
Drone World Path Planning Using Evolutionary and
A* Algorithms

Scott Axcell, Rejina Basnet, Aaron Blakeman, and Steve Kommrusch
Colorado State University

Department of Computer Science

Abstract—Building on our previous experience using various
algorithms for planning block movements in a 3D world, we
developed a two level planner that uses a Genetic algorithm
(GA) to develop a high-level plan and an A* algorithm to find
paths around obstacles. The primary goal of this paper was to
develop an algorithm which could solve the widest possible range
of Drone World problems. To accomplish this we developed a
methodical test strategy that included testing for a multitude
of scenarios as well as code coverage analysis. Ultimately, our
algorithm performed well on all three novel cases provided after
the code freeze and is capable of handling even more complex
scenarios.

I. INTRODUCTION

Building on our previous experience using various algo-
rithms in Project 1, our primary motivation for this assignment
was to develop the most versatile two-level planner algorithm
possible. Our secondary motivation was to generate optimal
paths when solving for a goal state. Our tertiary motivation
was to accomplish the first two motivations in the shortest time
possible. To accomplish our primary motivation, we pursued
a methodical test development plan which included manually
created and randomly generated tests.

A. Previous Work Motivates High Level Planning

In Project 1, we compared the performance of A*, Simu-
lated Annealing, and Genetic algorithms against one another
using three different Drone World starting states and goals.
Project 1 allowed us to learn that the Drone World has a vast
search space and because of this searching at the base level of
the drone actions was inefficient. Thus we aimed to improve
upon the best performing algorithms by merging them into
a two level planner. We found the informed heuristic of the
Genetic algorithm (GA) enabled it to be the most adaptable to
various Drone World scenarios. It is because of these findings
that we chose the GA to act as the high level planner in the
two level planner for this paper.

In addition, the results of Project 1 showed that the A*
algorithm performed very well with respect to wall time. The
A* algorithm proved to be fastest of the three algorithms to
find a suitable solution path when the start and end points for
the drone are well defined. Thus, the A* algorithm appeared
better at optimizing drone movement than planning high-level
paths. This led us to use the A* algorithm as the low-level
planner in our two-level planner algorithm.

B. Research

With the purpose of exploring alternatives to our Project
1 solution for our goal planner, we researched Goal Stack
Planning and Partial Order Planning algorithms. Algorithms
based on Goal Stack Planning are susceptible to the Sussman
anomaly, where two interleaving goals can potentially force
the algorithm into a deadlock state[3]. The draw back to
Partial Order Planning is that it will increase the computational
complexity even for a smaller search space[2]. The Drone
World problem includes undetermined goal states, potentially
multiple goal states, and a large search space. Therefore, we
decided to stick with the GA from Project 1 and exploit
its characteristics (randomness, mutation and fitness-function)
further to map into our abstract level planner. Research shows
that a GA with domain specific knowledge and a local search
algorithm can find near optimal plans in a complex environ-
ment [4]. Inspired by this, our approach was to adjust the
fitness and mutation functions to our problem space allowing
us to solve the widest variety of problems possible.

C. Design decisions

After consideration, we decided that the unit for the top
level planning should be block movement. The solution we
chose is to create plans with action lists where a block action
is of the form: (Bs, Bd, dx, dz) such that:

• Bs: ID of the block which should be moved
• Bd: reference destination block (or -1 for world location)
• dx,dz: offsets from Bd (or coordinate of world location)

Block IDs are in reference to the initial block list provided
in the problem setup file. We chose not to track the height
(Y) position in our plans as that adds detail not needed at the
level of the planner. The Y coordinate is always presumed to
be the top of whatever stack is at a given x,z coordinate in the
world. We also support a final action of the form (-1,x,y,z) to
specify the final drone movement. Here is an example action
plan with description:

• (1,-1,7,5): Move block 1 to x=7, z=5 (y=top of stack)
• (2, 1,0,0): Move block 2 on top of block 1
• (3, 1,-1,0): Move block 3 to dx=-1 relative to block 1
• (-1, ANY,10,10): Move drone to (?,10,10)

Note that a plan implies the drone to move to and from
locations in order to accomplish actions, but it does not specify
the drone path required for the movement.



A second key decision we made regarding how the high-
level planner should work relates to what the length of the final
drone path would be. When evaluating plans, the high-level
planner needs to have some concept of drone path distance.
We didn’t choose to simply compute the straightest possible
path while ignoring obstacles. There are block world problems
where it is better to get a block which has a higher coordinate
distance from the drone to avoid the need to go around a
barrier. So our planner checks whether a direct movement path
would have an obstacle. It does not do a path search to avoid
the obstacle, that search is left to the low-level path planner.
Although checking for obstacles in the direct movement paths
adds some overhead to the planner, it allows the planner to
make better action decisions for problems with obstacles that
need to be avoided.

