, individual nodes adapt to potential
hotspots in a dynamic and decentralized fashion.

A. Dynamic Clique Replication

STASH’s hotspot handling focuses on a dynamic replication
scheme for the most accessed spatiotemporal regions. When-
ever the workload (determined in our case through the pending
requests queue size) on a node in the cluster crosses a config-
urable threshold, that node initiates a Clique Handoff for the
most active spatiotemporal regions on it. Hotspotted regions
in STASH are demarcated in terms of Cliques(explained in
Section VII-B), which represent the most active set of Cells
in STASH and acts as the unit of data replication and transfer
in STASH.

Clique Handoff is the decentralized process of the hotspot-
ted node finding the most suitable candidate node (called the
helper node) to house replicas of its hottest Cliques, so that
future queries have a high chance of accessing fully replicated
regions, thus alleviating some of the processing load on the
hotspotted node. A helper node maintains two STASH graphs
- one local and one guest (containing replicated Cells from
other hotspotted node(s)). In case of updates to the actual data
storage, the PLM helps identify the stale replicas, which are
discarded from serving redirected requests.

Fig. (5) Hotspotted Region Handoff

B. Clique Handoff Process

The Clique Handoff process involves the following steps,
as depicted in Fig.5:

1) Hotspot Detection: In our implementation, a node deems
itself to be hotspotted when the number of pending requests
in its message queue crosses a configured threshold.

2) Top Cliques Calculation: The hotspotted node attempts
to find the spatiotemporal regions that are causing majority of
its workload in the form of Cliques in its STASH graph with
the highest cumulative freshness. We define Cliques, here, as
a subgraph of Cells from the STASH graph of a pre-configured
size (depth). For example a Clique of depth 2 would consist
of a Cell Ci and all its children Cells and their children Cells
to calculate their cumulative freshness. Cliques are identified
by the spatiotemporal label of their topmost parent Cell.

We set the maximum number of replicable Cells at a time
to a preset amount, say N . The hotspotted node searches its
STASH graph to find the top K Cliques whose cumulative size
is ≤ N . The hierarchical structure of STASH graph makes
it efficient to identify the Cells that would be in a given
Clique. These top K Cliques are subject to replication from a
hotspotted to helper node(s).

(a) Latency vs Query Size (b) Throughput Improvement (c) Maintenance Overhead (d) Autoscaling

Fig. (6) Performance Evaluation of STASH: (a) and (b) show effects of query size on its latency and throughput, respectively;
(c) compares STASH maintenance time for different query sizes and (d) shows the improvement in throughput for STASH’s
replication mechanism over normal execution during hotspot.

3) Antipode Node Selection: The candidate for a helper
node is calculated separately for each Clique. Since hotspots
tend to be concentrated in small pockets in the spatiotemporal
space, our goal is for Clique replicas to be housed on nodes
whose domain is the most isolated from the current hotspotted
region. In our implementation, we look for a spatiotemporal
region that is diametrically on the other side of the total spatial
scope of the storage cluster. The idea is similar to the concept
of antipode of a coordinate which is another coordinate on
the diametrically opposite side of the globe. We call the node
handling this diametrically opposite region the antipode node.

Using a Clique’s geohash, we find its geohash antipode and
then use the DHT’s partitioner to identify the antipode node
and send it a Distress Request. If it is not itself hotspotted
and its guest tree can accommodate the incoming Cells, the
antipode node sends a positive acknowledgement. In case
of a negative acknowledgement, the hotspotted node repeats
the above process for another geohash region in a random
direction around the antipode geohash.

4) Replication Request/Response: On a positive acknowl-
edgment, the hotspotted node sends a Replication Request to
the helper containing the Clique(s) to replicate. The helper
inserts the Clique into its guest STASH graph and replies with
a successful Replication Response.

5) Routing Table Population: The hotspotted node main-
tains a routing table of Cliques that are replicated at helper
nodes, along with a bitmap of the actual Cells contained in
the Clique. This routing table is populated upon receiving a
successful Replication Response from a helper node.

