
MACHINE LEARNING FOR CODE SYNTHESIS AND
ANALYSIS

Steve Kommrusch

Abstract: Deep learning has been successfully applied to a wide array of problems due to its versa-
tility and the variety of algorithms being developed. Deep learning for natural language processing
makes use of recurrent networks, attention layers, copy mechanisms, and analysis of the sentence
structure by representing input sentences as graphs. These same techniques can be applied to ana-
lyzing and generating computer languages as demonstrated by recent research papers.

This paper provides an overview of machine learning for program repair, code summarization, and
program equivalence. Background topics are summarized before presenting an in depth discussion
and analysis of five papers published in this area. Recent work that relates to these five papers and
possible future research paths in this area are discussed.

1 INTRODUCTION

The field of program synthesis dates back to the early days of software design, when the goal of
designing code to meet a given set of requirements was first being conceptualized. More recently,
advances in hardware capability and software algorithms have enabled deep learning to apply multi-
layer neural networks to a variety of problems. In this paper, we will study the research on the
background and methodology needed to create a machine learning model that can automatically
analyze and generate high-level languages (such as C or Java). This paper is the written portion of
the PhD research exam for computer science at Colorado State University.

In order to bring focus to our study, we will center our discussion on five base papers. The papers
are listed below along with their ’nicknames’ used in the following sections for easy reference.

1. Staged Program Repair with Condition Synthesis [16] (the SPR paper) discusses searching
through code transformations to repair bugs, our discussion of this paper will explain the
problem of program repair in depth.

2. PHOG: Probabilistic Model for Code [7] (the PHOG paper) presents a probabilistic gram-
mar to predict node types in an AST.

3. Get to the Point: Summarization with Pointer-Generator Networks [22] (the Pointer paper)
teaches a method useful in natural language processing for copying rare tokens from an
input sentence to an output sentence.

4. Graph-to-Sequence Learning using Gated Graph Neural Networks [6] (the graph2seq pa-
per) presents a method for using a graph neural network to analyze an input sentence and
produce an output sentence.

5. code2vec: Learning Distributed Representations of Code [3] (the code2vec paper) teaches
a method for creating a useful embedding vector that summarizes a snippet of code.

The rest of this paper is organized as follows. Section 2 will introduce background concepts and
published work which will be valuable in our study of the five base papers. Section 3 will provide
an overview of the details for each of the base papers. Section 4 will introduce two recent papers
and explore their relationship to the ideas and approaches discussed in our base papers. Section 5
will present a possible future research path in this area synthesizing opportunities created based on
the base papers.

2 BACKGROUND

As the focus of this paper is machine learning for code synthesis and analysis, this section provides
background in this area for later reference when the base papers are discussed. As we will see in

1

Figure 1: Figure from Sequence-to-Sequence paper showing example of early model

our base papers, many successful approaches to applying machine learning to human language have
been shown to work well for generating computer languages. Allamanis, et al. provide a broad
case for this phenomenon in their survey paper [1]. In their survey, the authors note that computer
language creates a bridge between humans and computers. Hence, while the syntax of computer
languages are more precisely defined that human languages, humans writing code tend to certain
coding patterns and styles. This creates meaningful statistical distributions at token, loop, method,
and class levels that can be discovered through machine learning techniques.

2.1 NEURAL MACHINE TRANSLATION WITH SEQUENCE-TO-SEQUENCE LEARNING

Neural machine translation (NMT) evolved from statistical machine translation (SMT). SMT made
use of smoothed n-gram models to predict the probabilities of words in a destination language given
a source language and neighboring words. NMT, by use of examples and back propagation, uses a
neural network to learn the most likely translation for a given input [23].

An early example of a sequence-to-sequence network uses an RNN (recurrent neural network) to
read in tokens and generate an output sequence, as shown in Figure 1 [23]. In this network, outputs
are created from the same neurons that received the inputs. The input tokens are denoted xt, and
after receiving all of the input tokens and a special <EOS> token, the output tokens are fed into
the network to aid in proper generation of the next token. The output tokens are denoted yt. In the
following equations, ht is the hidden state of a recurrent neural network, Whx,Whh, and W yh are
weights learnable with supervised learning and backpropagation.

ht = σ(Whxxt +Whhht−1)
yt =W yhht

A softmax function is then used to turn the yt values in the preceding equation into probabilities
to choose the most likely token from a learned vocabulary. In this early example, one can see how
the weight matrices can mimic the learning of n-gram data used in SMT; after processing the input
sequence, the hidden state h<eos> encodes the most likely initial token to begin the output and
each subsequent ht can use the W matrices to predict the most likely next token given the input as
well as preceding tokens produced on the output. The W matrices can, thus, encode n-gram-like
information, but can also learn when to encode longer range likelihoods based on the information in
the training data.

2.2 GATED RECURRENT UNIT

Early neural machine translation architectures made use of Long Short Term Memories (LSTMs)
[23], but gated recurrent units were found to train more effectively and produce improved accuracy
in some cases [10]. A gated recurrent unit is slightly simpler than an LSTM as it has only 2 gates
to learn instead of 3. The feedback is shown in figure Figure 2. In the equations below, the notation
[·]j represents the jth element of a vector. x is the input vector to the GRU layer; r is the reset gate;

2

Figure 2: Figure from initial GRU paper showing GRU functionality

and z is the update gate. Wr, Ur, Wz , Uz , W , and U are all matrices with learnable weights. htj is
the hidden state of the jth unit after t iterations of the recurrent equations.

rj = σ([Wrx]j + [Urht−1]j)

zj = σ([Wzx]j + [Uzht−1]j)

h̃tj = tanh([Wx]j + [U(r � ht−1)]j)

htj = zjh
t−1
j + (1− zj)h̃tj

Papers published recently still may use LSTM or GRU, but the GRU was developed specifically to
aid in the problem of learning for neural machine translation.