D. Algorithm Overview

The algorithm works in two phases. The first phase consists
of an abstract high-level planner based on the GA [1] and
actions described previously. By having actions be related
to blocks, the state of the Drone World can be in various
positions when an action is invoked allowing for the reordering
of the attach and release actions as needed. Phase two is
responsible for taking as input the high-level plan and creates
an optimized legal path consisting of attach, release, and move
drone actions. This low-level planner solution is accomplished
using A* algorithm when the plan has encountered obstacles.
If the GA fitness function did not encounter obstacles then the
same simple movement sequence used in the fitness function
is used to create the drone path. Figure 1 shows the sequence
used to create the path for the drone.

1) Genetic Algorithm: The GA begins with its initialization
step. In this step supporting goals are created for goals at a
higher Y level (i.e., a goal of (?,1,0,red) results in (?,0,0,?)
being created to support the red block). Also, goals are sorted
from lowest Y positions to highest. The population starts
with 40 initial plans with 5 random block actions. Random
block actions used at initialization as well as the MutateEnd
function which extends a plan chose Bs randomly and a
random destination which can be a random Bd with offsets or
a specific X,Z position provided in the goals (i.e., if (?,1,0,red)
is a goal, then (1,-1,?,0) is an action that moves block 1 to
any X at Z=0.

Once the population is defined and goals organized, the
GA proceeds as depicted in Figure 1. From a population,
there is a 60% chance that 2 parents are chosen for crossovers
before mutations may apply, and a 40% chance that a parent
is randomly chosen to pass to the mutations. Crossovers
pick random positions from the parents to cross over actions
between the two, allowing subplans that are beneficial to
potentially merge with other subplans. The mutations add,
delete, or adjust actions in the plan in random ways to explore
the options similar to the current paths.

The fitness function in our GA is where progress to the
goal is evaluated and optimal paths are explored. The fitness
function starts with the initial world state each time and

executes the plan by moving the drone between the attach
and release targets given in the actions. The world is updated
so that after the plan is done the goals can be evaluated. The
goal evaluation proceeds from the lowest Y value goals to
the highest. For each goal met (at any level), the fitness is
incremented for the plan. If a goal is not met, then blocks are
searched to find which are closest to a goal and the drone to
give a partial fitness benefit to each goal. This partial score
is only given for goals at the level that does not yet have
all goals met. For example, if there are 3 goals at Y=0 but
only 2 are met, then a partial score is added for the last goal
with Y=0, but no partial scores are given for blocks with Y=1
or higher goals. Another key behavior in the fitness function
is decreasing the fitness for a plan when a goal is blocked
(because a block is stacked on top of a needed block or a
needed goal location).

In deviation from traditional GAs, the fitness function
returns not just a fitness value but also a suggested action
to improve the plan. This possible suggestions are: adding
or removing a block from a given location (to build a tower
or reach a lower block); replacing a randomly chosen action
such that actions with longer drone paths are more likely to be
replaced; and move an action to another position in the plan.
When the fitness function returns, the suggestion is applied and
its fitness evaluated, this cycle continues as long as the fitness
is increasing. The last child to be evaluated before the fitness
decreased is added to the population for the next generation.
This behavior adds a random hill climbing feature into the
usual GA and greatly improved our plan quality and time to
completion of goals.

When moving the drone along a simple path for the plan, the
number of actions that encountered obstacles are tracked. The
GA tracks 3 ’best’ plans with increased fitness penalties for
obstacles. bestLowPenalty only adds 0.5 drone path steps per
obstacle; this is appropriate if the A* algorithm will be able to
find a different drone move sequence that avoids the obstacle
without needing to add any moves. bestMidPenalty adds 0.5
steps per obstacle and 5 steps if the obstacle it encountered
is 10 Y units above where the drone tried to move; often an
obstacle may be rather low and so the MidPenalty checks if it
may be rather easy to go over. bestHighPenalty adds 10 drone
steps per obstacle and 90 step if the obstacle is 10 Y units
above the drone; this penalty is appropriate for large walls
including walls reaching to the full Y=50 height of the world.
These 3 fitness adjustments for obstacles can result in different
plans, as discussed in section I-C. All 3 of these best plans
are preserved in the population each generation as an elitist
behavior.