C. Query Evaluation under Hotspot

In a hotspot situation, a user query is first checked against
entries in the routing table and if the spatiotemporal region
of the user query is found to be fully replicated at another
helper node, the user request is probabilistically rerouted to the
helper node, thus reducing the load on the hotspotted node. At
the helper node, the relevant Cells are fetched from its guest
STASH graph, just as it would be from a local STASH graph.

D. Replication and Cleaning

Each node has a pre-configured cooldown time after hotspot
handling. If the hotspot persists after this cooldown time, the
Clique Handoff process is repeated and another set of replicas
of active Cliques are created on candidate helper nodes.

The guest STASH graph entries also get purged if they are
not requested to be persisted within a configurable amount
of time. Stale routing-table entries also get purged from the
hotspotted node after a pre-configured period signifying the
retreat of hotspot.

VIII. EMPIRICAL BENCHMARKS AND DISCUSSION

A. Experimental Setup

To evaluate compute-intensive operations with high-density
observations, we profiled our system while performing OLAP
operations with spatiotemporal data on a cluster of 120 nodes.
Each node in our distributed cluster is an HP Z420 with
the following configuration: 8-core Xeon E5-2560V2, 16 GB
RAM and 1 TB disk. The data is partitioned uniformly over
the cluster based on the first 2 characters of their Geohash.

To contrast performance with other geospatial caching sys-
tems, we have used Elasticsearch [1] on a cluster with 3 master
nodes and 120 data nodes. To achieve horizontal scalability
and parallelization, the index was split into 600 shards. Three
types of caches that were maintained stored the query results,
aggregations, and field values on a node.

Throughout our experiments, we refer to 4 groups of
spatiotemporal queries as country, state, county or city level.
These represent 4 query sizes that vary in their spatial extent
(Query Polygon) but have a fixed temporal extent which is
2015-02-02 (Query Time). The spatial extent of the 4 query
groups is set using a random rectangle over the data’s entire
spatial coverage with latitudinal and longitudinal extent of
(16◦,32◦), (4◦,8◦), (0.6◦,1.2◦) and (0.2◦,0.5◦), respectively.
The requested spatial and temporal resolutions are 6 and ’Day
of the Month’, respectively, unless otherwise specified.

B. Dataset

The dataset used for our experiments is sourced from the
NOAA North American Mesoscale (NAM) Forecast System
[3]. The NAM dataset (∼1.1 TB unprocessed) contains atmo-
spheric data collected several times per day for 2013, globally
including features like surface temperature, relative humidity,
snow and precipitation.

C. Distributed Query Evaluation with STASH

1) Query Evaluation Time (RQ-1): We profiled latency
improvement with the STASH framework by tracking average
latencies for queries of varying sizes for 3 scenarios – the

(a) Iterative Dicing - Descending (b) Iterative Dicing - Ascending (c) Panning

(d) Drill-Down (e) Roll-Up

Fig. (7) Query Performance Evaulation for Several Visual Analytics Operations

simple Galileo storage system, empty STASH graph with no
Cells (worst-case), and STASH graph with all necessary Cells
in-memory (best-case - duplicate query). This kind of querying
for a subset of the total spatiotemporal extent of the data
reflects the dicing operation in our system.

Fig.6a shows that STASH with all necessary Cells in-
memory outperforms the other two scenarios with ∼5x im-
provement over no STASH scenarios for large query sizes
such as country and state. A fully populated STASH graph
demonstrably transforms even large queries to interactive
operations.

2) Overhead of STASH Maintenance: In Fig.6a, the aver-
age latency in the worst case scenario is slightly more than in
the no STASH case, which can be explained by the overhead
in the unsuccessful look-up for matching Cells in the graph
and then attempting retrievals from disk. The population of
Cells fetched from disk to memory is done at the back-end in
a separate thread. Fig.6c depicts the cold-start scenario where
all the Cells from a query have to be inserted in-memory and
the time taken population that goes down considerably with
query size since lesser Cells are to be inserted in STASH.