2.3 GRAPH NEURAL NETWORKS

One of the five primary papers we will be discussing builds on the idea of a graph neural network,
so it is useful to introduce the concept. The key initial paper relating to graph neural networks was
written in 2009 [20].

In the 2009 paper, the graph neural network is described as an iterative encoding network. The net-
work uses as input labels for nodes and edges, the labels having dimensions dN and dE respectively.
The labels attached to node n are denoted ln ∈ RdN ; the labels attached to edge (n1, n2) are denoted
ln1,n2

∈ RdE . Additionally, lco[n] and lne[n] are the labels for edges connected to node n and labels
of nodes connected by edges to node n, respectively.

Figure 3 shows diagramatically how the input information is used in a GNN. xn is the hidden state
for node n, and on is the output of node n. These are computed by iterating on the equations below:

xn(t+ 1) = fw(ln, lco[n], xne[n](t), lne[n])

∀n ∈ N, on(t) = gw(xn(t), ln)

The outputs on of the network allow for training samples to be used for setting the weights in the
functions fw and gw. Typically xn(0) is initialized to 0 for all nodes. The 2009 paper discusses the
constraints on the learnable function fW that insures xn(t) converges over some finite number of
steps. The function fW is implemented as a different matrix for each edge type, so the number of
parameters to learn in a GNN grows linearly with the number of edge types. The hidden state of all
connected nodes is processed through each edge matrix to create the final output of fW . As can be
surmised, the number of iteration steps is equal to the hop distance to the furthest node in the graph
that can affect another node.

3

Figure 3: Figure from initial graph neural network paper. Using label values for nodes and edges, a
learned function fW is iterated on at each node and ultimately used to produce on(t).

As presented in Figure 3, the GNN is producing one output per node. Another use case for a GNN
is to do a softmax function on on, which allows a node to be selected as an output. Alternately,
summing all on together can produce a usable single output for a graph.

2.4 ABSTRACT SYNTAX TREES

Human languages can be parsed and broken down into clauses and parts of speech, but this process
is not mathematically precise due to exceptions and nuances in human language [12]. Computer
languages, on the other hand, are designed to be automatically and predictably parsed.

Figure 4 shows a typical abstract syntax tree (AST) for a short code snippet [24]. The tree is abstract
in that certain syntax (such as parenthesis) are not necessary, but given the AST for a code snippet,
equivalent code can be reconstructed. The tree provides a structure for identifying the way in which
control statements and variables are used in the program, and Section 3 will show how it can be
useful as an input to machine learning approaches on code.

2.5 PROGRAM EQUIVALENCE

The problem of proving program equivalence is one of the earliest problems in computer science
[15]. The problem is to determine when two programs with different semantics that are given the
same inputs will produce the same outputs (and in some formulations, side effects like memory state
must also be identical). The applications for program equivalence checking include: 1. validation of
any algorithm that does program transformations (such as compilers) 2. plagiarism detection (useful
in MOOCs etc.) 3. formal verification when refactoring code (for readability, security automation,
etc.) 4. virus and other malware detection by detecting similar code sequences.

4

Figure 4: Wikipedia image of an abstract syntax tree for a short code snippet

5

Figure 5: Citation counts to the five base papers and selected references shared by the papers.

2.6 PROGRAM REPAIR

Program repair is another area that has a rich history related to the five base papers. Program repair
is the problem of finding a patch to a buggy input program in order to address the bug. The papers
themselves present key aspects of the history of this area, starting with program transformations and
moving through machine learning to find embedding vectors for method bodies. So we leave further
discussion of this problem to Section 3.

3 PAPER OVERVIEWS

This section summarizes each paper and its relevance to the field given the background covered in
Section 2. The inter-relationship between these papers will be discussed in Section 4 and Section 5.
Semantic Scholar is a web site that tracks citation counts on scholarly publications. Figure 5 uses
data from Semantic Scholar to illustrate how the five base papers have impacted the research com-
munity. In order to demonstrate the interconnection of the topics covered by the papers, Figure 5
also shows a small sampling of papers cited by more than one of the base papers.

3.1 STAGED PROGRAM REPAIR WITH CONDITION SYNTHESIS [16]

This paper introduces staged program repair (SPR), which creates a search space of potential bug
fixes in C code. The repair attempts are based on pre-defined parameterized transformation schemas
that combine with multiple ways to synthesize changes to conditional statements. The approach to
evaluating the schemas allows for a relatively efficient pruning of the search space that improved
performance over prior work. There are 6 specific schemas discussed in the paper, which can be
useful as a baseline for evaluating machine learning techniques for program repair and synthesis
work to see which types of repairs can be found. This paper from 2015 is particularly interesting
because it discusses the algorithmic implementation of many program ideas that are today starting
to be explored using machine learning techniques.

