CS475 Project: CUDA and machine learning on a laptop
by Steve Kommrusch

1. Introduction

Modern laptops have compute capabilities that are immense by historical standards, exceeding 1 Teraflop
when using the GPU compute engines. As recently as 1993, the 500 most powerful supercomputers in the
world had a combined compute power of 1.1 Teraflops/sec [1]. The continued support and enhancement of
Linux and various machine learning environments such as Torch [2] allows people interested in machine
learning to set up a full development environment on a portable computer.

[l had been expecting to do my project on using CUDA to simulate the N-body gravity problem, but this project
seemed very appropriate. In the end, | ran the CUDA nbody sample program as shown below].

2. Laptop selection

| was definitely interested in having a laptop which supported both Windows (for modern MSOffice
applications that I’'m familiar with) and Linux. With the proper GPU option, a modern laptop can run CUDA
and machine learning algorithms for code development [3]. Also, | have found large screen laptops to be
worth the extra weight so | wanted a large screen. And | wanted to keep the cost at around $1,000.

Ultimately, | chose an HP Omen Notebook 17-w053DX which has a 4-core Intel Core i7-6700HQ CPU and an
Nvidia GeForce GTX 965M.

3. Dual boot Linux and Windows 10

| followed a dual-boot web page recommended by an IT friend [4] to install Ubuntu 16.04. That page
describes how to adjust your disk partition to make room for Linux and Ubuntu. As the laptop comes with
over 1 TByte of disk, | set 500GB for my Linux partition. | chose to dual-boot instead of using a virtual Linux
desktop in Windows because | wanted to be confident Linux (and hence CUDA and Torch) had full access to
my hardware, but it is possible that a virtual machine would have also worked.

4. Problems encountered

After | installed 16.04, | was able to use Ubuntu to get on the internet and also to use ‘ssh’ into CSU systems to
run programs. But it was not able to drive the laptop screen and an external monitor simultaneously. So |
tried to update to the latest Nvidia drivers, which did not improve the external monitor. A coworker in IT
proposed I try 16.10, to which | also updated [5], but that still did not drive my external monitor. | decided to
live with it and tried to move on to updating CUDA. The CUDA install page supports Ubuntu 16.04 but not
16.10. |tried to install the 16.04 CUDA drivers anyway after which point rebooting Linux would hang.

After getting to the state with a corrupted Ubuntu 16.10, | went back and re-installed 16.04. Fortunately, the
USB drive | made for the dual-boot solution was capable of booting still and when it gets to the point of
installing onto the system disk, it will query the user as to whether you want to overwrite the existing Linux
(which is the option | chose).

| also ran into other issues related to kernel build security and shutting down X-windows activity as | installed
CUDA and the necessary Nvidia drivers, but in general the links provided solutions or internet searches
provided ideas. I’'m not sure my particular issues would be relevant to others so | won’t detail them, but | will



comment that going through this process with a fresh Linux install is a good idea as there is less concern about
corrupting your file system if you know you can restart the process.

After my one re-install of Ubuntu 16.04 | did not get to an unrecoverable point in Linux. | did not have any
problems with Windows during this process (including after the partition adjustment for dual-boot).

5. Installing CUDA and Torch

| followed the Nvidia CUDA installation guide [6] to install CUDA version 8.0.44. This process improved my
external monitor a bit. The CUDA installation includes updated graphics drivers and now | can select either my
laptop screen or the external monitor for display (but not both simultaneously like | can in Windows).

| followed the Torch installation [7], which was pleasantly simple compared to installing CUDA. During the
Torch install, | noticed that various modules used OpenMP switches to compile, so that package is also
provided when going through this process.

6. Impact (Testing results)

Below is a screenshot of my laptop showing various tests | did after the installations above.
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Introduction

The purpose of this exercise is for you to learn how to write programs using the CUDA programming interface,
processor, and how to think about the factors that govern the performance of programs running within the CUD}
For this assignment, you will modify two provided CUDA kernels and empirically test and analyze their performa
addition. The second is part of a program to perform matrix multiplication. Download and untar the PA5 tar file.
CUDA program.

Resources that may be useful for this assignment include:

« The NVIDIA CUDA Developer web site
« The NVIDIA CUDA Zone web site
« Documentation for gnu make

= Also, you can check out the latest version of the NVIDIA CUDA Programming Guide. -
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For testing, | went through the deviceQuery steps as per Lab 6, and | compiled the matmultO1 code from
Problem Assignment 5. Finally, | downloaded and built the nbody CUDA sample program. In the screenshot



above, CS475 results for my laptop are in the lower left window and CS475 results for the CUDA-capable
bugatti system are in the middle right window. Here is a summary comparing my laptop (steveko-OMEN) to
bugatti.cs.colostate.edu:

ltem steveko-OMEN bugatti

Nvidia device GeForce GTX 965M GeForce GTX 980
CUDA driver version 8.0 8.0

CUDA capability 5.2 5.2

Cudo cores 1024 @ 1.15GHz 2048 @ 1.22GHz
matmult01 64 545 GFlops/sec 1324 GFlops/sec

In the screenshot, the top window on the right hand side shows a run with 102,400 objects simulating n-body
gravitation being computed at 6.7 frames per second, using 1.4 Teraflops on steveko-OMEN. The lower right
window on the right hand side shows Torch 7 starting up after installation.

7. Future Impact

Current server farms can search through massive databases in short times and train large deep neural
networks effectively. The current top-ranked supercomputer [8] has over 10 million modern cores, consumes
over 15 MW and peaks at 125 Petaflops/sec. That computer is itself a ‘server farm’ collection of cores. It took
under 20 years (from 1998 to 2016) for $1,000 laptops to exceed 1 Teraflop after the lead supercomputer did.
Even though the supercomputer performance growth rate has dropped from about 10X per 4 years in the 90’s
to about 10X per 5 or 6 years today, one may expect that within a couple decades the current performance of
a $1,000 laptop would be comparable to the server farms and supercomputers of today, allowing the same
level of search and training to be performed in each home as we can today with massive compute resources.
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