D. Query Optimization for Visual Exploration (RQ-2)

In practical scenarios, fragments of the query’s spatiotem-
poral extent will be contained in STASH graph while the
remainder needs to be fetched from disk as follows:

1) Iterative Dicing: To simulate the user action of se-
quentially increasing and decreasing the query area, we have
implemented ascending and descending iterative dicing, as
shown in Fig.7b and Fig.7a respectively. It shows a sequence
of 5 queries that, keeping the spatiotemporal resolution fixed,
vary the Query Polygon size in either ascending order or
descending order. We can see that descending iterative dicing
performs much better for a STASH-enabled system since a
larger area (country level) is fetched in the first query and
then, iteratively, a subset of the first query (20% spatial area
reduction) gets queried (final query having size ∼(5.2◦,10.4◦))
- leading to all necessary Cells existing in memory from the

second query onwards. The ascending version is the previous
set of queries executed in reverse order. Here, as the spatial
extent increases, a fraction of the relevant Cells are found in-
memory, which does lead to improved performance over the
basic system, but not to the extent of the descending version.

2) Zooming: We replicate the scenario of a user sequen-
tially increasing or decreasing the resolution of a view area
by two sets of experiments - drill-down (zoom-in), where a
user starts with a lower spatial resolution of 2 of a state-
level area and then recursively increases the resolution to 6
that incurs ∼32 fold increase in the number of possible Cells
at each step. Roll-up (zoom-out) is the reverse of the drill-
down operation. To compare the performance of our system
in scenarios with varying amount of relevant Cells in-memory,
we have randomly stacked the STASH graph with regions
covering 50%, 75% and 100% of all the relevant Cells.

Fig.7d and Fig.7e contrasts the latency of the drill-down and
roll-up scenarios, respectively, for a STASH enabled system
against the basic system. As expected, more the amount of
relevant Cells in-memory, the better the latency. However, in
all scenarios with partial information, we see at least 40%
improvement in latency over a system without STASH.

3) Panning: We replicate panning in our experiments by
starting with a state-level query and moving the rectangle by
a certain amount (10%, 20%, 25%) in 8 possible directions
around the starting rectangle. So, the first query encounters
an empty STASH graph and then, from the second query
onwards, a fraction of the necessary Cells should exist in-
memory. The results in Fig.7c support our assertion. We see
that the basic analytics system has uniformly high latency,
whereas, that in STASH enabled system is considerably low.
The lower the amount of pan, the larger is the overlapping
area between two consecutive queries, which would benefit
a STASH enabled system, as validated by Fig.7c. Also, the
comparison of 25% pan scenario between a basic and a STASH
enabled system shows considerable improvement ranging from
73%-60% reduction in latency.

(a) Panning (b) Iterative Dicing - Ascending (c) Iterative Dicing - Descending

Fig. (8) Contrasting STASH’s Performance with ElasticSearch for Common Visual Analytics Operations

4) Throughput: Fig.6b shows the throughput of a STASH-
enabled system vs that of a basic system. This experiment
involves firing 10,000 county-level requests over the cluster
which are created by selecting 100 random rectangles (of
sizes state, county and city) over the globe and then randomly
panning around each by 10% in any random direction 100
times, to replicate spatiotemporal locality of requests. The
throughput is calculated based on the total time taken for
the last request to be executed successfully. A STASH-enabled
system shows 5.7x, 4x and 3.7x improvement in throughput
for state, county and city-level queries, respectively.

E. Autoscaling (RQ-3)

Fig.6d contrasts the performance of STASH’s replication
scheme against STASH without dynamic replication under
skewed traffic. We simultaneously executed 1000 county-level
requests, by randomly panning around a random starting point,
to emulate the hotspot scenario of sudden interest over a single
region from multiple users. Our system was configured to
initiate Clique handoff with pending requests of over 100.
To compare improvement caused by a replication operation,
the cooldown time was set high. Fig.6d shows the number of
responses received each second from the start. We can see that
STASH with a dynamic replication scheme processes larger
number of queries per second and finishes all tasks ∼ 20
seconds before STASH without dynamic replication.

F. Comparison with ElasticSearch

We contrasted STASH’s performance against ElasticSearch,
which has its own caching system, with some of the previously
OLAP scenarios with consecutive overlapping requests.