Before exploring repair schemas, SPR does error localization by finding blocks of code that are often
executed for failing test cases but rarely executed for passing test cases. Given the suspected faulty
code blocks, SPR will then search for a successful repair by performing code transformations and
rerunning the passing and failing tests. The order SPR searches the repair space is a key contribution
of this paper as it decreases the search time. For example, the first schema evaluated is to change
only a branch condition (e.g., tighten and loosen a condition). Further details are in the paper, but a
summary of the 6 schemas that SPR uses to explore code transformations are:

6

• Condition Refinement: Given a target if statement, SPR transforms the condition of the if
statement by conjoining or disjoining an abstract condition to the original if condition.
• Condition Introduction: Given a target statement, SPR transforms the program so that

the statement executes only if an abstract condition is true.
• Conditional Control Flow Introduction: SPR inserts a new control flow statement (re-

turn, break, or goto an existing label) that executes only if an abstract condition is true.
• Insert Initialization: For each identified statement, SPR generates repairs that insert a

memory initialization statement before the identified statement.
• Value Replacement: For each identified statement, SPR generates repairs that replace

either 1) one variable with another, 2) an invoked function with another, or 3) a constant
with another constant.
• Copy and Replace: For each identified statement, SPR generates repairs that copy an

existing statement to the program point before the identified statement and then apply a
Value Replacement transformation.

Three of the six transformations involve adding an abstract condition. An abstract condition ab-
stract_cond() can be added to an existing if statement by adding ’&& abstract_cond()’ or ’|| ab-
stract_cond()’ to the statement. The condition to add is generated by creating traces of passing and
failing tests that track values of different variables for each case and a new condition is searched for
that causes the failing cases to pass.

Listing 1 is an example of a one-line patch found by SPR. The failure results because the body of the
if statement did not execute when it should have. An abstract_cond() was added to the condition,
then concretized to produce the correct fix.

− if (isostr_len) {
+ if (isostr_len || (isostr != 0)) {

Listing 1: Patch that uses Condition Refinement schema to correct if statement

A strength of this paper is its discussion on the balance between plausible (passing all tests) and
correct patches. Out of 38 plausible patches, 11 are correct, which is a 29% correct/plausible ratio.
Other papers have cited lower ratios for correct/plausible; a careful analysis of prior techniques
(GenProg, RSRepair, and AE) shows that they have correct/plausible ratios of less than 12% [19].
Given that the authors compare directly against GenProg and AE, their relatively high ratio implies
that the repair schemas they use represent reasonable transformations.

Ultimately, the authors compare their results to two other well-cited repair programs (GenProg and
AE). On the same benchmark set, SPR was able to fix five times as many defects as the prior art,
representing a significant advance.

A weakness of this paper is that it cannot effectively apply more than one tranformation to attempt a
patch. As Section 4.1 will show, this is an area that can be addressed by machine learning for patch
generation.

3.2 PHOG: PROBABILISTIC MODEL FOR CODE [7]

This paper creates a statistical model of code that can be used for code generation (including code
completion, patch generation, and programming language translation). The model is based on their
domain-specific TCOND language which allows for grammar production rules to be context depen-
dent. The probabilities for each contextualized production rule are computed from the training data
and evaluated based on how well AST nodes in the test data could be predicted.

The paper builds up ideas based on context-free grammars (CFGs) [4], which include production
rules that define how non-terminals can be transformed. Some examples to show the format are:

• 〈expr〉 → number

• 〈expr〉 → 〈expr〉+ 〈expr〉
• 〈expr〉 → 〈expr〉 − 〈expr〉

7

Model Error Rate
Non-Terminals
PCFG 48.5%
3-Gram 30.8%
10-Gram 35.6%
PHOG 25.9%
Terminals
PCFG 49.9%
3-Gram 28.7%
10-Gram 29.0%
PHOG 18.5%

Table 1: Evaluation of prediction for AST nodes in JavaScript

After discussing CFGs, the concept of a high order grammar (HOG) is introduced, which allows
for production rules to be based on contexts such that α[γ] → β represents a rule transforming the
non-terminal α with context γ into β, where β can be a terminal or non-terminal of the grammar. A
context is created by analyzing the program up to the production rule use point and might include
statement types or local variable names. For example: 〈expr〉[return]→ True could represent the
rule that 〈expr〉 expands to True when the expression is in a return statement.

The paper defines a PHOG as: a probabilistic high order grammar is a tuple (G, q) whereG is a HOG
(high order grammar) and q : R → R+ scores rules such that they form a probability distribution.
G includes a set of non-terminals N and a conditioning set C (i.e., the contexts). The probability
distribution is computed as:

∀α ∈ N, γ ∈ C :
∑

β:α[γ]→β∈R

q(α[γ]→ β) = 1

The function q is learned by counting rule expansions observed in a set of training data, and the
authors use smoothing techniques to address sparseness in the training data. This is a straight-
forward technique to learn probabilities. Machine learning approaches, which can learn similar
distributional information, are not as easily understood an the technique used for PHOG.

To evaluate PHOG, the authors predict JavaScript elements using PHOG and 3 alternate techniques.
The prediction test is done by deleting a node from an AST (and its subtree and all nodes to the
right) and querying the model to identify the missing node. Their alternate techniques are a PCFG
(probabilistic context-free grammar) that only conditions on the parent non-terminal (no context
used), and a 3-gram and 10-gram model (an n-gram model conditions on the n-1 previous symbols
in the AST traversal as used in Allamanis et al. [2]). Table 1 shows their results on predicting both
terminal and non-terminal elements. Their results are very strong in this analysis relative to previous
techniques; Section 4.1 will contrast these results with a recent machine learning technique for patch
generation.