2) A*: The A* algorithm being used is the traditional A*.
A* searches for the possible routes and back traces using the
shortest route. The heuristic and the cost for each move being
used is the Euclidean distance between source and destination.
This heuristics is fairly realistic and therefore is optimal for
finding the shortest path. Each plan provided by the high-
level planner contributes to two A* searches: the first search
moves the drone to the attach location and the second search



Fig. 1. Overview

move it to the release location. To reduce path length, the A*
algorithm can drop a carried block from a height when the x
and z coordinates match the target.

E. Testing Mechanism

As our goal is to have the most versatile application possi-
ble, we decided that the best way to achieve this was to submit
our application to a wide variety of test cases and analyze the
results. We ran our solution through a rigorous sets of tests di-
vided into two different categories: random worlds and specific
worlds. Random worlds included randomly generated single
block columns, randomly generated multiple block columns,
and randomly generated plateaus on the table surface. Specific
worlds offered unique problems such as digging, separating
colored blocks, building shapes, and finding ways through a
single opening or down into enclosed areas.

The random testing proved valuable because it exposed the
world to situations which we hadn’t considered. For example,
one of the randomly generated worlds created a tower of
blocks in which the goal was to remove the top block t, t−1,
t− 9, and t− 11. This is something we had a test for but in
the randomly generated world t− 1 and t− 9 were the same
color. Our algorithm needed to be adjusted to continue digging
in the existing tower rather than moving the block it had
already uncovered to a new location. The manually generated
test cases allowed us to confirm that our algorithm behaved
correctly for various world scenarios, but it also identified
some cases in which our algorithm performed very poorly.
For example, we developed a test case in which our algorithm
had to gather blocks that were scattered throughout the table
top and use them to build a flight of stairs. While our algorithm
was able to complete this, it took over an hour for it to go
through the optimization process. The algorithm was trying to
re-use blocks close to the staircase rather than gathering other
blocks on the board that could have been used to solve the
goal. After the same optimizations used on the random world
described above our algorithm was able to find an optimal
solution in under 30 minutes.

F. Limitations and Risks

As noted, the primary goal of our approach was to create a
system which could solve any legal goal problem set provided.

Some limitations and risks were seen as we completed our test
suite and considered our design choices.

In the planner, when a random block move is added during
a mutation step, the destinations are initially limited to: on
top another block, within 1 step of another block, or to a
location seen in the goal list. This prevents a block from
being randomly moved to arbitrary points in the world. The
MutateNoise function can adjust the target relative to a block,
but we did not include the ability to mutate the X,Z position
targets in the plan (this is discussed more later relative to
testcase 2).

Some of our last bugs/improvements done on Monday were
in relation to poor initial block actions which tied blocks into
interrelated towers (such that it was hard for random mutations
to make any progress to undo a bad early decision). We fixed
this with improved suggestion logic which worked well for all
of our test cases, but there is a risk that some problem might
be able to ’lock up’ the algorithm into plans which cannot
progress.

The planner runs in O(gnp) time per generation, where g
is the number of goals, n is the number of blocks, and p is the
population size. Large values of g,n, or p would slow down
the generation rates. We explored the benefits of big and small
populations in assignment 1, but for this assignment we simply
used p=40.

We had 2 test cases that were huge - one had 12,000
blocks and another had 250,000. While both test cases were
usually solved by the planner, the optimization was taking
an unacceptable amount of time. We decided not to pursue
debugging this once it was clear that there would not be a
large block world test case.

With respect to the A* algorithm, given a feasible goal
state, it will always find a path regardless of obstructions. In
presence of obstructions the search space becomes larger. Ad-
ditionally, when the drone is attached, the available space be-
comes further restricted resulting in needing more exploration.
One other limitation is in the optimization we did. Since, the
heuristic is the distance between start and goal which is one
step up of the real goal, it might not always choose a path
where the blocks can be dropped from some height. However,
we think having this feature will aid whenever possible.



II. PERFORMANCE

A. Results

The following results were obtained from the systems in
CSB325. These machines have 6 core Intel Xeon CPUs (E5-
1650 v4) running at 3.60GHz.

