
A Framework for Profiling Spatial Variability in the Performance
of Classification Models

Menuka Warushavithana
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA
menukaw@colostate.edu

Kassidy Barram
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA
kbarram@colostate.edu

Caleb Carlson
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA

cacaleb@colostate.edu

Saptashwa Mitra
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA
sapmitra@colostate.edu

Sudipto Ghosh
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA

sudipto@colostate.edu

Jay Breidt
Department of Statistics, Colorado

State University
Fort Collins, Colorado, USA
fjay.breidt@colostate.edu

Sangmi Lee Pallickara
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA

sangmi@colostate.edu

Shrideep Pallickara
Department of Computer Science,

Colorado State University
Fort Collins, Colorado, USA
shrideep@colostate.edu

ABSTRACT
Scientists use models to further their understanding of phenom-
ena and inform decision-making. A confluence of factors has con-
tributed to an exponential increase in spatial data volumes. In this
study, we describe our methodology to identify spatial variation in
the performance of classification models. Our methodology allows
tracking a host of performance measures across different thresholds
for the larger, encapsulating spatial area under consideration. Our
methodology ensures frugal utilization of resources via a novel val-
idation budgeting scheme that preferentially allocates observations
for validations. We complement these efforts with a browser-based,
GPU-accelerated visualization scheme that also incorporates sup-
port for streaming to assimilate validation results as they become
available.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies→ Classification and re-
gression trees; • Mathematics of computing → Probability
and statistics.
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1 INTRODUCTION
Spatial data volumes have been increasing and account for about
80% of the total data being produced [11]. Spatial data can be char-
acterized as data that includes location information for individual
data items; this location information tends to be in the form of
< 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 > pairs. The increase in spatial data volumes
is driven by the proliferation of low-cost sensors, networked obser-
vational equipment, and simulations that model natural (terrestrial,
oceanic, environmental, atmospheric) and commercial phenomena.

Researchers rely on models to understand phenomena; such
models are often used to complement decision-making. Models
often need to be spatially explicit i.e., they need to be calibrated and
their parameters tuned to account for subtle regional variations
that impact model performance. Researchers are often interested
in understanding where a model performs well and where it un-
derperforms. A precursor to doing so is to assess the performance
of models to identify their spatial variability, which may inform
subsequent refinements.

The class of models we consider are classification models [16].
Classification performance can be assessed at different thresh-
olds and there are often multiple performance measures of inter-
est. We consider the case where a classification model exists, and
the researcher is interested in profiling the performance of that
model. Given a spatial area of interest, the contiguous United States
(CONUS) in this study, the performance of a model needs to be
assessed for the smaller spatial extents that comprise it. This can be
based on administrative boundaries or domain-specific partitioning
based on climactic, ecological, or topological characteristics.

The crux of this effort is to allow scientists to quickly assess
performance variation of classification models across different spa-
tial extents. These models may be domain-theoretic, process-based,
or analytical models that are fit to the data using model-fitting
algorithms. We also make no assumptions about the structural
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characteristics of these models i.e., they may be based on decision
trees, deep networks, Bayesian properties, etc.

1.1 Challenges
Effectively profiling the performance of models over large spatial ex-
tents encapsulated by spatial datasets introduces several challenges.
These include:

• Data volumes and I/O: Since the datasets we consider are
voluminous the assessments can entail substantial disk and
network I/O. Furthermore, since this I/O will occur in shared
clusters, the increased I/O has knock-on effects for other co-
located processes in terms of increased latencies and reduced
throughput.

• The spatial extents under consideration may be large and ir-
regularly shaped (defined using shape files) and aligned with
political and administrative boundaries. Given that adminis-
trative boundaries are often agglomerative, it is common for
shape files (e.g., cities and towns to be part of larger units
such as counties and states).

• Interoperation with analytical engines. Researchers often
have their preferred analytical engines and as such interop-
eration with diverse analytical engines should be supported.

• Models may have different parametrization schemes. The
observations used for assessing model performance may
entail preprocessing such as reconciling encoding formats
and normalization.

1.2 Research Questions
As part of this study, we explore the following research questions.
RQ-1: How can we identify spatial variability in classification per-
formance?
RQ-2: How can we accomplish such profiling while ensuring effec-
tive resource utilizations?
RQ-3: How can we support effective visualizations of performance
variations? For classification models, researchers are often inter-
ested in these variations across different thresholds.

1.3 Approach Summary
To facilitate the identification of performance variation, we consider
several aspects including partitioning datasets, devising a model
assessment orchestration scheme, designing a scheme to allevi-
ate assessment costs, and visualization component with a built-in
declarative query scheme to facilitate explorations.

We partition the datasets into smaller spatial extents. The par-
titioning scheme we consider in this study is based on shapefiles,
where each spatial extent is defined using an N-sided polygon with
each vertex represented using a < 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 > pair. In
this study, we consider administrative boundaries comprising hi-
erarchical units such as tracts, blocks, cities, counties, states, and
finally the country level. Our methodology does not preclude the
choice of other partitioning schemes such as geohashes, grids, or
quad tiles. We posit that the shape file-based partitioning repre-
sents the most general and complex partitioning scheme and, in
fact, any partitioning scheme can be represented using shape files.
Each observation within the dataset is checked for inclusion within
the polygon while accounting for the curvature of the earth – this is

a one-time operation. We assign hierarchical prefixes to the shape
files, i.e., each shape file has the prefix of its encapsulating shape
file. This allows shapefiles to be identified deterministically based
on the string assigned to them. Our partitioning also ensures that
data for a given spatial extent are located on the same machine. Our
orchestration schemes are designed to interoperate with diverse
analytical frameworks.