3.3 GET TO THE POINT: SUMMARIZATION WITH POINTER-GENERATOR NETWORKS [22]

This paper introduces a new approach to copying information from an input sequence to an output
sequence when using a sequence-to-sequence model for natural language processing. A pointer-
generator in a neural network model allows the model to ’point’ to a specific token on the input
sequence that should be copied to the output sequence. In early versions of sequence-to-sequence
learning, only tokens that were learned as part of the training vocabulary were available for pro-
ducing the output [23]. The paper details how a pointer-generator network is useful for text sum-
marization by allowing accurate use in the output of out-of-vocabulary words such as person or
place names. In particular, the field of automatically summarizing natural language processing in-
cludes both extractive approaches where certain key sentences and phrases are copied in full from
the source, and abstractive approaches which can involve rewording ideas in the input and sound
more natural to most readers. The paper notes that abstractive approaches benefit from their copy
mechanism, which can use token embedding and encoding information to point to specific tokens
that aren’t in the language vocabulary but are in the input sequence and should be used at specific

8

points in the output sequence. In addition to improving natural language models, copying tokens
from the input directly to the output also has key advantages for program repair. A known challenge
to using sequence-to-sequence models for program repair is the issue that the full vocabulary for
source code is nearly infinite due to specific identifier names, numbers, strings, etc. [13]. Similar to
the summarization problem, in program repair new tokens from the computer language vocabulary
may be needed for a bug fix, and copying rare tokens can be used to solve the unlimited vocabulary
problem.

This paper did not introduce the copy mechanism for NLP, but it has been received by the NLP
community as a base on which to build further work. For example, this paper is the basis for
the copy mechanism implementation in OpenNMT, a popular open framework for neural machine
translation. The main difference between this work and previous work is explicitly computing pgen,
the probability for copying a token from the input versus using a token from the vocabulary. The
next paragraphs will briefly build up the model to show how pgen is computed and used.

Encoder The encoder is a recurrent neural network using LSTM gates [14] to process the input.
It is a bidirectional encoder [21] that allows the encoding for a token to incorporate information
from tokens both before and after its occurrence in the input data. The encoder converts the source
sequence X = [x1, ..., xn] into a sequence of encoder hidden states hi using a learnable recurrence
function fe. After reading the last token, the last hidden state, hen is used as the context vector c for
initializing the decoder [11]:

hei = fe(xi, h
e
i−1); (1)

Decoder The decoder is also a recurrent neural network using LSTM gates. When initialized by the
encoder, it begins production of the output sequence by receiving the special start token as input
y0. For each previous output token yj−1, the decoder updates its hidden state hdj using the learnable
recurrence function fd [11]:

hdj = fd(yj−1, h
d
j−1, c) (2)

The decoder states hdj are used for token generation by the attention and copy mechanisms in Equa-
tion 4 and Equation 5. The model stops updating decoder hidden states and generating new tokens
when the last token generated by the model is a special end-of-sequence token.

Attention The attention mechanism provides a way to create a context vector cj for each decoder
output token yj using a linear combination of the hidden encoder states hei [5]:

cj =

n∑
i=1

αjih
e
i (3)

Where αji represents learnable attention weights. This context vector cj is used by a learnable
function fa to allow each output token yj to pay "attention" to different encoder hidden states when
predicting a token from the vocabulary V :

PV (yj | yj−1, yj−2, ..., y0, cj) = fa(h
d
j , yj−1, cj) (4)

Copy The copy mechanism further adjusts Equation 4 to produce a token candidate by introducing
pgen, the probability that the decoder generates a token from its initial vocabulary. Hence, 1−pgen is
the probability to copy a token from input tokens depending on the attention vector αj in Equation 3
[22]:

pgen = fc(h
d
j , yt−1, cj) (5)

P (yj) = pgenPV (yj) + (1− pgen)
∑

i:xi=yj

aji (6)

fc in Equation 5 is learnable function. Using Equation 6, the output token yj for the current de-
coder state is selected from the set of all tokens that are either: 1. tokens in the training vocabulary
(including the <unk> token) or 2. tokens in the input sequence.

In addition to the copy mechanism, this paper introduces a technique for limiting repetition of output
sequences. This technique is important for the text summarization use case they envision, but is less
relevant for source code. Reusing the same variable multiple times in a line may sometimes be
appropriate (i.e. "if (x < 8) && (x > 2)").

9

Figure 6: Figure from Graph-to-Sequence paper showing encoder and attention mechanism feeding
into sequence generation

3.4 GRAPH-TO-SEQUENCE LEARNING USING GATED GRAPH NEURAL NETWORKS [6]

Sequence-to-sequence models for code generation have been augmented to include some AST infor-
mation [8], but the rich information available statically during program analysis would benefit from
a graph neural network. This paper, like the Pointer paper, is discussing natural language process-
ing, and the concept introduced invites use for code analysis. The paper uses a gated graph neural
network to analyze an input string after the string is transformed into an Abstract Meaning Repre-
sentation (AMR) graph. To minimize the number parameters in the graph neural network model due
to edge types, they discuss transforming the edges in the graph to be extra vertices through a Levi
graph transformation. For code analysis, a Levi transformation could be valuable - it allows for a
wider variety of edge types to be represented with a reasonable number of parameters.