1) Panning: The panning scenario when replicated on
ElasticSearch gives results as shown in Fig.8a. We can see that
STASH shows better improvement in performance, whereas
ElasticSearch’s latency improves slightly. At each step with the
latency-reduction with respect to the latency of the first request
with STASH ranges between ∼70% and 49.7%, whereas that of
ElasticSearch stays between ∼2% and 0.6%. Also, the second
query onwards, STASH’s latency is significantly lower which
demonstrates better management of in-memory data in case of
overlapping queries.

2) Dicing: Fig.8b and Fig.8c compares the results of the
ascending and descending iterative dicing experiments, as
mentioned above, between STASH and ElasticSearch. Here
also, we see that STASH achieves a much steeper drop in

latency from the second query onwards by efficiently uti-
lizing the common Cells stored in-memory for the subsequent
queries.

IX. CONCLUSION AND FUTURE WORK

We described our framework, STASH, for harnessing spa-
tiotemporal query evaluations and their underlying patterns to
assist timely, high-throughput evaluation of future queries in
support of effective visual explorations of spatiotemporal data.
Our methodology is agnostic to the underlying storage frame-
work, and STASH can be configured on top of a distributed
storage system to help facilitate visualization and preserve
interactive responsiveness.
RQ-1: The hierarchical structure of STASH graph with Cells
grouped by their resolutions while encoding lateral and hier-
archical edge relationships facilitates fast identification of rel-
evant Cells for a query. The PLM can be effectively leveraged
to calculate the completeness of in-memory data in relation to
the query, which helps reduce disk I/O by precisely identifying
the particular portions that are missing from STASH.
RQ-2: STASH’s Cell replacement scheme dynamically adapts
to the spatial and temporal locality of user-accesses by dis-
persing freshness to the spatiotemporal neighborhood based
on the query scopes. This allows the framework to house the
most relevant spatiotemporal regions in-memory, substantially
reducing the number of disk accesses and the amount of data
to be processed from disk during query evaluations. This, in
turn, reduces query latencies and improves throughput.
RQ-3: Our dynamic replication scheme effectively handles
skews in access patterns. By ensuring that heavily accessed
spatiotemporal neighborhoods are replicated, and replicating
them on nodes farthest from the hotspotted region, we ensure
effective utilization of resources within a cluster.

A. Future Work

Our proposed future work builds on the work describe here.
First, a smaller-capacity STASH graph at the front-end can
greatly reduce latency in case users tend to browse a narrow
spatiotemporal region, thus reducing the number of queries
needed to be evaluated at the back-end. Second, constructing
a trained model that accurately predicts a user’s access pattern
can assist in the construction of prefetching queries that
augment regions that the model predicts would be of interest
in future with the region to be requested currently. More
importantly, this can help reduce the number of interactions
the front-end needs to have with the server.

REFERENCES

[1] Elastic Search, 2019. https://www.elastic.co/guide/en/elasticsearch/
reference/6.2/index.html.

[2] Grafana Labs, 2019. https://grafana.com/grafana.
[3] National Oceanic and Atmospheric Administration, The

North American Mesoscale Forecast System, 2019.
http://www.emc.ncep.noaa.gov/index.php?branch=NAM.

[4] Redis for Geospatial Data, 2019. http://lp.redislabs.com/rs/915-NFD-
128/images/WP-RedisLabs-Geospatial-Redis.pdf.

[5] SAP Lumira – Introduction For Beginners, 2019.
https://blogs.sap.com/2014/08/08/sap-lumira-introduction-for-
beginners/.

[6] Tableau Desktop, 2019. https://www.tableau.com/products/desktop.
[7] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of

data tiles for interactive visualization. In Proceedings of the 2016
International Conference on Management of Data, pages 1363–1375.
ACM, 2016.

[8] A. Berson and S. J. Smith. Data warehousing, data mining, and OLAP.
McGraw-Hill, Inc., 1997.

[9] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: fast data analysis using coarse-grained distributed
memory. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 689–692. ACM, 2012.