Given a model, we create multiple instances from it – one for
each spatial extent under consideration. Next, we push the model
instance to the node holding the data for the spatial extent. The
number of model instances being evaluated concurrently at a given
instant is controlled to ensure effective resource utilization. Next,
we construct confusion matrices for each spatial extent for a con-
figurable number (default, 9) of thresholds. The true positive, false
positive, true negative, and false negative rates for each model
instance are used to estimate the AUC of the ROC, sensitivity,
precision, and recall for different spatial extents under different
thresholds.

Given that the datasets are voluminous, assessing the perfor-
mance of models with every observation would be prohibitive. We
design a novel validation budget scheme where a model is assessed
with a fraction of the available data while ensuring statistical confi-
dence in our results. Our methodology achieves this using a two-
pass scheme where the performance of models is assessed with a
small set of pilot observations. Additional observations are allocated
to model instances (associated with specific spatial extents) based
on the uncertainty associated with their model performance. The
validation budget scheme allows us to work with a limited number
of observations while preferentially allocating more observations
to specific spatial extents.

Figure 1: Choropleth map depicting the visualization of
the validation response rendered across the contiguous
United States. The response is visualized using a color-coding
scheme where the difference in colors corresponds to differ-
ent values in the validation response.

We complement these efforts with visualization. Model perfor-
mance is rendered as a Choropleth map (see Figure 1) to allow
a researcher to quickly assess performance variation spatially. A
researcher can assess the performance of models across different
thresholds. The visualization scheme is backed by an implicit declar-
ative query scheme that allows researchers to explore aspects such
as the thresholds necessary to achieve desired performance or to
identify spatial extents that have similar performance. Our visual
interface is browser-based to facilitate visualizations across a vari-
ety of devices and GPU-accelerated to ensure responsiveness. Our
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visualization scheme leverages streaming to facilitate incremen-
tal visualizations, aid progress tracking, and amortize the costs
associated with visualization.

1.4 Paper Contributions
Our methodology allows a researcher to assess the performance of
classification models. Our specific contributions include:

• A framework for assessing the performance of classification
models including different metrics, thresholds, and analytical
engines such as PyTorch, Scikit-Learn, and Tensorflow.

• Our methodology is agnostic of the phenomena under con-
sideration and the underlying structure of the model i.e.,
the model could be based on probabilities, decision trees, or
complex networks.

• Our methodology identifies spatial extents where a model
performs well and where it does not. The framework assesses
several aspects of the model’s performance across diverse
spatial extents.

• Our interactive visual interface allows a researcher to quickly
assess spatial variation of the model performance across dif-
ferent metrics. The visualization interface is coupled with
a query interface that also allows a researcher to explore
similarities, variations, and threshold-specific analyses. Our
support for streaming in the visual interface allows interac-
tivity and amortizes rendering overheads.

• Simplified interface for model assessments: A researcher sub-
mits models and our framework handles the complexity of
creating model instances; apportioning a limited validation
budget, and profiling model performance across different
spatial extents with different thresholds all while ensuring
efficient utilization of resources.

1.5 Paper Organization
The remainder of this paper is organized as follows. Section 2 in-
cludes an overview of related work. Section 3 describes our method-
ology while section 4 includes our performance benchmarks pro-
filing several aspects of our methodology. Finally, in section 5 we
outline our conclusions and future work.

2 RELATEDWORK
With the increasing availability of large spatiotemporal datasets and
advances in deep learning algorithms, deep learning has become a
powerful tool for analytics and predictive modeling over spatiotem-
poral data [22, 35]. Deep learning models have been applied for
inference and pattern detection over voluminous, high-dimensional,
and heterogeneous spatiotemporal data. Specifically, deep learning
is well-suited for classification over spatiotemporal data due to its
ability to learn complex patterns and relationships between features
automatically from voluminous data[9]. Deep learning models lead
to improved accuracy more than traditional models due to their
ability to learn complex non-linear relationships between features
[6]. Deep learning models, such as convolutional neural networks
(CNN), have been commonly applied to spatiotemporal data. Classi-
fication using deep learning over distributed systems is increasingly
in demand for building and deploying predictive models over spa-
tiotemporal data [44] such as satellite imagery to extract spatial

and temporal features and classify various regions or objects for
mapping, detection, and monitoring of natural phenomena[41].

Evaluating model performance in terms of accuracy is critical for
the deployment of classification models over distributed systems.
Efficient storage, querying, and evaluation of geospatial data using
frameworks that support distributed querying and evaluation are
necessary [43]. Models built over complex attribute relationships,
as often is the case for voluminous spatiotemporal data, may have
varying performance over different parts of the multidimensional
data domain, making it challenging to accurately capture model per-
formance using conventional validation techniques [2, 8]. Models
may have a low capacity for generalization over portions of the data
space due to multiple factors. For instance, the relationship between
the input features and the output labels may be too complex for the
model to capture accurately, leading to poor performance in certain
areas of the data space. Alternatively, outliers, noise, or differences
in the distribution of the input data across different portions of
the data space can make it difficult for the model to generalize.
Therefore, identifying sub-regions with low prediction accuracy
is essential for increasing trust and interpretability, and statistical
techniques have been developed to achieve this goal [21, 23, 36].

In classification problems, identifying sub-domains with low
prediction accuracy is crucial for model performance evaluation [7,
10]. Various statistical techniques, such as those explored in [21, 23],
can facilitate granular analysis of model performance and provide
a measure of confidence in a model based on the region it’s applied
to. However, these techniques may require domain expertise and
may not handle voluminous datasets. For large datasets, distributed
evaluation techniques that partition the data space can efficiently
evaluate model performance over the entire domain. Additionally,
using a subset of the data to approximate accurate results can
speed up model validation and increase the scalability of operations,
which has been attempted for validating regression models in [5].