Figure 6 shows an overview of their approach. In a sequence-to-sequence model with attention, as
described in Section 3.3, the attention is computed using the encoder hidden states for each received
token. The encoder state includes information from the embedding of the input token, as well as a
function of the encoder states before and after this token. In a graph neural network, the attention
is computed using the node hidden states after the network has iterated on the structure. Since the
nodes are initialized with the token inputs, the node hidden states can include information from an
embedding of the input, as well as any other nodes that can be reached during network iteration. An
aggregation of the final node states can be used to initialize the hidden state of the sequence decoder.

The transformation of the input AMR graph into a Levi graph allowed for fewer edge types in the
model. The paper shows that for optimal performance, the Levi network had these types of edges:
self edges, forward and reverse token sequence edges, and forward and reverse tree connection
edges. This results in five edge types, each of which has a weight matrix to compute how the gated
recurrent unites (GRUs) update each iteration step.

As is common for reporting machine translation results, the authors evaluate results using BLEU
scores (BiLingual Evaluation Understudy). The BLEU score was proposed by Kishore Papineni
et al. in their 2002 paper “BLEU: a Method for Automatic Evaluation of Machine Translation“
[18] and scores candidate translations based on a reference translation. Their test set contains both
english-to-german and english-to-czeck translation tasks. In their results section they show the high-
est BLEU scores for the models tested, including the same test set tested with recent state-of-the-art
approaches. Interestingly, they also include results for the ChrF++ scoring method, for which their
approach does not score the best. They note that ChrF++ scores have been found to align better
with human translation scoring than BLEU and leave the challenge of improving ChrF++ scores
to future work. The merits of BLUE versus ChrF++ methods for language output scoring are not
directly related to machine learning for code sequence generation. The scores can help alert code

10

generation researchers to new improvements in sequence generators, but the methods tend to relate
best to human languages.

3.5 CODE2VEC: LEARNING DISTRIBUTED REPRESENTATIONS OF CODE [3]

This paper describes an approach to create an embedding vector for entire Java methods in a way
similar to the widely successful word2vec approach used in NLP [17]. The example use case is to
predict method names, but the paper aims to produce an embedding that can be used for a variety
of cases. Indeed, this approach can be directly applied to the problem of program equivalence. The
paper presents cases where similar methods have similar embeddings and ’adding’ the embedding
from one program can have meaningful results in the method name predicted. In this way, a possible
future application for code2vec would be test two programs for equivalence by subtracting their em-
beddings and the resulting vector could be used to seed a sequence decoder and create a description
of the program differences.

The paper builds up d-dimensional embedding for a piece of code (in their example use case they
are looking at methods). The embedding is built up using weighted summations of embeddings for
path-contexts. A path-context is a sample from the AST for the code that includes a start terminal,
the non-terminals from the AST, and the end terminal. In theory, a snippet of code with n terminals
in the AST has n2 path-contexts, but the authors set AST distance constraints on the path-contexts
allowed and also have found that an upper bound of 200 path-contexts is sufficient to represent most
code correctly. Like the popular word2vec, embeddings are learned during model training for the
terminals and AST paths. The embeddings for the set of all terminal symbols are collected into
value_vocab, and the embeddings for all of the paths seen in the training set are collected into
path_vocab. Hence, given a path-context that starts at terminal xs and terminates at xt following a
path pj through the AST, the path-context is mathematically represented as:

ci = embedding(〈xs, pj , xt〉) = [value_vocabs; path_vocabj ; value_vocabt] ∈ R3d

Figure 7 shows an example of path-contexts. For example, the path-context for the red path labeled
1© in the figure is the embedding for:

〈elements,(Name ↑ FieldAccess ↑ Foreach ↓ Block ↓ IfStmt ↓ Block ↓ Return ↓ BooleanExpr),true〉

Using the path-context ci and a trainable weight matrix W ∈ Rd×3d, the combined context vector
c̃i is:

c̃i = tanh(W · ci)

A trainable global attention vector a ∈ Rd is used in a softmax function to compute attention weights
αi based on the path context embeddings:

αi =
exp(c̃iT · a)∑n
j=1 exp(c̃jT · a)

Ultimately, the whole code snippet is represented by an aggreggated code vector v ∈ Rd:

v =

n∑
i=1

αic̃i

A strength of this paper is that it teaches a way to visualize the parts of the program that are being
used to determine the method name, which is a helpful way to improve understanding of the neural
network. Since understanding what a network has learned is a known problem in machine learning,
this attention visualization is valuable. Figure 7 shows the various weights of the top 4 paths used in
computing v for the snippet based on the thickness of lines. Figure 8 diagrams the full use model of
this paper. The original code, with ’?’ for the method name is shown, along with the top 4 weighted
paths used to predict the method name ’count’.

11

Figure 7: Figure from code2vec paper showing different paths through AST

Figure 8: Figure from code2vec paper showing full use model from code snippet to method name
prediction

12

Figure 9: Figure from Graph-to-Sequence paper showing encoder and attention mechanism feeding
into sequence generation

A weakness of the code2vec paper is that it learns on full tokens (not subtokens) and has a vocabulary
limitation. It cannot learn embeddings for novel variable names. Also, the embeddings it does learn
are based on the training set provided, hence the embedding may not be appropriate for how a
variable is used in a given method. For example, a method that iterates over an array using i and
accumulates the sum of array elements into sum is semantically equivalent to a method that uses j
for the iterator and i for the accumulation. But the somewhat odd use of i for accumulation would
result in a shifted code vector for the method.

