
CS475 Project: CUDA and machine learning on a laptop

by Steve Kommrusch

1. Introduction
Modern laptops have compute capabilities that are immense by historical standards, exceeding 1 Teraflop

when using the GPU compute engines. As recently as 1993, the 500 most powerful supercomputers in the

world had a combined compute power of 1.1 Teraflops/sec [1]. The continued support and enhancement of

Linux and various machine learning environments such as Torch [2] allows people interested in machine

learning to set up a full development environment on a portable computer.

[I had been expecting to do my project on using CUDA to simulate the N-body gravity problem, but this project

seemed very appropriate. In the end, I ran the CUDA nbody sample program as shown below].

2. Laptop selection
I was definitely interested in having a laptop which supported both Windows (for modern MSOffice

applications that I’m familiar with) and Linux. With the proper GPU option, a modern laptop can run CUDA

and machine learning algorithms for code development [3]. Also, I have found large screen laptops to be

worth the extra weight so I wanted a large screen. And I wanted to keep the cost at around $1,000.

Ultimately, I chose an HP Omen Notebook 17-w053DX which has a 4-core Intel Core i7-6700HQ CPU and an

Nvidia GeForce GTX 965M.

3. Dual boot Linux and Windows 10

I followed a dual-boot web page recommended by an IT friend [4] to install Ubuntu 16.04. That page

describes how to adjust your disk partition to make room for Linux and Ubuntu. As the laptop comes with

over 1 TByte of disk, I set 500GB for my Linux partition. I chose to dual-boot instead of using a virtual Linux

desktop in Windows because I wanted to be confident Linux (and hence CUDA and Torch) had full access to

my hardware, but it is possible that a virtual machine would have also worked.

4. Problems encountered
After I installed 16.04, I was able to use Ubuntu to get on the internet and also to use ‘ssh’ into CSU systems to

run programs. But it was not able to drive the laptop screen and an external monitor simultaneously. So I

tried to update to the latest Nvidia drivers, which did not improve the external monitor. A coworker in IT

proposed I try 16.10, to which I also updated [5], but that still did not drive my external monitor. I decided to

live with it and tried to move on to updating CUDA. The CUDA install page supports Ubuntu 16.04 but not

16.10. I tried to install the 16.04 CUDA drivers anyway after which point rebooting Linux would hang.

After getting to the state with a corrupted Ubuntu 16.10, I went back and re-installed 16.04. Fortunately, the

USB drive I made for the dual-boot solution was capable of booting still and when it gets to the point of

installing onto the system disk, it will query the user as to whether you want to overwrite the existing Linux

(which is the option I chose).

I also ran into other issues related to kernel build security and shutting down X-windows activity as I installed

CUDA and the necessary Nvidia drivers, but in general the links provided solutions or internet searches

provided ideas. I’m not sure my particular issues would be relevant to others so I won’t detail them, but I will

comment that going through this process with a fresh Linux install is a good idea as there is less concern about

corrupting your file system if you know you can restart the process.

After my one re-install of Ubuntu 16.04 I did not get to an unrecoverable point in Linux. I did not have any

problems with Windows during this process (including after the partition adjustment for dual-boot).

5. Installing CUDA and Torch
I followed the Nvidia CUDA installation guide [6] to install CUDA version 8.0.44. This process improved my

external monitor a bit. The CUDA installation includes updated graphics drivers and now I can select either my

laptop screen or the external monitor for display (but not both simultaneously like I can in Windows).

I followed the Torch installation [7], which was pleasantly simple compared to installing CUDA. During the

Torch install, I noticed that various modules used OpenMP switches to compile, so that package is also

provided when going through this process.

6. Impact (Testing results)
Below is a screenshot of my laptop showing various tests I did after the installations above.

For testing, I went through the deviceQuery steps as per Lab 6, and I compiled the matmult01 code from

Problem Assignment 5. Finally, I downloaded and built the nbody CUDA sample program. In the screenshot

above, CS475 results for my laptop are in the lower left window and CS475 results for the CUDA-capable

bugatti system are in the middle right window. Here is a summary comparing my laptop (steveko-OMEN) to

bugatti.cs.colostate.edu:

Item steveko-OMEN bugatti

Nvidia device GeForce GTX 965M GeForce GTX 980

CUDA driver version 8.0 8.0

CUDA capability 5.2 5.2

Cudo cores 1024 @ 1.15GHz 2048 @ 1.22GHz

matmult01 64 545 GFlops/sec 1324 GFlops/sec

In the screenshot, the top window on the right hand side shows a run with 102,400 objects simulating n-body

gravitation being computed at 6.7 frames per second, using 1.4 Teraflops on steveko-OMEN. The lower right

window on the right hand side shows Torch 7 starting up after installation.

7. Future Impact
Current server farms can search through massive databases in short times and train large deep neural

networks effectively. The current top-ranked supercomputer [8] has over 10 million modern cores, consumes

over 15 MW and peaks at 125 Petaflops/sec. That computer is itself a ‘server farm’ collection of cores. It took

under 20 years (from 1998 to 2016) for $1,000 laptops to exceed 1 Teraflop after the lead supercomputer did.

Even though the supercomputer performance growth rate has dropped from about 10X per 4 years in the 90’s

to about 10X per 5 or 6 years today, one may expect that within a couple decades the current performance of

a $1,000 laptop would be comparable to the server farms and supercomputers of today, allowing the same

level of search and training to be performed in each home as we can today with massive compute resources.

8. Bibliography
[1] This page includes a chart of the top 500 supercomputers in the world over time:

 https://www.top500.org/statistics/perfdevel/

[2] This is the primary Torch home page: http://torch.ch/

[3] There are various web pages evaluating laptops for CUDA and machine learning, but here is

 a slightly older one that notes that a GTX 965M is a decent and usable performance level:

 http://studiozenkai.com/post/cuda/

[4] This page shows step-by-step how to install Ubuntu 16.04 alongside Windows 10 for dual-boot:

 http://www.everydaylinuxuser.com/2015/11/how-to-install-ubuntu-linux-alongside.html

[5] I did not find updating to 16.10 helpful, but here is the link I followed for directions:

 http://www.omgubuntu.co.uk/2016/10/how-to-upgrade-to-ubuntu-16-10

[6] Here is the Nvidia page for installing CUDA:

http://developer.download.nvidia.com/compute/cuda/7.5/Prod/docs/sidebar/CUDA_Installation_Guide_L

inux.pdf

[7] Here is the page for installing Torch on Ubuntu:

 http://torch.ch/docs/getting-started.html

[8] Details on the world’s top supercomputers are at:

 https://www.top500.org/list/2016/11/

https://www.top500.org/statistics/perfdevel/
http://torch.ch/
http://studiozenkai.com/post/cuda/
http://www.everydaylinuxuser.com/2015/11/how-to-install-ubuntu-linux-alongside.html
http://www.omgubuntu.co.uk/2016/10/how-to-upgrade-to-ubuntu-16-10
http://developer.download.nvidia.com/compute/cuda/7.5/Prod/docs/sidebar/CUDA_Installation_Guide_Linux.pdf
http://developer.download.nvidia.com/compute/cuda/7.5/Prod/docs/sidebar/CUDA_Installation_Guide_Linux.pdf
http://torch.ch/docs/getting-started.html