Scikti-Learn [33], TensorFlow [1], Keras, and PyTorch [32] are
some of the most popular machine learning libraries. These libraries
differ in capabilities, performance, difficulty of prototyping new
models, deployment, and community support. Therefore, scientists
utilize these libraries for model-building based on the problem
that needs to be solved and the complexity of the relationship
between the features involved [39, 45]. As a result, building a unified
platform for model evaluation requires us to adapt and interoperate
with these different frameworks, which rely on their own sets of
configurations.

Approaches to virtualizing application workloads have been
explored [25, 26]; in our work, the primary focus has been on
ensuring data locality during orchestration. Data storage and query
evaluations targeted specifically for spatiotemporal data have been
explored in [4, 27, 28]. Similarly, in-memory approaches to data
sketching [3, 34] have also been explored. Our methodology can
interoperate with observations managed either on-disk, in-memory,
or in hybrid situations where cloud-bursting is performed [29].
Finally, the framework is also suited for deployed in grid settings
[14, 15].
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3 METHODOLOGY
Our methodology to identify spatial variability in classification
model performance encompasses a series of elements that include:

(1) A novel budgeting scheme that ensures that model valida-
tions can be performed without resorting to assessing per-
formance with all available observations.

(2) A set of data wrangling operations to preprocess, partition,
and store observations while ensuring support for data lo-
cality during model validations.

(3) Designing our framework so that it is amenable for interop-
eration with diverse analytical frameworks.

(4) Ensuring high-performance and scalability of the validation
framework including containerization.

(5) Closing the loop for model validation with a browser-based,
GPU accelerated implementation of an interactive Chrolo-
pleth map with support for streaming and generation of
declarative queries to allow researchers to explore several
aspects of validation including thresholds, precision, recall,
and similarity of model performance.

3.1 Validation Budget [RQ-1, RQ-2]
Performing model validations with all available observations is
prohibitively expensive in terms of the I/O, memory, and comput-
ing requirements. A key aspect of our methodology is to perform
these validations while ensuring effective resource utilization. To
this end, we have designed a novel validation budget scheme; in
particular, the scheme relies on a fraction of the available observa-
tions to comprise the validation budget. Furthermore, this scheme
is designed specifically for classification models.

The validation budget is constructed on the fly. In the pilot phase,
a limited number of observations are extracted for each spatial ex-
tent. In the second phase, models for spatial extents with ambiguity
in the model’s performance characteristics are preferentially allo-
cated additional observations subject to the requirement that the
total number of observations allocated for validations does not
exceed the specified threshold.

Consider a binary classifier that produces a continuous predic-
tion 𝑥 which is then compared to a threshold 𝜏 . If 𝑥 ≤ 𝜏 , then the
classifier predicts 0 (a failure or negative result), and if 𝑥 > 𝜏 then
the classifier predicts 1 (a success or positive result).

We wish to understand the prediction performance of the classi-
fier in each of 𝐻 regions and with each of 𝐺 thresholds. We have a
validation budget of𝑚 + 𝑛 test cases. The first𝑚 test cases are used
as the pilot test phase, allocated to regions as𝑚 =

∑𝐻
ℎ=1𝑚ℎ . Let 𝑥ℎ𝑖

denote the continuous outcome of the classifier for test case 𝑖 in re-
gion ℎ (𝑖 = 1, 2, . . . ,𝑚ℎ and ℎ = 1, 2, . . . , 𝐻 ). Let 𝑦ℎ𝑖 ∈ {0, 1} denote
the true binary outcome for test case 𝑖 in region ℎ. Let 𝜏1, 𝜏2, . . . , 𝜏𝐺
denote the 𝐺 classifier thresholds.

The validation budget problem is then to use the information
obtained from the pilot testing phase to allocate the remaining test
cases as 𝑛 =

∑𝐻
ℎ=1 𝑛ℎ . The goal of the allocation is to understand

the prediction error of the existing binary classifier, for 𝐻 differ-
ent regions and for𝐺 different test thresholds. Importantly, the goal
is not to reduce the prediction error, because that would involve
either rebuilding or retraining the classifier.

3.1.1 Summarizing data from the pilot testing phase. We
write (𝐴) (𝐵) = 1 if events 𝐴 and 𝐵 are both true and (𝐴) (𝐵) = 0
if either event is false. The binary classifier yields a true negative
for case 𝑖 in region ℎ at threshold 𝜏𝑔 if 𝑥ℎ𝑖 ≤ 𝜏𝑔 and 𝑦ℎ𝑖 = 0, so that
with the above notation:

(𝑥ℎ𝑖 ≤ 𝜏𝑔) (𝑦ℎ𝑖 = 0) = 1.

Using this notation, the pilot testing phase produces one 2× 2 table
(Table 1) for each of the𝐺 thresholds, with counts corresponding
to true negatives, false negatives, false positives, and true positives.

Consider three scenarios that might be observed in the pilot
testing:

(1) True negatives and/or true positives are large relative to false
negatives and/or false positives, so that

𝑚ℎ00 (𝜏𝑔) +𝑚ℎ11 (𝜏𝑔)
𝑚ℎ

≃ 1,
𝑚ℎ01 (𝜏𝑔) +𝑚ℎ01 (𝜏𝑔)

𝑚ℎ

≃ 0.

In this case, we conclude that the prediction works well.
Unless the pilot sample size is small, allocation of additional
test cases is not worthwhile.

(2) False negatives and/or false positives are large relative to
true negatives and/or true positives, so that

𝑚ℎ00 (𝜏𝑔) +𝑚ℎ11 (𝜏𝑔)
𝑚ℎ

≃ 0,
𝑚ℎ01 (𝜏𝑔) +𝑚ℎ01 (𝜏𝑔)

𝑚ℎ

≃ 1.