4 RECENT WORK IN PROGRAM REPAIR AND EQUIVALENCE

4.1 SEQUENCER: SEQUENCE-TO-SEQUENCE LEARNING FOR END-TO-END PROGRAM
REPAIR[9]

I shared first author credit on this paper, which describes a system to create patches for buggy pro-
grams based on the sequence-to-sequence model with copy mechanism from the Pointer paper dis-
cussed in section Section 3.3. SequenceR relies on a fault localization step (similar to the approach
discussed in the SPR paper) to prepare input to the model. For use as a code repair model, we first
tokenize an input program and remove the body of methods that are not identified as containing the
bug needing repair. As shown in Figure 9, SequenceR receives as input this abstract buggy class
and generates as output a patch proposal. The model uses a beam search to track the 50 most likely
patches and relies on passing a test suite to predict plausible patches.

One of the research questions in the SequenceR paper relates to which types of repairs SequenceR
can learn. While the answer to the question was not trying to align with the transformation schemas
from the SPR paper, there is some overlap. Of the 6 schemas used in SPR, examples are shown in
the SequenceR paper for ’Condition Refinement’ and ’Value Replacement’. The 4 other schemas
from SPR involve adding new lines of code, which is not supported by the one-line fix model for
SequenceR. Unlike SPR, SequenceR can perform multiple transformations on a single line, and it
can learn transformations that are not listed in SPR (such as changing a field access into a method
call). The plausible/correct ratio for SequenceR on the tested dataset was 30%, which is slightly
higher than SPR achieved and indicates that SequenceR was learning reasonable code transforma-
tions without hand-crafted transformation rules.

13

In relation to PHOG, SequenceR is using machine learning in a way that can approximate that work.
The token generation and copy mechanism are being trained to predict a conditional probability
about what the correct next token is given the abstract buggy context and the tokens created so far.
Figures in the SequenceR paper show validation accuracies of 88%, which is an error rate of 12%
and is lower than the PHOG prediction rates in Table 1.

Another research question covered by the SequenceR paper relates to the effectiveness of the copy
mechanism for overcoming the unlimited vocabulary problem. Even more so than natural language
(which can have specific names for people and places), code often has rare symbol names for iden-
tifiers. Since the Pointer paper was the basis of the copy mechanism implemented in OpenNMT,
SequenceR made use of this technique. The SequenceR paper found that using the copy mechanism
along with a with a 1,000 token vocabulary was 4 times more accurate than a 50,000 word vocab-
ulary without the copy mechanism. The copy mechanism is very useful in processing rare tokens.
Effectively, the copy mechanism is ’reasoning’ about the out-of-vocab tokens with reference to the
encoder hidden state related to the token, which is using the context of the token to inform the patch
generation step. This information is more valuable than the embedding that is produced for rarely
seen token names.

SequenceR uses a sequence-to-sequence model with copy mechanism. Section 5 discusses how the
graph-to-seq paper can be leveraged to replace the bidirectional encoder used in SequenceR with a
graph neural network to more completely analyze the available code and test coverage information.

In relation to code2vec, the SequenceR paper is producing a form of buggy code embedding with
the connection between the encoder and decoder LSTM blocks shown in Figure 9. This connection
is indicating the standard encoder/decoder structure where the encoder state is used to initialize
the decoder state. This state is 256x2=512 dimensions in SequenceR; which corresponds to the
128 dimensions that code2vec creates for summarizing a code snippet. We tested SequenceR with
and without an extra learnable layer between the encoder and decoder and found that this ’bridge’
layer was useful; indicating using a learnable function between the components of the encoder and
decoder improved performance. This learnable function is similar to the global attention vector
used in the code2vec paper, but it is not as easy to comprehend the mapping. The attention used
in SequenceR is somewhat interesting to visualize - as tokens are generated one can visualize the
attention given to tokens from the input.

4.2 NEURAL NETWORK-BASED GRAPH EMBEDDING FOR CROSS-PLATFORM BINARY CODE
SIMILARITY DETECTION [25]

This is an interesting paper using graph neural networks to detect binary code similarity. Like the
code2vec paper (which is more recent), this paper learns and embedding function on code and the
use model is to compare embedding functions to detect code similarity for vulnerability detection.
They refer to their approach as Structure2vec.

The Structure2vec approach starts with an ACFG (attributed control flow graph), in which each
node represents a basic block and includes attributes such as ’number of calls’, ’numeric constants’,
’number of offspring’, and five other easily computed attributes. After initializing and iterating the
graph neural network for T iterations, the embedding for the graph φ(g) is computed using a learned
matrix W to combine the final hidden state µ(T)

v of each vertex:

φ(g) =W ·
∑
v∈V

µ(T)
v

Figure 10 diagrams the approach for detecting code similarity. Subfigure (a) shows how after T
iterations of the graph neural network, φ(g) is created. The Siamese architecture shows how the
difference between two code embeddings is computed using the cosine of two multidimensional
vectors.

