Sets
(Rosen, Sections 2.1,2.2)

TOPICS
• Discrete math
• Set Definition
• Set Operations
• Tuples

Why Study Discrete Math?

• Digital computers are based on discrete units of data (bits).
• Therefore, both a computer’s structure (circuits) and operations (execution of algorithms) can be described by discrete math
• A generally useful tool for rational thought! Prove your arguments.

What is ‘discrete’?

• Consisting of distinct or unconnected elements, not continuous (calculus)
• Helps us in Computer Science:
 • What is the probability of winning the lottery?
 • How many valid Internet address are there?
 • How can we identify spam e-mail messages?
 • How many ways are there to choose a valid password on our computer system?
 • How many steps are needed to sort a list using a given method?
 • How can we prove our algorithm is more efficient than another?

Uses for Discrete Math in Computer Science

• Advanced algorithms & data structures
• Programming language compilers & interpreters.
• Computer networks
• Operating systems
• Computer architecture
• Database management systems
• Cryptography
• Error correction codes
• Graphics & animation algorithms, game engines, etc.…
• i.e., the whole field!
What is a set?

- **An unordered collection of objects**
 - \(\{1, 2, 3\} = \{3, 2, 1\} \) since sets are unordered.
 - \(\{a, b, c\} = \{b, c, a\} = \{c, b, a\} = \{a, c, b\} \)
 - \(\{2\} \)
 - \{on, off\}
 - \(\{} \)

Objects are called **elements** or **members** of the set.

Notation \(\in \)
- \(a \in B \) means “\(a \) is an element of set \(B \).”
- Lower case letters for elements in the set
- Upper case letters for sets
- If \(A = \{1, 2, 3, 4, 5\} \) and \(x \in A \), what are the possible values of \(x \)?

Infinite Sets (without end, unending)
- \(N = \{0, 1, 2, 3, \ldots\} \) is the Set of natural numbers
- \(Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) is the Set of integers
- \(Z^+ = \{1, 2, 3, \ldots\} \) is the Set of positive integers

Finite Sets (limited number of elements)
- \(V = \{a, e, i, o, u\} \) is the Set of vowels
- \(O = \{1, 3, 5, 7, 9\} \) is the Set of odd #’s < 10
- \(F = \{a, 2, Fred, New Jersey\} \)
- Boolean data type used frequently in programming
 - \(B = \{0, 1\} \)
 - \(B = \{false, true\} \)
- Seasons = \{spring, summer, fall, winter\}
- ClassLevel = \{Freshman, Sophomore, Junior, Senior\}

Infinite vs. finite
- If finite, then the number of elements is called the **cardinality**, denoted \(|S| \)
 - \(V = \{a, e, i, o, u\} \) \(|V| = 5 \)
 - \(F = \{1, 2, 3\} \) \(|F| = 3 \)
 - \(B = \{0, 1\} \) \(|B| = 2 \)
 - \(S = \{spring, summer, fall, winter\} \) \(|S| = 4 \)
Example sets

- Alphabet
- All characters
- Booleans: true, false
- Numbers:
 - \(N = \{0,1,2,3\ldots\}\) - Natural numbers
 - \(Z = \{\ldots,-2,-1,0,1,2\ldots\}\) - Integers
 - \(Q = \{p/q \mid p \in Z, q \in Z, q \neq 0\}\) - Rationals
 - \(R\), Real Numbers
- Note that:
 - \(Q\) and \(R\) are not the same. \(Q\) is a subset of \(R\).
 - \(N\) is a subset of \(Z\).

What is a set?

- Defining a set:
 - Option 1: List the members
 - Option 2: Use a \textit{set builder} that defines set of \(x\) that hold a certain characteristic
 - Notation: \(\{x \in S \mid \text{characteristic of } x\}\)
 - Examples:
 - \(A = \{x \in Z^+ \mid x \text{ is prime}\}\) – set of all prime positive integers
 - \(O = \{x \in N \mid x \text{ is odd and } x < 10000\}\) – set of odd natural numbers less than 10000

Equality

- \(A = B\) is used to show set equality
- Two sets are \textit{equal} when they have exactly the same elements
- Thus for all elements \(x\), \(x\) belongs to \(A\) \textit{if and only if} \((\text{iff}) \ x\) also belongs to \(B\)
- The if and only is a bidirectional implication that we will study later
Set Operations: Union

- Operations that take as input sets and have as output sets
- The union of the sets A and B is the set that contains those elements that are either in A or in B, or in both.
 - Notation: $A \cup B$
 - Example: union of \{1, 2, 3\} and \{1, 3, 5\} is?

Answer: \{1, 2, 3, 5\}

Set Operations: Intersection

- The intersection of sets A and B is the set containing those elements in both A and B.
- Notation: $A \cap B$
- The sets are disjoint if their intersection produces the empty set.
- Example: \{1, 2, 3\} intersection \{1, 3, 5\} is?

Answer: \{1, 3\}

Set Operations: Difference

- The difference of A and B is the set of elements that are in A but not in B.
- Notation: $A - B$
- Aka the complement of B with respect to A
- Can you define difference using union, complement and intersection?
- Example: \{1, 2, 3\} difference \{1, 3, 5\} is?