We can conclude that the prediction works poorly in this case
as well. Unless the pilot sample size is small, allocation of
additional test cases is not worthwhile (because the classifier
will not be revised).

(3) Neither the proportion of failures (false negatives plus false
positives) nor the proportion of successes (true negatives
plus true positives) is close to zero or one. In this case, pre-
diction is difficult, with the most difficult case being both
proportions close to 0.5.

The preceding scenarios suggest that the final phase test cases
should be allocated as follows:

• allocate less to regions with either highly successful or
highly unsuccessful predictions;

• allocate less to regions with large pilot sample sizes𝑚ℎ ;
• allocate more to regions with neither highly successful nor
highly unsuccessful predictions;

• allocate more to regions with small pilot sample sizes𝑚ℎ .
After the pilot testing phase (the first round of validations) is

complete, we proceed to the second phase of our allocation scheme.

3.1.2 Allocation of the remaining validation budget.

Allocation with one threshold. First, consider the case of a
single threshold (𝐺 = 1). An allocation rule that satisfies the above
criteria can be motivated as follows. If the prediction error in each
of the 𝐻 regions was the result of a binomial experiment with
𝑚ℎ +𝑛ℎ trials and success probability 𝑝ℎ = probability of successful
prediction in region ℎ, then the initial sample could be used to
estimate 𝑝ℎ as

𝑝ℎ =
𝑚ℎ00 (𝜏) +𝑚ℎ11 (𝜏)

𝑚ℎ
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Table 1: Summary of data recorded from the pilot testing phase of our allocation scheme. The table represents a confusion
matrix that uses a custom notation.

True Zeros True Ones
Predicted Zeros true negatives false negatives

𝑚ℎ00 (𝜏𝑔) =
∑𝑚ℎ

𝑖=1 (𝑥ℎ𝑖 ≤ 𝜏𝑔) (𝑦ℎ𝑖 = 0) 𝑚ℎ01 (𝜏𝑔) =
∑𝑚ℎ

𝑖=1 (𝑥ℎ𝑖 ≤ 𝜏𝑔) (𝑦ℎ𝑖 = 1)
Predicted Ones false positives true positives

𝑚ℎ10 (𝜏𝑔) =
∑𝑚ℎ

𝑖=1 (𝑥ℎ𝑖 > 𝜏𝑔) (𝑦ℎ𝑖 = 0) 𝑚ℎ11 (𝜏𝑔) =
∑𝑚ℎ

𝑖=1 (𝑥ℎ𝑖 > 𝜏𝑔) (𝑦ℎ𝑖 = 1)

and the optimal allocation of the remaining sample, to minimize the
variance of the estimated prediction error in each of the 𝐻 regions
(subject to the overall validation budget constraint) would be

𝑛ℎ = (𝑚 + 𝑛) {𝑝ℎ (1 − 𝑝ℎ)}1/2∑𝐻
ℎ=1{𝑝ℎ (1 − 𝑝ℎ)}1/2

−𝑚ℎ,

provided 𝑛ℎ ≥ 0. If 𝑛ℎ is negative, it indicates that too many cases
𝑚ℎ were already allocated to region ℎ in the pilot phase, and no
further cases should be allocated. In this case, we drop region ℎ

from further consideration and re-allocate to the remaining regions.
Alternatively, it is possible to solve the constrained optimization
problem:

For ℎ = 1, 2, . . . , 𝐻 , choose 𝑛ℎ ≥ 0 to minimize
𝐻∑︁
ℎ=1

𝑝ℎ (1 − 𝑝ℎ)
𝑚ℎ + 𝑛ℎ

subject to 𝑛 =

𝐻∑︁
ℎ=1

𝑛ℎ .

Multiple thresholds. If there is more than one threshold, we
first define the estimated success probability at each threshold,

𝑝𝑔ℎ =
𝑚ℎ00 (𝜏𝑔) +𝑚ℎ11 (𝜏𝑔)

𝑚ℎ

.

Next, we determine importance weights across thresholds, {𝑤𝑔ℎ}.
Assume that 𝑤𝑔ℎ ≥ 0 and

∑𝐺
𝑔=1

∑𝐻
ℎ=1𝑤𝑔ℎ = 1. For example, this

could be assigning equal weight to all thresholds and all regions
(𝑤𝑔ℎ = 1/(𝐺𝐻 )); or equal weight to the best threshold in each
region (𝑤𝑔′ℎ = 1/𝐻 for the threshold 𝜏𝑔′ with largest 𝑝𝑔′ℎ and
𝑤𝑔ℎ = 0 for 𝑔 ≠ 𝑔′), or some other weighting decided in advance.

The proposed allocation is then

𝑛ℎ = (𝑚 + 𝑛)
∑𝐺
𝑔=1𝑤𝑔ℎ{𝑝𝑔ℎ (1 − 𝑝𝑔ℎ)}1/2∑𝐺

𝑔=1
∑𝐻
ℎ=1𝑤𝑔ℎ{𝑝𝑔ℎ (1 − 𝑝𝑔ℎ)}1/2

−𝑚ℎ,

provided 𝑛ℎ ≥ 0, with suitable modifications as noted above if 𝑛ℎ
is negative.

3.2 Data Wrangling [RQ-2]
The efficiency of our validation methodology relies on utilizing
data locality, where we push the model to the data to minimize
data movement across nodes and reduce network I/O operations.
Geospatial datasets are available in a variety of formats including
Shapefiles, GeoJSON, Gridded Binary, GeoTIFF, etc. First, we con-
vert the selected dataset (or a subset of the data) into a format that
suits our database of choice. We also process and store geospatial
vectors representations (shapefiles) of the United States at varying
spatial resolutions (states, counties, and census tracts), which are
used on the frontend application for rendering results. Then, the

individual records of the dataset are mapped to their corresponding
shapefiles based on the coordinates (〈latitude, longitude 〉pairs)
using a primary key. After ingestion into our distributed database,
we shard the data based on the same primary key, such that mul-
tiple records that belong to a single spatial extent are co-located.
Additionally, we utilize replication in the distributed database to
ensure high availability.