[10] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual
exploration of big spatio-temporal urban data: A study of new york city
taxi trips. IEEE Transactions on Visualization and Computer Graphics,
19(12):2149–2158, 2013.

[11] D. Fisher. Hotmap: Looking at geographic attention. IEEE transactions
on visualization and computer graphics, 13(6):1184–1191, 2007.

[12] M. Garcı́a and B. Harmsen. Qlikview 11 for developers. Packt Publishing
Ltd, 2012.

[13] P. Hanrahan. Analytic database technologies for a new kind of user: the
data enthusiast. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 577–578. ACM, 2012.

[14] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.
Queue, 10(2):30, 2012.

[15] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma. Mining
user similarity based on location history. In Proceedings of the 16th
ACM SIGSPATIAL international conference on Advances in geographic
information systems, page 34. ACM, 2008.

[16] R. Li, J. Fan, X. Wang, Z. Zhou, and H. Wu. Distributed cache
replacement method for geospatial data using spatiotemporal locality-
based sequence. Geo-spatial Information Science, 18(4):171–182, 2015.

[17] R. Li, W. Feng, H. Wu, and Q. Huang. A replication strategy for a
distributed high-speed caching system based on spatiotemporal access
patterns of geospatial data. Computers, Environment and Urban Systems,
61:163–171, 2017.

[18] R. Li, Y. Zhang, Z. Xu, and H. Wu. A load-balancing method for
network giss in a heterogeneous cluster-based system using access
density. Future Generation Computer Systems, 29(2):528–535, 2013.

[19] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-
time exploration of spatiotemporal datasets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2456–2465, 2013.

[20] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Computer Graphics Forum, volume 32, pages 421–430. Wiley
Online Library, 2013.

[21] M. Malensek, S. L. Pallickara, and S. Pallickara. Galileo: A framework
for distributed storage of high-throughput data streams. In Utility and
Cloud Computing (UCC), 2011 Fourth IEEE International Conference
on, pages 17–24. IEEE, 2011.

[22] G. Niemeyer. Geohash, 1999. http://www.geohash.org/.
[23] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba.

Hashedcubes: Simple, low memory, real-time visual exploration of
big data. IEEE transactions on visualization and computer graphics,
23(1):671–680, 2017.

[24] S. Pan, L. Xiong, Z. Xu, Y. Chong, and Q. Meng. A dynamic replication
management strategy in distributed gis. Computers & geosciences,
112:1–8, 2018.

[25] S. Paul and Z. Fei. Distributed caching with centralized control.
Computer Communications, 24(2):256–268, 2001.

[26] L. Santos, J. Coutinho-Rodrigues, and C. H. Antunes. A web spatial
decision support system for vehicle routing using google maps. Decision
Support Systems, 51(1):1–9, 2011.

[27] V. Sharma. Getting started with kibana. In Beginning Elastic Stack,
pages 29–44. Springer, 2016.

[28] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. Scidb: A database
management system for applications with complex analytics. Computing
in Science & Engineering, 15(3):54, 2013.

[29] Y. Su, Y. Wang, and G. Agrawal. In-situ bitmaps generation and efficient
data analysis based on bitmaps. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing,
pages 61–72. ACM, 2015.

[30] W. Tao, X. Liu, Ç. Demiralp, R. Chang, and M. Stonebraker. Kyrix:
Interactive visual data exploration at scale. CIDR, 2019.

[31] J. J. Van Wijk. The value of visualization. In VIS 05. IEEE Visualization,
2005., pages 79–86. IEEE, 2005.

[32] R. Wesley, M. Eldridge, and P. T. Terlecki. An analytic data engine
for visualization in tableau. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 1185–1194.
ACM, 2011.

[33] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu,
M. Bambacus, and D. Fay. Spatial cloud computing: how can the
geospatial sciences use and help shape cloud computing? International
Journal of Digital Earth, 4(4):305–329, 2011.

[34] B. Yost, Y. Haciahmetoglu, C. North, and C. North. Beyond visual
acuity: the perceptual scalability of information visualizations for large
displays. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 101–110. ACM, 2007.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010.