Answer: \{2\}

Set Operations: Complement

- The complement of set A is the complement of A with respect to U, the universal set.
- Notation: \overline{A}
- Example: If N is the universal set, what is the complement of \{1, 3, 5\}?
 Answer: \{0, 2, 4, 6, 7, 8, ...\}
Identities

- **Identity**
 \[A \cup \emptyset = A, A \cap U = A \]

- **Commutative**
 \[A \cup B = B \cup A, \; A \cap B = B \cap A \]

- **Associative**
 \[A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C \]

- **Distributive**
 \[A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]

- **Complement**
 \[A \cup \overline{A} = U, A \cap \overline{A} = \emptyset \]

Subsets

- The set \(A \) is a subset of \(B \) iff for all elements \(x \) of \(A \), \(x \) is also an element of \(B \). *But not necessarily the reverse…*

- **Notation:** \(A \subseteq B \)
 - \(\{1,2,3\} \subseteq \{1,2,3\} \)
 - \(\{1,2,3\} \subseteq \{1,2,3,4,5\} \)
 - What is the relationship of the cardinality between sets if \(A \subseteq B \)? \(|A| \leq |B| \)

Empty Set

- **Empty set** has no elements and therefore is the subset of all sets: \(\{ \} \) or \(\emptyset \)

- Is \(\emptyset \subseteq \{1,2,3\} \)? - Yes!

- The cardinality of \(\emptyset \) is zero: \(|\emptyset| = 0 \).

- Consider the set containing the empty set: \(\{\emptyset\} \)

- Yes, this is indeed a set:
 \(\emptyset \in \{\emptyset\} \) and \(\emptyset \subseteq \{\emptyset\} \).
Set Theory

Quiz time:

• $A = \{ x \in \mathbb{N} \mid x \leq 2000 \}$ What is $|A|$? 2001
• $B = \{ x \in \mathbb{N} \mid x \geq 2000 \}$ What is $|B|$? Infinite
• Is $\{ x \} \subseteq \{ x \}$? Yes
• Is $\{ x \} \in \{ x \}$? Yes
• Is $\{ x \} \subseteq \{ x, (x) \}$? Yes
• Is $\{ x \} \in \{ x \}$? No

Powerset

• The powerset of a set is the set containing all the subsets of that set.
• Notation: $P(A)$ is the powerset of set A.
• Fact: $|P(A)| = 2^{|A|}$.
 - If $A = \{ x, y \}$, then $P(A) = \{ \emptyset, \{ x \}, \{ y \}, \{ x, y \} \}$
 - If $S = \{ a, b, c \}$, what is $P(S)$?

Powerset example

• Number of elements in powerset $= 2^n$ where $n =$ # elements in set
 - $\{ \}$ – the empty set
 - $\{ a \}, \{ b \}, \{ c \}$ – one element sets
 - $\{ a, b \}, \{ a, c \}, \{ b, c \}$ – two element sets
 - $\{ a, b, c \}$ – the original set

and hence the power set of S has $2^3 = 8$ elements:

$\emptyset, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ a, b, c \}$

Example

• Consider binary numbers
 - E.g. 0101
• Let every bit position $\{1, \ldots,n\}$ be an item
 - Position i is in the set if bit i is 1
 - Position i is not in the set if bit i is 0
• What is the set of all possible N-bit numbers?
 - The powerset of $\{1, \ldots,n\}$.
Why sets?

- Programming - Recall a class… it is the set of all its possible objects.
- We can restrict the type of an object, which is the set of values it can hold.
 - Example: Data Types
 - int: set of integers (finite)
 - char: set of characters (finite)
- Is \(\mathbb{N} \) the same as the set of integers in a computer?
- Is \(\mathbb{Q} \) or \(\mathbb{R} \) the same as the set of doubles in a computer?

Order Matters

- What if order matters?
 - Sets disregard ordering of elements
 - If order is important, we use tuples
 - If order matters, then are duplicates important too?

Tuples

- Order matters
- Duplicates matter
- Represented with parens ()
- Examples
 - \((1, 2, 3) \neq (3, 2, 1) \neq (1, 1, 2, 3, 3)\)
 - \(\{a_1, a_2, \ldots, a_n\}\)

- The ordered \(n\)-tuple \((a_1, a_2, \ldots, a_n)\) is the ordered collection that has \(a_1\) as its first element, \(a_2\) as its second element \(\ldots\) and \(a_n\) as its \(n\)th element.
- An ordered pair is a 2-tuple.
- Two ordered pairs \((a, b)\) and \((c, d)\) are equal iff \(a = c\) and \(b = d\) (e.g. NOT if \(a = d\) and \(b = c\)).
- A 3-tuple is a triple; a 5-tuple is a quintuple.
Tuples

- In programming?
 - Let’s say you’re working with three integer values, first is the office room # of the employee, another is the # years they’ve worked for the company, and the last is their ID number.
 - Given the following set \{320, 13, 4392\}, how many years has the employee worked for the company?
 - What if the set was \{320, 13, 4392\}? Doesn’t \{320, 13, 4392\} = \{320, 4392, 13\}?
 - Given the 3-tuple \((320, 13, 4392)\) can we identify the number of years the employee worked?

Why?

- Because ordered n-tuples are found as lists of arguments to functions/methods in computer programming.
- Create a mouse in a position (2, 3) in a maze: `new Mouse(2, 3)`
- Can we reverse the order of the parameters?
- From Java, `Math.min(1, 2)`

Cartesian Product

- Let A and B be sets. The Cartesian Product of A and B is the set of all ordered pairs (a,b), where \(b \in B\) and \(a \in A\).
- Cartesian Product is denoted \(A \times B\).
- Example: \(A = \{1, 2\}\) and \(B = \{a, b, c\}\). What is \(A \times B\) and \(B \times A\)?

- A = \{a, b\}
- B = \{1, 2, 3\}
- \(A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}\)
- \(B \times A = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}\)