We also maintain metadata about where the data associated with
each spatial extent resides. The metadata table, stored at the Coor-
dinator node (see section 3.4.1), is used for routing the validation
requests to the node that contains the needed data points.

3.3 Interoperation with Machine Learning
Frameworks [RQ-1]

We implement functionality to validate classificationmodels trained
on three popular analytical engines: Scikit-Learn, Tensorflow, and
PyTorch. The validation engine is implemented using object-oriented
design where we have an abstract class that defines functionality to
validate classificationmodels. The abstract class is extended for each
library/framework. Using common abstraction and helper methods
aids with reducing code duplication and maintaining a consistent
API. An additional advantage of this design approach is the ease of
extending support for new machine learning frameworks.

In the concrete implementation of the classes associated with
each framework, we make use of framework-specific functions
available for validating classification models. Classification metrics
such as the confusion matrix, AUC (Area Under the Curve) of the
ROC (Receiver Operating Characteristic) curve, sensitivity, and
specificity for a number of thresholds are calculated using the
functions provided by each framework.

For a given model, the only information required to support
validation are 1) inputs and outputs, 2) whether the data need to
be normalized or encoded in a specific format, and 3) the serialized
representation of the model. The operation of the validation service
does not depend on the internal structure of the submitted model.
This provides researchers with the ability to validate arbitrary and
complex models using our system.

3.4 Ensuring high-throughput Validations
[RQ-2]

Our framework is implemented as a distributed overlay compris-
ing a coordinator overseeing and tracking multiple workers, with
a proxy server providing a RESTful API for clients. Our software
stack interoperates with Python 3 to ensure seamless integration
with a diverse range of data science, machine learning, and analyti-
cal frameworks. This decision was made to support the maximum
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number of research applications possible. As our inter-component
communication framework, we leverage Google’s Remote Proce-
dure Call (gRPC)[42], which gives us the flexibility of defining
message and service types easily in protobuf files alongside space
efficient (un)marshaling.

The validation server is designed to perform a large number of
validation operations at once in a distributed cluster of nodes. Our
validation server consists of two main types of nodes: Coordinator
nodes that handle and accept new jobs, perform aggregation of
results, and coordinate the message flow of the system. The valida-
tion jobs are carried out atWorker nodes using the data stored on
local disks. The number of Worker nodes is much greater than the
number of Coordinator nodes. We designed the system to operate
onmultiple Coordinator nodes that reside in a failover configuration
i.e., only one Coordinator node will be active at a given instance
(the primary) while the other Coordinator nodes are dormant in a
standby (secondary) configuration, ready to take over if the primary
Coordinator node fails.

3.4.1 Coordinator. The (primary) coordinator oversees an over-
lay of worker nodes and tracks their respective metadata, including
the data and specific spatial extents they store locally. We organize
this metadata in a radix tree [24] for fast lookups, insertions, and
hierarchical aggregation for spatial extents at different resolutions.
We consult this data structure to track ongoing jobs, and their com-
pletion statuses with respect to individual workers. The coordinator
endpoint itself is implemented as a gRPC server with multiple ser-
vices relating to registration, job submission, and steering. These
services sit atop a thread pool executor, allowing concurrent pro-
cessing of incoming requests.

Upon receiving a gRPC validation job request from the proxy,
the coordinator infers any necessary fields based on the validation
budget specified, and routes it to the appropriate job execution
function that handles load-balancing. Load-balancing is done using
a round-robin scheme with respect to spatial extents, resolutions,
and locations of tracked workers. Individual jobs are launched at
workers while preserving data locality. Tasks comprising jobs are
submitted in a non-blocking, asynchronous fashion using Python’s
Asyncio library. Model instances are launched while ensuring pa-
rameterizations along with specifying the data query configuration
and model framework. Similar to the communication between the
proxy and the coordinator, communication between the coordinator
and workers uses gRPC.

3.4.2 REST API. The communication between the primary co-
ordinator node and the client application is mediated through a
REST (Representational state transfer) API [31], which is essentially
a proxy server that intercepts requests from the client. A request
sent by the client is intercepted by the REST service and sent to
the primary coordinator, which then formulates a new validation
job and passes it onto the necessary worker nodes based on the
data needed to complete the validation job. The worker nodes carry
out the validation jobs and return the results back to the primary
coordinator. The coordinator aggregates the results, launches a
second round of validation jobs if required (see section 3.1) and
sends the results to the client through the REST API. The REST
API also provides several other functions, in addition to serving

clients with a RESTful API to send HTTP/s requests. Client re-
quests are sent as HTTP multipart/form requests with two parts: a
JSON request string and a model file. The JSON request supports
specifying a range of optional fine-grained controls like datastore
read configurations, validation metrics, features, labels, and input
normalization schemes. Together, the request and the file consti-
tute a custom gRPC message that is forwarded to the coordinator.
The REST API is amenable to incremental extensions such as Role-
based Access Control policies [37], user-specific budget allocations,
load-balancing across different coordinators, etc.

3.4.3 Workers. The worker nodes are also responsible for discov-
ering the spatial extents IDs and the associated data upon startup.
The entirety of the worker state resides in memory.

