
Solving Vt swap for cells using linear programming

by Steve Kommrusch

Department of Computer Science, Colorado State University

December 16, 2016

Abstract

As silicon designs have moved into sub-micron technologies like 28nm, 14nm and beyond, the

problem of minimizing power is increasingly important. Lower power designs save power

supply component cost, reduce heat generated, and increase battery life in mobile products. At

one point in the design process the logic gates which will implement the design intent have

been specified and there is a need to optimize the speed versus power of these gates by

adjusting threshold voltages (Vt). This paper discusses linear programming methods that can

be used to minimize power while still meeting the timing constraints of the design.

1. Introduction

This paper is written for the Math 510 Linear Programming class at Colorado State University, and

discusses a topic of interest to silicon design companies. Data on a small design (3102 gates) was

gathered from silicon analysis tools and used to provide a cost function and constraints for a linear

programming problem, as discussed in section 2. The power and timing data was linearly scaled to

protect proprietary details of the design. Results show measurable value in using this approach and

further enhancements to handle larger designs appear warranted.

2. Problem formulation

2.1 Overview of digital logic
Digital logic is used to implement functions between flip-flops that are running at the full

target clock period (well below 1 nanosecond in modern designs). As an example, consider

the equation written in Verilog code as: C[2:0] = A[0] + B[1:0]. This equation takes 3 binary

inputs (1 bit for A[0] and 2 for B[1:0]) and produces a 3-bit binary sum as the output. The

logic for each bit in the C value can be represented as:

 ___ ___

 C[0] = (A[0]B[0] | A[0]B[0]); // NOT ((A[0] AND B[0]) OR (NOT A[0] AND NOT B[0]))

 ___ ________

 C[1] = A[0]B[0]B[1] | (A[0]B[0])B[1];

 C[2] = A[0]B[0]B[1];

Those 3 binary functions of the 3 input variables can be drawn using these 12 AND, OR, and

NOT gates connecting together flip-flops running at a common clock period.

In this example, consider the case where each of the 3 gate types has 3 different Vt options,

detailed in the table below. Note that the power and delay values don’t have to be

integers.

Gate type Low Vt
power

Low Vt
delay

Mid Vt
power

Mid Vt
delay

High Vt
power

High Vt
delay

NOT 50 70 10 100 2 130

AND 100.7 100 20 140 4 180

OR 110 110 22 155 4.5 200

Note than some silicon foundries support 4 Vt flavors and there are techniques to create

discrete partial flavors so it is possible to have 8 or more power vs delay settings for each

gate. For the proposed problem formulation, each gate will have 3 free variables such that

G1 has the variables G1L, G1M, and G1H, corresponding to Low Vt (low delay but high power),

Mid Vt (middle delay, middle power), and High Vt (high delay but low power).

In this example, consider that the clock period we want to target is 450, so none of the paths

from the A or B flip-flops to the C flip-flops can add up to more than 450 (in actual designs,

the 450 number can vary slightly because the flip-flops may have routing delays or loading,

but for this example, I will use 450 for all the paths in this example).

A[0]

B[0]

B[1]

C[0]

C[1]

C[2]

G1

G2

G3

G4

G7

G6

G5 G8

G9

G10

G11

G12

 NOT gate AND gate OR gate

2.2 Linear program formulation

Now we can formulate the linear program for the circuit shown:

 minimize 50G1L+10G1M+2G1H + 50G2L+10G2M+2G2H + 100.7G3L+20G3M+4G3H

 + 100.7G4L+20G4M+4G4H + 50G5L+10G5M+2G5H + 50G6L+10G6M+2G6H

 + 110G7L+22G7M+4.5G7H + 100.7G8L+20G8M+4G8H + 100.7G9L+20G9M+4G9H

 + 100.7G10L+20G10M+4G10H + 50G11L+10G11M+2G11H + 110G12L+22G12M+4.5G12H

 subject to:

 70G1L+100G1M+130G1H + 100G3L+140G3M+180G3H

 + 110G7L+155G7M+200G7H + 70G11L+100G11M+130G11H < 450

 100G4L+140G4M+180G4H

 + 110G7L+155G7M+200G7H + 70G11L+100G11M+130G11H < 450

 … (8 more path constraints not shown here) …

 100G10L+140G10M+180G10H < 450

 For all i: GiL+GiM+GiH = 1

 For all i: GiL, GiM, GiH ≥ 0, and all are integers (i.e., all are 0 or 1).