A disadvantage of this approach is that the embedding itself cannot have any component that distin-
guishes similar but non-equal components. If the cosine function were replaced by a 2-layer neural
network, then mappings from the program embedding to the equivalence value could account for
disjoint but similar areas in the embedding spaces.

14

Figure 10: Figures from Code Similarity paper showing generation and use of φ(g)

5 FUTURE RESEARCH

This collection of five base papers can be used to construct a new approach to creating a code
embedding that could be used for both program repair as well as program equivalence checking.
The approach would leverage static analysis of the code to create an annotated AST graph that
can be the input for a graph neural network. In the equivalence embodiment of the approach, two
ASTs could be processed and the output could be a binary equivalence output value. In the repair
embodiment of the approach, a copy mechanism could be added to the approach in the graph2seq
paper to allow a repair to be produced in a manner similar to the SequenceR paper.

Figure 11 adds line numbers and new edges to the AST graph from Figure 4. As an implementation
for program repair, the idea here is that the new line numbers can be used to include coverage data
from a fault localization run and can also be used by a copy mechanism during program repair. The
figure does not include all of the edge types that would likely be beneficial. Given that we have a
variety of node types in a graph such as this, here are the initial values that nodes could include:

• Non-terminal type: This would identify the node as, for example, an ’assign’ or ’while’
node in the AST. There might be 30-40 one-hot dimensions in the initial vector.

• Terminal: This would identify the value of the terminal as another set of one-hot dimen-
sions. Like the SequenceR paper, this may include a few hundred common terminals, and
an <unk> terminal for out-of-vocab terminals (but the copy mechanism would allow the
actual input value to be copied for use in an output sequence).

• Line: This would be a <line_unk> token and take a single one-hot dimension to identify.
However, these nodes would include two dimensions that contain test coverage informa-
tion: normalized coverage for the line on both failing and passing test cases.

• Compare: For program equivalence, the top nodes for the two programs to compare could
be connected to this node, which would provide a mechanism for the GNN to compute
the similarity between the two graphs, and a potential conduit for information needed to
evaluate equivalence.

The number of node types and other information will constrain the initial label size for nodes. The
number of edge types is a different matter. In a typical graph neural network, each edge type implies
another trainable weight matrix, which is why the graph2seq paper used a Levi graph to transform
edges into nodes for the GNN to process. The list of edge types we would want in an AST graph
augmented for this problem includes the edge types shown in Figure 11 and some data/control edges:

15

• self: an edge pointing to the current node; implies a weight matrix to include a node’s
current state in next state computations
• condition: an edge for a loop or if condition
• body: an edge for a loop body
• operand1: edge points to 1st operand node
• operand2: edge points to 2nd operand node
• other AST edge types: some edge types could be collapsed, experiments may help choose

optimal set (i.e., ’body’ could also be an edge to ’if-body’).
• last write: an edge from a terminal node that refers to a variable to the node where the

variable was last written in the AST.
• method call: an edge from a method call to the top non-terminal node representing the

method.
• type: an edge from a variable node to its type declaration node in the AST.
• other data and control edge types: experiments may justify more static analysis edge

types
• line contains: an edge from a line node to a node which is part of that line of code (dashed

lines in Figure 11).
• next line: an edge from a line node to the next line node for the program (dash and 2 dots

lines in Figure 11).
• Reverse edges: there should be different weight matrices for moving information back and

forth along an edge, so all of the edges above except the self edge would have a reverse
edge.

One approach to node setup for code analysis is to have the label for each node, as discussed in
Section 2.3, include a one-hot vector for node type. But this forces at least the ’self’ weight matrix to
learn an optimal embedding for each token. It may be preferable to add a single layer for embedding
between the one-hot token an the node label, which would learn a vocabulary embedding similar to
the code2vec paper.

Use model for code repair: For code repair, the graph neural network is using a learnable function
to create annotations for each node. By combining the ideas from the graph2seq and Pointer papers,
the node annotations can be used as inputs to a copy mechanism, which allows the potential strength
of a graph network analysis to combine with the benefit of a copy mechanism for patch generation.
The SequenceR paper relied on a fault localization process to identify possible locations for one-
line code repairs. For this new approach, the line nodes can include code coverage data and the
network can be expected to identify the line (by copying the line token from the GNN input) before
creating output tokens for the repair. When a line should be deleted, no tokens would be output
after the line token that identifies the line to delete. Multiple lines could be fixed by allowing an
output sequence to multiple line tokens, each of which is followed by the tokens needed by the line.
For Java, newline characters are not part of the syntax, so patches that add a line could be done by
identifying the location with a line token and having an output sequence generated with new tokens
before or after the existing tokens. Also, a weakness of the SequenceR approach is that it could
not learn to make fixes outside of a method body (as fault localization is limited to such areas). An
AST analysis with line coverage data might be usable to predict when, for example, a package name
should be changed as a proposed patch.

Using this network, it could be possible to cover all 6 of the transformation schemas identified in the
SPR paper. A study of the attention given to AST nodes during the production of the patch could
reference the PHOG paper as one would expect the GNN to learn a statistical model similar to but
more flexible than the model learned in PHOG.

Use model for program equivalence: As noted in the node descriptions, on approach to using the
GNN for program equivalence is to have a top-level Compare node that can aggregate a vector for
use in identifying program equivalence. In this case, the ASTs for each program are input into the
network along with the Compare node connecting them. In addition to such a node, using graph
attention in the analysis of the two ASTs could help to identify which nodes are most important for
the determination of equivalence or non-equivalence.