In addition to spatial metadata, a worker maintains a shared
thread- and process-pool executor for handling incoming jobs. Mul-
tiple incoming jobs can be processed concurrently using multiple
threads, and within a job, multiple child processes are forked to
validate the model on each of the spatial extents in the request.
Since model validation is both CPU-intensive and I/O intensive,
some performance was gained by using multi-threading, but only
on the I/O side of things as Python’s Global Interpreter Lock (GIL)
prevents two threads from running simultaneously. Thus, forking
the child process allows each to have its own GIL, providing sub-
stantial improvements in terms of both CPU and I/O concurrency.
We created the size of the process pool to match that of the avail-
able CPU cores on the system and ensured that the child processes
were being recycled between validation runs to eliminate process
creation overhead. For incoming worker job requests, the model’s
binary image is saved once to disk for persistence and to allow for
loading by the model’s framework from within the confines of a
child process. Since the validation model is not re-entrant, we can
load a single instance and execute inference concurrently between
child processes by using managed shared memory.

The worker is responsible for (1) accessing observational data,
(2) reconciling normalization schemes, (3) parameterizing model
instances, (4) generating inferences, and (5) contrasting model out-
puts with ground truth data.

Once a job enumerating the spatial extents for which the model
should be profiled is received, the worker extracts the model file
from the request and saves it to a dynamically created directory
based on the unique job ID. Each analytical engine, like Tensor-
Flow or PyTorch, has its own model representation format. Our
framework can reconcile models that are stored in a diversity of
formats and initialize the execution environment for the spatial
extents under consideration.

We refer to our wrappers around individual modeling frame-
works as validators. Frameworks currently supported include Ten-
sorFlow, PyTorch, and Scikit-learn, but this list can be easily ex-
panded in the future. Under the hood, validators use the modeling
framework library APIs to load and execute the model, but this
first requires data to be loaded for a given spatial extent. We have
designed our framework to be extensible to support interoperation
with data storage frameworks. Our connectors can support targeted
data retrievals from relational datastores and NoSQL-based docu-
ment stores such as MongoDB. The retrieved data can be loaded
into efficient formats using Pandas/Numpy to be fed into the model.
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Next, the worker creates an instance of a validator with the re-
quest parameters and launches the validation job. A shared process
pool executor is used with a fixed pool size to launch concurrent
inference jobs. The number of simultaneous child processes that are
forked in this case is tied to the number of physical cores available.
Child processes are recycled into the shared executor that retains
the imported libraries for future executions reducing duplicate ini-
tialization overheads.

Profiling measurements are performed on a per spatial extent
basis. They include tracking system metrics such as resource uti-
lization and completion times. The results are streamed back to the
coordinator which applies a final aggregation or allocates a new
budget (see section 3.1) for a final pass before routing the results
back to the client.

3.4.4 Database. The database is maintained in a replicated and
sharded configuration to ensure the availability of data. In our refer-
ence implementation, we have used MongoDB as the primary data
storage service in our setup. However, any database that supports
distributed replication and sharding can be used for this purpose;
for e.g., Cassandra, BigTable, etc.

Our dynamic web-based client takes input from the user which
will send a request to the validation server and initiate a validation
job. The user has the ability to configure the job using multiple
options such as (1) model framework: Scikit-Learn, PyTorch, or
Tensorflow, (2) spatial resolution: state, county, or census tract, (3)
feature/target fields of the dataset, and (4) Validation metric(s).

Communications among the system components is shown in Fig.
2.

Figure 2: High-level architecture of the entire system includ-
ing the frontend, validation service (coordinator and work-
ers), and database.

3.4.5 Containerizing the Validation Service [RQ-2]. Con-
tainerizing an application provides several benefits such as con-
sistent execution across different platforms and architectures, fast
scalability and replication, and high availability using container
orchestration. We containerize our validation service using Docker
[12] and Kubernetes [13] as follows.

• Coordinator and the REST API service running in dedicated
pods

• Replicated Worker pods running on different hosts using
Kubernetes DaemonSets

Containerization gives us the ability to quickly deploy our back-
end servers in cloud services such as Amazon Web Services and
Google Cloud using the same set of configurations used in our regu-
lar deployment. Another benefit of containerization is that it allows
us to set limits to the hardware resources (CPU, memory) allocated
to the validation service. In the Experiments and Results section
(4), we benchmark the differences in performance of the valida-
tion service running in a containerized environment vs. bare-metal
execution.

With the second round of validations completed (using the re-
maining validation budget), the validation job comes to completion.
At this point, the Coordinator node collects all results from the
Worker nodes and compiles a response.

The response sent back to the client contains the following in-
formation for a given spatial extent:

• ROC Graph
• Area Under the Curve (AUC) of the ROC
• Precision and recall for thresholds ranging from 0.1 to 0.9 in
0.1 increments

3.5 A GPU-accelerated Dashboard [RQ-3]
The researcher is provided with a visualization-powered dashboard.

On the front-end application, a nested hashtable is used to store
the model performance results streamed from the validation server.
This data structure was chosen because it supports, on average, con-
stant time performancemetric retrieval for certain user-configurable
queries. In particular, the use of this data structure allows for
this time efficiency for the query type that determines which re-
call/precision value was produced for a given threshold. For this
query, this structure provides, on average, O(1) look-up time. For
the query types that return a given threshold that produced a re-
call/precision value which is greater than/less than or equal to the
user-specified value, this data structure has an upper bound of 9
look-ups needed to return the corresponding threshold to the user,
if there are no collisions in the hashtable.

To visualize the validation response on the client, a mapping
framework was utilized. The particular mapping framework cho-
sen was Deck.gl [38], which utilizes GPU acceleration in order to
speed up rendering and execution on the client. The way this map-
ping framework leverages the GPU is by creating WebGL buffers,
which are then uploaded into the GPU. The framework was cho-
sen because Deck.gl is specifically designed to be optimized for
rendering dynamic datasets while being highly customizable. This
customizability allows for the highly specific coloring of the valida-
tion metrics across the map which aids the user in interpreting the
validation job results.