I wrote a Perl script that transformed the timing results from a common industry tool output

into the matrixes needed for Matlab to use. The command to solve the Vt swap problem was:

[x, fval] = linprog(c,A,b,Aeq,beq,zeros(freevariables,1),ones(freevariables,1));

This command solves the classic linear programming problem using the free variables in x:

 minimize: cTx

 subject to the constraints: A*x <= b

 Aeq*x = beq

 0<= xi <= 1 for all i.

The variables in the command are described here in relation to this problem:

 c: This is the cost vector which includes the power for each of the 3 Vt flavors for each

 gate (for example, it is a vector of size 9306 for a problem with 3102 gates).

 A: This is the constraint matrix that identifies delay contribution for each gate type in

 each delay path. For example, for 9460 paths and 3102 gates, A is a 9460x9306 array.

 b: This is the maximum delay allowed on each path through the gates. Each entry in b is

 about the same, but they vary to account for source flop output delay and

 destination flop setup time requirements.

 Aeq: This matrix has 3 “1”s in each row otherwise populated with “0”s and insures the

 3 Vt flavors for a gate all sum up to 1. For 3102 gates, this is a 3102x9306 array.

 beq: This is just “ones(numgates,1)” to constrain the 3 Vt flavors of each gate sum to 1.

 zeros/ones: These commands in the linprog call insure all the Vt flavors selected are less

 than or equal to 1 and greater than or equal to 0.

 x: The result x is the vector of gate flavors that minimize cTx while meeting the delays.

 fval: This is the final power of the gates chose and is equal to cTx.

2.3 Hardware and tool description

The environment that I evaluated was on an HP ProBook 6565b running Windows 7 Service

Pack 1 with 8GB of installed memory. I used Matlab version R2015b (8.6.0.267246).

3. Results
Early results showed that intlinprog, which will keep all the gate selections integers as

ultimately required, takes significantly longer than linprog for this problem. Below are

timing and output results for various problem sizes of my initial coding for this problem.

Time is measured using Matlab’s cputime to track start and end of command.

 File File linprog intlinprog

Paths Gates size
(MB)

load
time

time pwr LVT MVT HVT time pwr LVT MVT HVT

50 242 0.45 1.7s 0.72s 3875 175.5 66.2 0.3 58.3s 3967.8 180 62 0

100 318 0.84 3.9s 0.27s 5281 234.3 82.0 1.7 29min 5444.6 233 84 1

200 388 1.44 6.9s 2.14s 6366 280.3 106.2 1.5 >20m

500 611 4.2 19.7s 5.2s 948.6 420.3 187.3 3.4 >10m

1000 853 9.8 46.4s 10.7s 12186 557.0 288.9 7.1

2000 1253 24.9 124s 21.3s 16698 796.4 445.4 11.2

5000 2373 105 599s 84.5s

9460 3102 233 >90m

3.1 Improved load time

Noting that the load time was impacting the total time to solve the problem, I learned from

internet surfing that using the load command (“A=load(‘A9460.txt’);”) is much faster than the

*.m program I was trying to use. The file sizes are similar, but loading the A and Aeq arrays with

the “load” command only takes a few minutes, even for the 9460 path problem.

 Total
File

Total
File

 linprog

Paths Gates size
(MB)

load
time

time pwr LVT MVT HVT

9460 3102 238 ~5m 304s 32066 1740.1 1293.5 68.4

3.2 Full results

After getting the full 9460-path problem to load and abandoning intlinprog, I created a

realizable Vt solution by rounding all gate types to the faster (higher power) gate. So, gates

that linprog recommended as 0.6 MVT and 0.4 HVT were set to 1 MVT. After that rounding, I

ran a loop that tested power saving opportunities in order to see which cells could be slowed

down individually. The final result of 34,363 power units is very encouraging, representing a

significant 36% power savings from the original gates which used the fastest, but highest power

gates for all the paths.