TABLE I
RESULTS FOR TEST CASES

Test 1 Test 2 Test 3 Cube
Goal Runtime (s) Mean 0.18 0.52 30.21 13.83

Stdev 0.06 0.03 18.89 9.86
Plan Optimization Mean 6.61 10.69 236.62 84.70
Runtime (s) Stdev 2.22 3.22 103.7 29.09
Total Runtime (s) Mean 6.61 10.69 365.8 84.93

Stdev 2.22 3.22 701.16 29.10
Path Length Min 179 162 967 127
(Steps) Mean 179.86 166.80 1055.58 141.73

Stdev 3.79 2.28 133.60 8.82

B. Problem analysis

Because none of the direct move paths from evolvePlan hit
a barrier, A* is not called on the 3 problems we were given.
All the drone movements use simpleConnect, which is optimal
given no barriers. We chose to add a 3x3x3 cube problem as
a case for study. Below a brief discussion of each problem
is given including a calculation by us of the shortest possible
path length for the test case.

test1: The shortest possible path for this problem is 179
drone steps (including 1 step for the initial position). Our
drone movement in the planner is smart enough to drop blocks
from a height during the early stage of this algorithm, and the
suggestions from the fitness function do well building towers
and digging for blocks so our code often finds the optimal
solution quickly.

test2: The shortest possible path for this problem is 160
drone steps. Our frozen code is unlikely to find this due to
move options for blocks. For our algorithm, we typically find
a plan that results in 167 drone steps; the plan starts by moving
black to location 0,0, brings red near the black, then moves
black away and moves red to 0,0,0, then stacks black. An
unlikely sequence of crossovers and mutations could in theory
find the optimal path by moving the black block with action
(0,1,49,49) and one of our runs got close to this with a path
length of 162. Given this behavior, we changed MutateNoise
to allow it to mutate the target x,z position (not just block
offsets) and then the algorithm returned the optimal 160 for
most runs.

test3: The shortest possible path for this problem is not
trivial to compute. If the tower is set at x=z=0, then the shortest
path is 976 drone steps. Our code is good at this kind of search,
and the shortest path it found in 50 runs was 967. The first
action for this result sets a block with offset to another one.
Then all other blocks stack on top of it which makes this
action list easy for MutateNoise to optimize.

Cube: This problem starts with a 3x3x3 cube of blocks with
various colors and has a complex goal state. Like test3, the
shortest possible path for this problem is hard to compute,

but given the number and distance for block moves, the
shortest path should be around 120. This case encounters
obstacles during movement so A* gets called. The goals
are: (2,0,0,blue), (1,0,0,blue), (?,?,3,magenta), (?,3,?,magenta),
(3,?,?,magenta), (?,?,4,magenta), (?,4,?,magenta), (4,?,?,ma-
genta), (?,6,?,?), (0,0,0,drone). The blue and drone goals
require unstacking 3 blocks that are in the way; the 6 magenta
goals can be solved by the 2 magenta blocks; and the goal at
Y=6 tests that the ? color can be matched by any block.

Fig. 2. The left figure shows a 3x3x3 cube which needs to be pulled apart
so that a complex set of goals are met by the image on the right.

Wall: The world is complex with 29,701 blocks randomly
placed at random locations building up towers of random
height. Midst the tower are two walls blocking the straight
path from drone to goals as shown in 3. The drone was
initially placed at (0,50,0). It had to pick a blue block from (-
50,0,-50) and place it at (50,0,50). The GA generated a single
connection plan and A* found the path to complete the goal.
Interestingly, it revealed that the shortest path was to find the
path through the tower instead of taking the high ground.

Fig. 3. The left figure shows the initial world and the right shows the path
avoiding the green walls and red towers to reach the goal.

III. CONCLUSION

By using a methodical test strategy, our two level planner
algorithm was able to solve all three test cases. More often
than not a solution path only a few steps from the optimal, if
not the shortest, path was generated. Our algorithm was able to
generate these solutions in an acceptable time complexity. In
particular, using GA as the high-level planner while choosing
to abstract some low level drone actions and details enabled
our two level planner to work efficiently and successfully meet
our three motivations for this paper.



REFERENCES

[1] Maram Alajlan, Anis Koubaa, Imen Chaari, Hachemi
Bennaceur, and Adel Ammar. Global path planning
for mobile robots in large-scale grid environments using
genetic algorithms. In Individual and Collective Behaviors
in Robotics (ICBR), 2013 International Conference on,
pages 1–8. IEEE, 2013.

[2] Mark Drummond and Ken Currie. Goal ordering in
partially ordered plans. In IJCAI, pages 960–965. Citeseer,
1989.

[3] Naresh Gupta and Dana S Nau. On the complexity
of blocks-world planning. Artificial Intelligence, 56(2-
3):223–254, 1992.

[4] Yanrong Hu and Simon X Yang. A knowledge based
genetic algorithm for path planning of a mobile robot. In
Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 5, pages
4350–4355. IEEE, 2004.