Due to the resource-intensive nature of model validations, an en-
tire validation job may take anywhere from several seconds to sev-
eral minutes to fully complete. A rendering-only-after-completion
scheme may frustrate users while awaiting results, leading to poor
user experience and disengagement. To remedy this, we imple-
mented result-streaming on the server; as soon as the model has
been evaluated on a spatial extent, the corresponding results are
streamed back to the client. With this approach, a user is able to see



BDCAT ’23, December 04–07, 2023, Taormina, Italy Warushavithana and Barram, et al.

results arrive in real-time, giving consistent visual verification of
their validation job’s progress. With an interactive choropleth map
on the client side, this appears as spatial extents continuously being
colored according to the selected metric’s place in the heatmap,
until the whole choropleth map has been assigned values. The com-
plete validation response visualized across the map is shown in Fig.
6.

The front-end application additionally provides the ability to
assess similarity relating to performance in a multidimensional
space using k-Means clustering [20] based on a user-configurable
selection of performance features. Upon the receipt of the last per-
formance result, the k-means algorithm automatically executes
using a default selection of performance features. The default fea-
tures consist of the Area Under the Curve (AUC) of the ROC, and
the recall and precision values for the thresholds 0.1 and 0.2. The
𝑘 selected for the clustering algorithm is equal to

√
𝑛, where 𝑛 is

equal to the number of spatial extents being evaluated; this 𝑘 value
was selected based on the standard outlined in [19]. The complete
set of performance features the user is able to select are all precision
and recall values associated to each threshold as well as the Area
Under the Curve. The user is able to select up to 6 of these features
to be used as input to the k-means clustering algorithm.

The frontend application also supports the following declarative
queries for further analysis by the user.

• Find the threshold which produces the highest/lowest preci-
sion/recall values for each spatial extent

• For each spatial extent, find the minimum thresholds where
precision/recall is greater than/less than a specified value

4 EXPERIMENTS AND RESULTS
Our empirical benchmarks profile several aspects of our method-
ology. In particular, we profile how well assessments performed
using our validation budget scheme contrast with validations per-
formed over the entire dataset. We are also interested in assessing
the performance of these validations and how they interoperate
with different frameworks. Finally, we profile our GPU-accelerated
visualization scheme that can be used by researchers to explore
multiple aspects of the validation space.

4.1 Experimental Setup
The hardware specifications of our experimental setup are as fol-
lows: a cluster of 50 machines, each with an 8-core CPU running at
2.10GHz, 64 GB of DDR3 RAM, and 5400RPM hard disks. Three out
of the 50 machines were configured as a MongoDB ReplicaSet to
manage the sharded/replicated database configuration, and three
machines were used to deploy Coordinator instances (one primary
node, and two secondary nodes). The remaining 44 machines con-
tained the data shards locally and a single worker process was
deployed in each which is responsible for model validation jobs.
A sharded, replicated MongoDB cluster was set up across these
machines.

4.2 Models
We use three classification models to evaluate our system. The first
is a Decision Tree Classification model implemented in Scikit-Learn.

The second is a 2-layer, fully-connected neural network imple-
mented in PyTorch, and the third is a 2-layer, fully-connected neu-
ral network implemented in TensorFlow. The models were trained
as binary classifiers using a subset of our main dataset (section
4.3). The subset of the data chosen for model training is different
from the subset we use for validating the models. The empirical
results demonstrate the suitability of our methodology to validate
classification models trained using multiple frameworks.

4.3 Datasets
Our experiments are conducted on the publicly available North
American Mesoscale Forecast System (NAM) dataset provided by
the National Oceanic and Atmospheric Administration (NOAA)
[40]. It contains data derived from a weather forecasting model
with respect to a number of weather phenomena including temper-
ature, pressure, visibility, wind, snow, humidity, and cloud coverage.
The NAM model produces multiple grids of weather forecasts over
North America at several horizontal resolutions. We use a subset
of the data ranging from 2010 to 2015 (about 150 GB in size) and
convert them from the gridded-binary (GRIB) format to JSON. Each
point in the resulting data is then geo-tagged with U.S. county
identifiers. We also use county-level shapefiles (geospatial vector
representation) produced by the U.S. Census Bureau [30] and map
the geo-tagged data with their respective counties’ shapefile rep-
resentations. The county shapefiles are used on the front-end to
produce choropleth maps.

4.4 Backend Metrics
The time taken to complete validation jobs based on the three
types of classification models created for the machine learning
frameworks we support are shown in Table 2. Furthermore, it shows
how the completion times have decreased with the use of our novel
allocation scheme. We observed a 31% average decrease in time
taken to complete the jobs across the frameworks while using the
allocation scheme.

The total number of observations available in the subset of the
NOAANAMdataset we selected is about 84million spread across all
(about 3100) U.S. counties.When using the allocation scheme, we set
the total validation budget (maximum number of observations used
to complete the job) to be about 10% of all available observations.
Out of the selected number of observations in the validation budget,
we set aside 70% for the pilot testing phase and the remainder for
the second of round validations (see section 3.1). The percentage
decrease of precision for each county while using the allocation
scheme compared to using all observations is shown in Fig. 3. The
average decrease in precision we observed is about 7% for the 3044
U.S. counties. Thus, we conclude that our custom allocation scheme
is capable of achieving very similar results while utilizing a fraction
of the original data.

Fig. 4 indicates the average CPU usage of the cluster throughout
a validation job for a PyTorch model in two scenarios: (1) using
our allocation scheme, and (2) using all available observations.
Validation using the allocation scheme is executed in two stages –
the pilot testing phase and the second phase. For this experiment,
based on the results of the pilot testing phase, 762 out of the 3044
counties were selected for the second phase. Overall, with the use
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Table 2: Validation job completion time for each machine
learning framework. Times are compared with and without
the use of our validation budget (allocation scheme).