16

Figure 11: AST with line number tokens and dashed edges identifying the AST elements in a line
and and edges with dashes and dots connecting lines in sequence.

17

While a standard GNN output value could be used for training a program equivalence classifier,
one could also train a graph2seq model that could output transformation rules that are involved in
transforming one program to another (i.e., (a+b)∗c→ a∗c+b∗c). Such a sequence generator could
provide a path for proving the two models equivalent, instead of relying on the statistical output of
an equivalence classifier.

6 CONCLUSION

Deep learning has been expanding into diverse fields as hardware advances and novel algorithms
allow approaches to succeed in new areas. For the problems of program repair and program equiv-
alence, machine learning techniques that have roots in natural language processing have been suc-
cessfully applied to computer languages. Historic techniques for searching for program repairs
using transformation schemas can be mimicked and improved on by training a network to ’translate’
buggy code to fixed code, resulting in similar transformations being learned. As machine learning
uses probabilistic sequence generation, it is capable of mimicking probabilistic models of language
grammars.

New techniques allowing machine learning models to process an AST for code show promising
paths forward for future research. As the field continues to evolve, code generation and analysis
using machine learning will likely separate from natural language approaches and develop a robust
approach based on the specific problems found in that problem space.

REFERENCES

[1] Miltiadis Allamanis et al. “A Survey of Machine Learning for Big Code and Naturalness”.
In: arXiv e-prints, arXiv:1709.06182 (Sept. 2017), arXiv:1709.06182. arXiv: 1709.06182
[cs.SE].

[2] Miltos Allamanis et al. “Bimodal Modelling of Source Code and Natural Language”. In:
Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis Bach
and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR,
July 2015, pp. 2123–2132.

[3] Uri Alon et al. “Code2Vec: Learning Distributed Representations of Code”. In: Proc. ACM
Program. Lang. 3.POPL (Jan. 2019), 40:1–40:29. ISSN: 2475-1421.

[4] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java. 2nd. New
York, NY, USA: Cambridge University Press, 2003. ISBN: 052182060X.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by
jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[6] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. “Graph-to-Sequence Learning using
Gated Graph Neural Networks”. In: Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Asso-
ciation for Computational Linguistics, 2018, pp. 273–283.

[7] Pavol Bielik, Veselin Raychev, and Martin Vechev. “PHOG: Probabilistic Model for Code”.
In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by Maria
Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Re-
search. New York, New York, USA: PMLR, June 2016, pp. 2933–2942.

[8] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. “Tree2Tree Neural Translation
Model for Learning Source Code Changes”. In: arXiv abs/1810.00314 (2018).

[9] Zimin Chen et al. “SequenceR: Sequence-to-Sequence Learning for End-to-End Program Re-
pair”. In: CoRR abs/1901.01808 (2019).

[10] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation”. In: Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, 2014, pp. 1724–1734.

[11] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

18

http://arxiv.org/abs/1709.06182
http://arxiv.org/abs/1709.06182

[12] David Denison. “Parts of speech: Solid citizens or slippery customers?” In: Journal of the
British Academy. The British Academy, 2013, pp. 151–185.

[13] Vincent J Hellendoorn and Premkumar Devanbu. “Are deep neural networks the best choice
for modeling source code?” In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM. 2017, pp. 763–773.

[14] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computa-
tion 9.8 (1997), pp. 1735–1780.

[15] Iu I. Ianov. “On the Equivalence and Transformation of Program Schemes”. In: Commun.
ACM 1.10 (Oct. 1958), pp. 8–12. ISSN: 0001-0782.

[16] Fan Long and Martin Rinard. “Staged Program Repair with Condition Synthesis”. In: Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2015. Bergamo, Italy: ACM, 2015, pp. 166–178. ISBN: 978-1-4503-3675-8.

[17] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”.
In: arXiv e-prints, arXiv:1301.3781 (Jan. 2013), arXiv:1301.3781. arXiv: 1301 . 3781
[cs.CL].

[18] Kishore Papineni et al. “BLEU: A Method for Automatic Evaluation of Machine Transla-
tion”. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguis-
tics. ACL ’02. Philadelphia, Pennsylvania: Association for Computational Linguistics, 2002,
pp. 311–318.

[19] Zichao Qi et al. “An Analysis of Patch Plausibility and Correctness for Generate-and-validate
Patch Generation Systems”. In: Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis. ISSTA 2015. Baltimore, MD, USA: ACM, 2015, pp. 24–36. ISBN:
978-1-4503-3620-8.

[20] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions on Neural
Networks 20 (2009), pp. 61–80.

[21] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
Transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[22] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Summarization
with Pointer-Generator Networks”. In: Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Associ-
ation for Computational Linguistics, 2017, pp. 1073–1083.

[23] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with Neural
Networks”. In: CoRR abs/1409.3215 (2014).

[24] Wikipedia contributors. Abstract syntax tree — Wikipedia, The Free Encyclopedia. [Online;
accessed 3-March-2019]. 2019.

[25] Xiaojun Xu et al. “Neural Network-based Graph Embedding for Cross-Platform Binary Code
Similarity Detection”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. Dallas, Texas, USA: ACM, 2017, pp. 363–376.
ISBN: 978-1-4503-4946-8.

19

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