Description Power LVT MVT HVT

Original gates before Vt swap 53430 3102 0 0

linprog 32066 1740.1 1293.5 68.4

 Round all x results to faster integer cell type 35553 1975 1102 25

 Test lower power gate and swap if Ax<=b still met 34363 1863 1202 37

4. Robustness

This problem is sensitive to the timing path requirements as would be expected from the gates

synthesis process. In order to double-check the validity of the approach, the path constraints

represented by the b variable were scaled as shown below. Scaling b by 0.99 creates an

infeasible solution (indicating even all LVT cells in the paths can’t meet this constraint). This

result is to be expected from the way the gates are generated which are optimized to meet the

timing target using the fewest total number of gates. Scaling b by 0.999 is still a feasible

problem, but more LVT cells are used. Scaling by a sufficiently large value allows the timing

paths to be met even with all HVT (slow, low-power cells).

Scaling on b path delay limit Power LVT MVT HVT

0.99 Problem infeasible

0.999 32361 1760.7 1274.5 66.7

1.0 32066 1740.1 1293.5 68.4

1.1 16395 446.9 2255.4 399.7

1.5 6772 4.0 482.1 2615.9

1.9 5972 0 0 3102

5. Evaluation of Approach

Compared with other techniques in use in the industry [3] the results for this problem are very

encouraging. Although intlinprog became unusable after 100 paths, I compared the procedure

developed in the previous section to the intlinprog results for 50 and 100 paths, as shown

below. These results show some benefit remains from an optimal linear programming solution.

 linprog intlinprog Proposed procedure

Paths Gates pwr LVT MVT HVT pwr LVT MVT HVT pwr LVT MVT HVT

50 242 3875 175.5 66.2 0.3 3967.8 180 62 0 4033.1 183 59 0

100 318 5281 234.3 82.0 1.7 5444.6 233 84 1 5609.1 246 70 2

6. Extensions of the Methodology

Some further areas of work in this area would be:

- Test recommended cell swap list in silicon timing tool to insure proper recommendations

are being generated. May need more complete path list depending on result.

- Explore sparse matrix integer linear programming solutions for optimal integer results.

The A matrix in this problem is 99.4% zeros.

- Explore alternate clean-up algorithms after rounding to faster cell type step.

- Explore larger problem sizes on larger machines.

With a brief internet search, I did not find articles that evaluate this particular approach. Tao

Luo, et. al. [3] describe algorithms for gates optimizations, some of which include linear

programming, but their Vt swap algorithm uses something like my final pass where lower

power cells are swapped in and tested for delay effect. Given my results detail the full integer

linear program results for 50 and 100 paths, that algorithm is demonstrably worse than running

the linear program to get the initial Vt settings.

It’s possible this idea is worthy of publishing, but to provide value to the community some data

from a silicon design company may be relevant and the company would need to approve the

publication.

7. Conclusions

This paper describes a procedure to formulate the common Vt swap problem in silicon design

as a linear program which can be solved efficiently using Matlab. Initial indications are that the

optimal solution to the problem formulation maps well as a solution to the original Vt swap

problem and further investigations may be fruitful.

8. References

[1] Transistor threshold voltages affect design performance

https://en.wikipedia.org/wiki/Threshold_voltage

[2] This paper is an accessible summary of the Vt swap problem that adds technical detail:

https://www.einfochips.com/component/k2/item/download/143_e233354968e0b9497742

9143ef0d2b73.html

https://en.wikipedia.org/wiki/Threshold_voltage
https://www.einfochips.com/component/k2/item/download/143_e233354968e0b94977429143ef0d2b73.html
https://www.einfochips.com/component/k2/item/download/143_e233354968e0b94977429143ef0d2b73.html

[3] Total Power Optimization Combining Placement, Sizing, and Multi-Vt Through Slack

Distribution Management. By Tao Luo, et. al.

https://www.researchgate.net/publication/4327441_Total_power_optimization_combining

_placement_sizing_and_multi-Vt_through_slack_distribution_management

https://www.researchgate.net/publication/4327441_Total_power_optimization_combining_placement_sizing_and_multi-Vt_through_slack_distribution_management
https://www.researchgate.net/publication/4327441_Total_power_optimization_combining_placement_sizing_and_multi-Vt_through_slack_distribution_management