End-to-end completion time (s)

Framework Without
validation budget

With
validation budget

Scikit-Learn 114.75 42.17
PyTorch 135.41 62.30
Tensorflow 203.12 110.26

Figure 3: The percentage decrease of Precision values for a
validation job (for a Scikit-Learn Classification model) for
each county when using our allocation scheme vs. using all
available observations.

Figure 4: Average CPU usage of the cluster for a validation
job with and without the allocation scheme.

of the allocation scheme, the CPU and memory usage of the cluster
were reduced by 46% and 19% respectively.

We profiled the resource utilization by a validation job in a
regular (bare-metal) deployment and a containerized deployment
of our backend. The overall memory utilization was reduced by
9% (see Fig. 5) and CPU utilization was reduced by 4%. However,
the overall completion times were increased by about 12% in the
containerized deployment compared to the regular deployment.

Figure 5: Average Memory usage (per node) of the cluster for
a validation job in regular and containerized deployments.

4.5 Profiling Visualization
In order to assess the impact of using a mapping framework which
leverages the GPU, we used a qualitative approach that focused
on the quality of user interaction with the site. To achieve this, we
conducted user experience audits to ascertain how well the site per-
formed in accordance with the RAIL model [17]. The RAIL model
was developed by Google Chrome to determine the performance
of a web application from the user’s perspective when perform-
ing essential site interactions. Chrome has additionally created a
suite of tools that can be used to measure the performance of a site
based on the guidelines outlined in the RAIL model. In particular,
Chrome has developed a site performance auditing tool called Light-
house [18]. For a given site, Lighthouse mimics a mid-range device
with a slow internet connection and measures the responsiveness
a user experiences when interacting with a site. Lighthouse mea-
sures several aspects of a site, but the main metric which highlights
the importance of GPU acceleration is Total Blocking Time. To-
tal Blocking Time is the total time a user experiences the site as
being non-interactive to their supplied inputs (clicking, toggling,
scrolling). This metric is pivotal in this assessment because it mea-
sures the amount of time the CPU-bound main thread is blocking
the user from interacting with the site due to its execution of tasks.
In this case, the tasks being executed are re-coloring tasks which
are a result of the user-supplied queries.

The audits conducted using Lighthouse showed that the GPU-
accelerated mapping framework had an average of 0.2% Total Block-
ing Time when the user is constantly performing queries. By com-
parison, the CPU mapping framework had on average 41.0% Total
Blocking Time when the user continuously supplied queries. The
GPU utilization allows for this re-coloring task to be moved from
the CPU-bound main thread to the GPU which accelerates the color
re-calculation and reduces the amount of time the user experiences
blocking. Additionally, the GPU mapping framework optimizes this
re-coloring further by not re-rendering the polygons that represent
the distinct spatial extents on the map. In order to support the
same user queries, the CPU mapping framework must re-render
the shapes with every supplied query. This reduction in blocking
time observed in the GPU implementation is crucial in order to
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provide users the ability to use the tool without the frustration of
experiencing tremendous web application non-interactivity.

Figure 6: The figure above demonstrates the visualization of
the validation response using a choropleth map. The values
displayed are the precision values producedwhen a threshold
value of 0.7 was used.

Figure 7: In the above figure, the different clusters as a result
of the K-means algorithm are identified using color-coding.
The highlighted dark-blue regions demonstrate the capabil-
ity to highlight all regions associated to the same cluster as
a user-selected region.

The grouping functionality results in the regions visualized
across the map to be color-coded based on their assigned clus-
ter resulting from the execution of the K-means clustering. The
user is then able to further determine how regions are performing
similarly by selecting a spatial extent displayed on the map and, as a
result, all spatial extents that have been assigned to the same cluster
will highlight across the map, nearly instantaneously (∼40ms). This
particular functionality can been seen demonstrated in Fig. 7. This
feature is advantageous to the user in determining spatial extents
that are performing the best or worst, given a predefined standard.
For example, if a user has knowledge that a spatial extent has a
precision or recall which is under-performing, they can then use
this clustering feature to extend this knowledge to all other spatial
extents that are similarly under-performing.

5 CONCLUSIONS AND FUTUREWORK
Here we described our methodology to identify spatial variation in
the performance of classification models.

RQ-1: Partitioning of observations across spatial extents (defined
by shape files) allows us to collate them and preserve data locality
and preferentially sample observations during validations. Treating
models as black boxes allows our framework to be independent of
the structural characteristics of the model. Creatingmodel instances
per spatial extents and tracking performance metrics for multiple
thresholds allows us to contrast and compare model performance
across different thresholds.

RQ-2: Given the data volumes, working with a fraction of the
dataset alleviates resource requirements. Further, the two-phase
observation apportioning scheme allows preferential allocation of
observations (and validations) to spatial extents that benefit from
them. This allows us to build confidence in our results with a limited
observational budget.

RQ-3: Leveraging interactive choropleth maps to render model
performance allows researchers to quickly assess model perfor-
mance. Leveraging streaming and GPU-acceleration allows the visu-
alizations to be responsive and facilitate progress tracking. Our use
of implicit declarative queries alongside our visualization scheme
allows researchers to profile performance across different spatial ex-
tents and identify similarity using an unsupervised clustering-based
scheme.

As part of future work, we will allow overlaying of related phe-
nomena to allow researcher to identify potential reasons as to why
the models are performing differently. For example, an urban re-
searcher modeling air quality could benefit from an overlaying of
proximate power plants (especially, gas or coal-based). Such over-
lays could be beneficial in allowing researchers to identify other
variables that should be accounted for in their models.
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